
Index Based Ranges (Rev. 1)
Document: N3782 - revises N3752
Date: 2013-09-24
Authors: Arno Schödl (schoedl@think-cell.com), Fabio Fracassi(f.fracassi@gmx.net)

Authors Note
This document is proposed as a basis for continuing work and discussion. The design
choices implied in this work are meant as a starting point. Better ideas, as well as
comments and critiques will be gratefully received.

Key Points
In contrast to most currently popular range implementations, which define range itera-
tions in terms of (pairs of) iterators we propose to use range adaptors and indices (which
is similar to N1873 - Cursor/Property Maps). The most important consequence of this
is that we can avoid ”Fat Iterators” when stacking range adaptors, in particular range
filters.

Ranges and Traversables
This paper is intended to be fully compatible with N3763 - Traversable Arguments. We
intedend to use the Traversable concept as a basis wherever applicable. N3763 sets a
good foundation for making Traversables easy to work with. In this paper we would like
to explore the design space beyond this basis to make working with them both easy and
powerful for programmers.

Adaptors
One of the main advantages of using Traversables over ad-hoc pairs of iterators is the
ability to stack several operations on them and be able to evaluate the results lazily. This
can be achieved by using range adaptors. The most common operations that are usually
provided in this way are transform, filter and sub_range. We think that it is crucial for
us to not standardize a library that cannot do at least those operations as efficiently as
possible. While it is possible to implement those adaptors with iterator based ranges, or
even purely with iterators, those iterators do become what we dubbed ”Fat Iterators”.
The problem is that iterators, because they have no notion of the underlying range or
container, do have to carry duplicate information.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1873.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3763.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3763.html

Fat Iterators
Consider the following (contrived) example which uses a stack of filters:

1 std::vector<int> vec = {1,2,3,4,5,6,7,8,9,10};
2 auto sieve = vec | boost::adaptors::filtered([](int i){ return i%2!=0; })
3 | boost::adaptors::filtered([](int i){ return i%3!=0; })
4 | boost::adaptors::filtered([](int i){ return i%5!=0; });
5

6 auto it = std::begin(sieve);
7 auto end = std::end(sieve);

Now consider what information the iterator it does have to carry if it is implemented
in terms of the iterators of the underlying range. At the very least each has to store
(by value, as references would be far to brittle) the underlying position iterator, the
predicate and the underlying end iterator. Of course the underlying iterators in this
example are in turn iterators of a filtering range, so the size of the fully filtered iterator
grows exponentially with the number of stacked ranges.

Range adaptors and indices
We can prevent that by separating per-range data and per-iterator data into a range
adaptor and an index. Consider the above example again, but this time the iterator saves
a range adaptor by reference and a special index, which serves to indicate a position in
the original range. The index by itself can do no operations. For it to be meaningful it
has to be combined with the matching range adaptor. By separating the pure position
into the index, and the operations into the range adapter, we are now able to use the
original ranges iterator (which are usually slim) throughout the adapter stack.

Iterator it

range_adaptor*

index

filter(i%5)

range_adaptor*

functor*

vec

0

1

2

3

4

end

Iterator end

range_adaptor*

index

filter(i%3)

range_adaptor*

functor*

filter(i%2)

range_adaptor*

functor*

2

At this point we do not propose to standardize the index protocol, or any public
interface. However we do not see any drawbacks on using the index based protocol in an
implementation, and we do get optimally small iterators out of doing so. As we do strive
to make standard library algorithms to be as fast as hand-rolled loops, which would
become more difficult if iterators grow linearly in size, we feel that we should be careful
not to make a standardization decisions that makes this kind of optimization impossible
to implement.

Design decision that could forbid this optimization might be those about how to handle
the details of lifetime management or constness.

Lifetime
Range adaptors usually store a reference to their base range, and thus are susceptible to
dangling references if the base range goes out of scope before the adapter does. Range
adaptors do however aggregate their base range (i.e. store it by value) iff the base range
is an rvalue in our implementation. This enables us to have a optimal size of range
adapters. It is either constant size or grows linearly with the number of adapted ranges.

To implement this we use a reference_or_value template which might be of more
general interest as a basic building block.

Constness
A range will transitively ”inherit” the constness from its base range or range adaptor.
That means that the elements of a Range const& can never be modified.

Generator Ranges
This proposal can be extended to support a further range category below the one that
provides input iterators. We propose to call ranges that fit into this category generator
ranges. A generator range does not provide iterators but simply calls a functor on each
of its elements. The functor is passed to the ranges operator().

The generator interface is enough to implement a great number of algorithms (e.g.
for_each, all_of, any_of, none_of, ...) and is trivially implementable for all input
ranges. Furthermore for certain Ranges like join Ranges or tree traversals it can be
implemented with less overhead than iterator based categories.

This makes it very easy to create on-the-fly ranges:

1 struct generator_range {
2 template< typename Func >

3

3 void operator()(Func func) {
4 for(int i=0;i<50;++i) {
5 func(i);
6 }
7 }
8 };
9

10 for_each(make_filter_range(generator_range(), [](int i){ return i%2==0; }),
11 [](int i)
12 {
13 std::cout << i << ", ";
14 });

Generator ranges are already quite useful the way they are now, but they could really
shine in conjunction with resumable functions (N3722) or coroutines (N3708).

Breaking
One drawback algorithms over Traversables (in contrast to hand-rolled loops) have is
that they do not provide a way to break out of the loop. While this is somewhat optional
with regard to Traversable Ranges, with generator Ranges, that might potentially be
infinite, it becomes a requirement to be able to do so.

We propose that the functor to be passed to the generator ranges or algorithms like
for_each supports a protocol to break out of an iteration. We call this break_or_continue
and it works like this.

1 struct generator_range_break {
2 template< typename Func >
3 break_or_continue operator()(Func func) {
4 for(int i=0;i<5000;++i) {
5 if (func(i)==break_) { return break_; }
6 }
7 return continue_;
8 }
9

10 };
11

12 for_each(make_filter_range(generator_range_break(), [](int i){ return i%2==0; }),
13 [](int i) -> break_or_continue
14 {

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3722.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3708.pdf

15 std::cout << i << ", ";
16 return (i>=50)? break_ : continue_;
17 });

Implementation Scope
We are currently working on publishing a reference implementation to showcase and test
the issues raised here. The implementation is used extensively throughout our sizeable
production codebase.

The basis of this implementation needs N3763 style range_begin to reliably detect a
Traversable, and get the necessary dependent type information.

The first design decision we took was to concentrate on Traversables as a Concept.
That means that we do not make any assumptions on whether a Traversable is lightweight
or not, or whether or not it does own its values. We have found that in practice this is
seldom a problem, and adaptors as well as algorithms can be implemented generically
and efficiently without committing on any of those assumptions.

We implement the three basic adapters, filter_range, transform_range and sub_range.
Our implementation is careful to work with both all kind of Traversables, and with gen-
erator ranges as well. Each of our range adaptors also implements an Iterator interface
which falls trivially out of the index based interface. This enables seamless integration
with other range based algorithms like range based for, or boost ranges.

We also implement basic algorithms for_each and equal, with support for the break
protocol and generator ranges.

We think that those few features serve as a good building block as well as a test bed
to evaluate the consequences of those foundational design decisions. We believe that the
first step toward standardized ranges should focus on these decisions.

We have also implemented several more advanced algorithms like quantifiers (contians,
all_of, ...) and several partitioning algorithms, and encountered no implementation
difficulties that would hint at a unsound basic model.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3763.html

