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Introduction

In this paper we argue that vectorization is a very different concept to paral-
lelization and needs to be supported explicitly by the language. The lack of
C++ support for explicit vectorization costs factors (2 to 4 in real code) of
performance on current commodity hardware. We demonstrate why we believe
vectorization is a much needed language feature. The arguments presented in
this paper are based on, and accompanied by, performance measurements of
code used at CERN.

Vectorization

Operations can be reshuffled and combined into vector operations, replacing
for instance a loop by a single operation on a consecutive set of data. As an
example, the non-vectorized code

int in0[4] = {0};
int in1[4] = {0, 1, 2, 3};
int out[4];
for (int i = 0; i < 4; ++i)

out[i] = in0[i] + in1[i];

could be transformed into vectorized (pseudo-) code

int in0[4];
vector_init(in0, 0);
int in1[4] = {0, 1, 2, 3};
int out[4];
vector_add(out, in0, in1);

where vector_xyz are hypothetical, architecture-specific instructions (vector
intrinsics) operating on a set of data.

2



N3774 Vectorization

Vectorization and loop semantics

Vectorized operations do not guarantee the same order of iteration as traditional
loops. If the original loop looked like this:

int in0[4] = {0, 1, 2, 3};
int out[5] = {0};
for (int i = 0; i < 4; ++i)

out[i+1] = in0[i] + out[i];

then the vectorized version of this example will generally not produce the same
(nor even reproducible) result, because the sequencing of reading from and
storing to out is likely going to be different than in a traditional loop. This is a
fundamental semantic change of loops, likely violating 1.9 [intro.execution].

Vectorization versus threading

High Energy Physics, with its embarrassingly parallel problems, has used multi-
process parallelism for decades, both for multi-node (“cluster”) and single node
parallelism. Additionally we selectively employ multithreading to cut down
the initialization time and to reduce memory usage (shared memory of threads
versus separate process memory). These two concurrency mechanisms are used
to schedule tasks on processors; they do not increase the software’s efficiency on
a single processor. Vectorization, on the other hand, does improve the efficiency
(and in particular the throughput) of our software, by using the CPU’s vector
resources.

Number crunching software, as developed by institutions like CERN, control the
parallelization in a very direct way: process parallelism is used in combination
with thread parallelization; having the compiler guess what should be good for
us would at least be a wasted effort, if not counterproductive.

Also for developers, vector loops are conceptually very different from thread
parallelization; see for instance (1) contrasting these two. While thread par-
allelization encourages keeping data in disjoint memory regions and is closer
in spirit to multi-process parallelization (with issues such as synchronization,
starving, pooling etc), vectorization is a data-centric concept.

Thus, vectorization is orthogonal to parallelization and needs to be handled
separately. A picture might contrast these two concepts even more clearly: large
trucks are used to remove excavation material in mines. We currently use only a
fraction of the size of the trucks; vectorization would allow us to use them to a
larger extent. Threading is the concept of using multiple trucks – which is good
but different, and not a good reason for running mostly empty trucks.
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Types of vectorization

In principle, we can distinguish three different kinds of vectorization:

Auto-Vectorization This is the only type of compiler-generated vectorization
available to standard compliant code. Because auto-vectorized and non-
vectorized code must yield the same results, the compiler must guarantee
that aliasing and order of operations with respect to value dependency
cannot interfere with the result. Vector engines of most current hardware
require a certain alignment of the groups of input data, that must be
guaranteed by the compiler. Any non-vectorizable operation will prevent
the compiler from auto-vectorizing code. All of this explains why only
very few tight and simple loops with local-only data can possibly be
auto-vectorized.

Vectorization through Vector Wrapping Intrinsics An alternative to
auto-vectorization is explicit vector-oriented programming. Several
libraries exist or are suggested that hide the architecture specific vector
intrinsics and expose them through a common interface; see for instance
(2–4). Use of intrinsics can lead to significant performance boosts, at the
cost of a fundamental change in code layout. In addition, they prevent
certain compiler optimizations in code calling into these libraries; memory
management and vectorization is defined by the library, which has no
knowledge of the code using it.
The fact that the libraries are targeted to a specific set of architectures
(which inevitably leaves traces in their interfaces, for instance for alignment)
makes them a good interim option.

Vectorization Through Code Specifications A third approach uses lan-
guage extensions. Code can be annotated to guarantee to the compiler that
the prerequisites for vectorizing it are met – even though (just as in the
previous approach) the compiler cannot determine the correctness of this
guarantee and thus would usually not auto-vectorize. Typical examples of
the technique are vectorization pragmas (5, 6), OpenMP 4.0 (7) and Intel
Cilk Plus (8); a proposal to the committee (9) is similar to the latter.
Our favored approach, annotated loops as in (6, 9, 10), is one of the
key language extensions employing this technique. This programming
model remains close to that of current C++ making it more accessible.
As vectorization through annotations is controlled by the compiler, com-
piler optimizations can still be leveraged. We have seen cases where the
compiler decided against the use of vectorization in annotated loops; a
cross-check with explicit vectorization showed that this was indeed the
correct optimization.
Compiler-generated vectorization can easily and naturally target the vec-
torization code for a specific architecture, the same way it currently targets
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non-vector code generation. With the emergence of CPU / GPU shared
memory regions, targeting the vector code to GPUs will be an obvious
next step that in fact has already started (7).

Performance comparisons of different vectoriza-
tion mechanisms

Algorithm used for performance measurements

For the purpose of this paper, we give an example from the field of detector
simulation, which is one of the major consumers of CPU ressources at CERN.
Already targeting multi-threading for some time (11), current efforts focus
on vectorization support within the simulation software (12) to increase its
floating point performance. A very important part of such simulations are simple
geometrical calculations, determining for instance whether a particle is inside
a particular shape or calculating its distance to the shape’s surface. Similar
operations are often done in the gaming industry.
As an illustrative example for such calculations we present the following
small function that determines if a particle of coordinates point[0] point[1]
point[2] is located inside a rectangular box of lateral width boxsize[..]
whose origin is located at origin.

bool contains(double const* point)
{

bool inside[3];
for(int dir=0;dir < 3;dir++){

inside[dir] = std::abs(point[dir]-origin[dir]) < boxsize[dir];
}
return inside[0] && inside[1] && inside[2];

}

Auto-vectorization

In future vector-oriented simulations we target such calculations to be executed
for several particles per call instead of just one, by introducing a similar function
with a slightly modified signature:

void contains_v(double const* __restrict__ points,
bool * __restrict__ isin, int np)

{
for(int k=0; k<np; k++)

isin[k] = contains( &points[3*k] );
}
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Ideally, such code additions should be enough to benefit from CPU vector
capabilities. Unfortunately, this simple code never auto-vectorizes and no gain
in efficiency is obtained although we know that vectorization is possible.

After a series of refactorings (manual loop unrolling, code inlining, conversion
of memory access) and compiler hints (restrict) we arrive at code that the
compiler agrees to auto-vectorize. However, this approach is very expensive
on the developer’s side, already for this tiny example, and offers essentially no
guarantee of success.

Vectorization using intrinsics

Our currently favored approach (given the state of standard C++, i.e. the lack
of language support for vectorization) therefore consists of the use of vector
intrinsics. We pay a price for this: we have to manually change the loop structure
and to manage all local variables in a vector way. The following snippet shows
Vc (3) (see also (4)) code for the above example; similar code could be written
using the Intel Cilk Plus array notation (8).

void contains_v_Vc( double const* points, bool * isin, int np )
{

// Architecture dependent "gather" indexes:
unsigned int const i[4]={0,3,6,9};
Vc::uint_v const indices(i);

for(int k = 0; k < np; k += Vc::double_v::Size)
{

Vc::double_m mask[3];
for(int dir=0;dir < 3;dir++)
{

Vc::double_v x;
// Gathers a certain number of coordinates
// into Vc vector x
x.gather(&points[3*k+dir], indices);
x = Vc::abs(x - origin[dir]);
mask[dir] = (x < boxsize[0]);

}

Vc::double_m particleinside;
particleinside = mask[0] && mask[1] && mask[2];
for(int j=0;j<Vc::double_v::Size;++j) {

isin[k+j] = particleinside[j];
}

}
}
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For the Vc example above, using the SSE4 instruction set with GCC version
4.7.2 and compilation flags g++ -funroll-loops -Ofast on this code, a speedup
factor of 1.93 was seen compared to the non-vectorized version. This factor is
close to the size of the SSE4 vector register, i.e. to the number of input data
elements that a single vector operation can act on.

We see similar speedup factors in much more complex and complete algorithms,
making a dramatic impact in overall performance of our simulation software.

Language-enabled vectorization

Loop syntax and semantics as proposed by (9) enable us to write this code in a
much more compact and readable way. We have measured similar (higher or
lower) performance gains as using Vc. Most currently available implementations
of loop language extensions only offer #pragma statements instead of proper
keywords. A vector for loop using Intel Cilk Plus (8) could be expressed as:

void contains_v(double const* points, bool * isin, int np)
{
#pragma simd

for(int k=0; k<np; k++)
isin[k]=contains( &points[3*k] );

}

For the vectorization to succeed, this requires contains() to be declared as
elemental function (see also (9)).

This loop is impressively close to traditional C++ code. It encapsulates the
vector complexity that is much more exposed in the approach using explicit
intrinsics. Nonetheless, the algorithm requires careful design to benefit from
vectorization. But once spelled out, it has a very readable form – and unlike
current C++ does enable vectorization and optimization through compilers.

In summary, use of vectorization drastically increases the performance of number
crunching operations. This is not only visible in example code: it can scale to
the bulk of algorithms. Using language extensions (for instance that proposed in
(9)), vectorized algorithms can be expressed in a way that is very compact and
at the same time very similar to current C++.

Motivation for vectorization in C++

Vectorization support should be offered, and it should be offered as a language
feature. The following paragraphs explain our reasoning:
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Use past, current and future hardware efficiently, with
C++

Non-vectorized code uses about 25% of the power of today’s commodity hardware
– and even less of tomorrow’s. It runs instructions on each input data, instead of
running an instruction on a vector of input data in the same amount of cycles.
As vectorized code is in general more compact (because of the operations on
vectors) it usually also improves cache performance.

Vectorization should not be hidden in a library

Vectorized library components

Having a vectorized set of algorithms as suggested by (13) is not a generic answer
to the underlying problem: currently C++ does not allow to communicate to
the compiler that a loop’s requirements for vectorization are fulfilled. For most
number crunching applications, vectorized standard library algorithms only help
in a tiny fraction of all problems. Changing code to make use of them will often
cause additional inefficiencies. The effect of modularization (for instance the
call to an elemental function like contains() in the above example) on the
ability of the standard algorithms to vectorize are not clear at all. It is generally
impossible to construct real world algorithms from a set of constituent elements
of a hypothetical vectorized standard library.

Vectorizing library components

Focusing on a vectorized std::for_each (as for instance suggested by (13)), the
differences between a language-based vector loop and a vectorizing library loop
seem purely syntactic, with the vectorized std::for_each allowing to move
vectorization into the library. But this neglects additional information that must
be provided to the compiler for vectorization of realistic cases, such as inter-loop
dependencies (for instance different variable types like linear versus fixed for all
iterations), and on the other hand missing guarantees on the sequencing of the
iterations: like regular for loops, vectorized for loops have sequencing guarantees
– but they are different. And just as with regular for loops, developers will have
to rely on these sequencing guarantees for real world algorithms. Unlike in the
parallel for loop case, the sequencing is non-linear. We find this a change too
dramatic to be hidden in a library function.

Even if means were provided to convey additional information to a vectorized
std::for_each, the notion of elemental function will have to be added to enable
modularity. And this is a language feature. Furthermore, while std::for_each
looks like a library-only approach it requires compiler support: only the compiler
can convey the information needed from the iterations’ body to the vectorization
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engine. As an example, at the point of invocation of std::for_each the body
of the function argument to std::for_each must be available to the compiler
to be able to vectorize it. Thus, much of the advantage of a library solution is
purely perceptional.

Library components wrapping vector intrinsics

Intrinsics-wrapping vectorization libraries on the other hand suffer from (at least
implicit) target architecture dependencies, valarray-style changes to algorithms
and the fact that compilers are seemingly unable to optimize across intrinsic
calls. Just as we prefer writing C++ over assembler code we should be able to
rely on compilers to generate optimal machine code.

Prevent escape to non-standard extensions

To leverage the performance of current hardware, people resort to extensions of
C++. Those have the usual issue of standard extensions: they are not standard,
and where they are (OpenMP might be seen as such) not all C++ compiler
vendors implement them – which makes them nonstandard for C++ users.

Infrequently used counterarguments

Just for completeness, we have collected a few arguments against vectorization
support, and our thoughts about those.

• Explicit vectorization annotation is not needed; auto-
vectorization will get there eventually.
All compiler vendors we have talked to disagree.

• Explicit vectorization annotation is dangerous; it cannot be cor-
rect, and if it is correct now it might become incorrect after a
code change.
The same holds true with thread safety: the compiler cannot guarantee
thread safety, it has to trust the developer. Just because you have a
powerful tool doesn’t mean everyone should use it. In fact the problem
is really that currently nobody can write code leveraging vector hardware
(almost all current commodity chips) in standard C++.

• A call to any function will cause havoc.
The proposal (9) (that we enthusiastically support) does not suffer from this.
It does not require a “contagious” annotation run through a call graph. It
merely uses calls to non-vectorizable functions as “synchronization” points
(in the parallel language).
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• A call to any (for instance math) function will remove the ad-
vantage of vectorized code.
Many libraries exist that re-implement mathematical functions in a vector-
izable way (14, 15); we have our own (16).

Conclusion

We have shown that C++ users currently pay a hefty price for using standard
C++. Many extensions exist to leverage vector units in a meaningful way. C++
should react; a language extension is needed.

The proposal (9) goes into the right direction. It would allow us to express
our vectorized code as standard compliant code while maintaining its efficiency.
Alternative proposals, for instance on an array notation in the spirit of Cilk
Plus (8), would be interesting to see and discuss. Whatever solution chosen,
vectorization support will have a big impact for all (floating point and integer)
number crunching communities.
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