
N3783

Document Number: N3783
Date: 2013-09-27
Revises: N3646
Reply to: Robert Pratte

rpratte@gmail.com

Network Byte Order Conversion

Contents
Contents 1

1 Network Byte Order Conversion 2
1.1 Introduction . 2
1.2 Motivation and Scope . 2
1.3 Design Decisions . 2
1.4 Technical Specifications . 2
1.5 Acknowledgments . 3
1.6 References . 3

1

N3783

1 Network Byte Order Conversion
1.1 Introduction
This proposal adds support to C++ for converting between host and network byte order.

1.2 Motivation and Scope
Converting between host and network byte ordering is an essential component of many network programs.
This proposal adds support for the four existing byte order converting function specified by IEEE Std 1003.1-
2008 that have been in use since the 1970s. Additionally two generic functions, and their specializations for
unsigned integer types, are specified for converting between network and host byte order.

1.3 Design Decisions
The functions htonl(), htons(), ntohl(), and ntohs() are intentionally included even though they are not
necessary given the hton<T>() and ntoh<T>() template functions. This is to maintain compatibility with
the POSIX standard (IEEE Std 1003.1-2008) and to allow backwards compatibility with existing networking
programs. The function names are also chosen to match existing names rather than using a more verbose
and descriptive name such as host_to_network. This choice is made as, within the network programming
domain, ntoh and hton are established vocabulary terms.

hton<T>() and ntoh<T>() are specified as generic templates rather than listing overloads for hton()
and ntoh(). This allows user extension of this function.

The current specification allows the four non-template functions to be macros. This does not present
implementation concerns, is addressed by note #174 from paragraph 6 in section 17.6.1.2, and is already
dealt with for names in the <cerrno> header.

An alternate proposal is to standardize a more general byte order conversion library like Boost Endian.
Such a proposal expands the scope beyond that which is immediately useful for network programming.
The choice to provide a network domain specific byte order conversion facility allows a more immediately
useful interface based on existing practice that does not in any way limit the future introduction of a more
general purpose byte order conversion facility. Should such a facility be standardized in the future the
implementation of this proposal would simply alias names from there. As stated before, within the network
programming domain hton and ntoh are established vocabulary terms and are useful names within net::
even if a more general facility is developed.

1.4 Technical Specifications
Header <net> Synopsis

namespace std {
namespace experimental {
namespace net {

constexpr uint32_t htonl(uint32_t host) noexcept;
constexpr uint16_t htons(uint16_t host) noexcept;
template <class T>

constexpr T hton(T host) noexcept = delete;
template <>

constexpr unsigned-integral hton(unsigned-integral host) noexcept;

constexpr uint32_t ntohl(uint32_t network) noexcept;
constexpr uint16_t ntohs(uint16_t network) noexcept;

§ 1.4 2

N3783

template <class T>
constexpr T ntoh(T network) noexcept = delete;

template <>
constexpr unsigned-integral ntoh(unsigned-integral network) noexcept;

} // namespace net
} // namespace experimental
} // namespace std

1 The <net> header is available if uint8_t, uint16_t, uint32_t, and uint64_t are provided by <cstdint>.
2 For each unsigned integer type unsigned-integral, there shall be explicit specializations of the hton() and

ntoh() templates.
3 Network byte order is big-endian, or most significant byte first (RFC 2781 section 3.1). This byte order is

used by certain network data formats as it passes through the network. Host byte order is the endianness
of the host machine.

constexpr uint32_t htonl(uint32_t host) noexcept;
constexpr uint16_t htons(uint16_t host) noexcept;
template <>

constexpr unsigned-integral hton(unsigned-integral host) noexcept;

4 Returns: The argument value converted from host to network byte order.

constexpr uint32_t ntohl(uint32_t network) noexcept;
constexpr uint16_t ntohs(uint16_t network) noexcept;
template <>

constexpr unsigned-integral ntoh(unsigned-integral network) noexcept;

5 Returns: The argument value converted from network to host byte order.

1.5 Acknowledgments
Thanks for the editorial feedback from Darin Pantley and Rob Pratte. Thanks to Benjamin De Kosnik for
early implementation validation. Thanks to Christof Meerwald for the suggestion of using = delete. Thanks
to Frank Birbacher for the suggestion to use noexcept. Thanks to the rest of SG4 group in attendance in
Bristol for good discussion and feedback.

1.6 References
— Open Group Base Specifications Issue 7, IEEE Std 1003.1-2008

— BYTEORDER(3) - BSD Library Functions Manual (4 June 1993)

— Boost Endian - http://boost.cowic.de/rc/endian/doc/

§ 1.6 3

http://boost.cowic.de/rc/endian/doc/

	Contents
	1 Network Byte Order Conversion
	1.1 Introduction
	1.2 Motivation and Scope
	1.3 Design Decisions
	1.4 Technical Specifications
	1.5 Acknowledgments
	1.6 References

