
Index Based Ranges
Document: N3752
Date: 2013-08-30
Authors: Arno Schödl (schoedl@think-cell.com), Fabio Fracassi(f.fracassi@gmx.net)

Authors Note
This document is proposed as a basis for continuing work and discussion. The design
choices implied in this work are meant as a starting point. Better ideas, as well as
comments and critiques will be gratefully received.

Key Points
In contrast to most currently popular range implementations, which define range itera-
tions in terms of (pairs of) iterators we propose to use range adaptors and indices (which
is similar to N1873 - Cursor/Property Maps). The most important consequence of this
is that we can avoid ”Fat Iterators” when stacking range adaptors, in particular range
filters.

Fat Iterators
Consider the following (contrived) example which uses a stack of filters:

1 std::vector<int> vec = {1,2,3,4,5,6,7,8,9,10};
2 auto sieve = vec | boost::adaptors::filtered([](int i){ return i%2!=0; })
3 | boost::adaptors::filtered([](int i){ return i%3!=0; })
4 | boost::adaptors::filtered([](int i){ return i%5!=0; });
5

6 auto it = std::begin(sieve);
7 auto end = std::end(sieve);

Now consider what information the iterator it does have to carry if it is implemented
in terms of the iterators of the underlying range. At the very least each has to store
(by value, as references would be far to brittle) the underlying position iterator, the
predicate and the underlying end iterator. Of course the underlying iterators in this
example are in turn iterators of a filtering range, so the size of the fully filtered iterator
grows exponentially with the number of stacked ranges.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1873.html

Range adaptors and indices
We can prevent that by separating per-range data and per-iterator data into a range
adaptor and an index. Consider the above example again, but this time the iterator saves
a range adaptor by reference and a special index, which serves to indicate a position in
the original range. The index by itself can do no operations. For it to be meaningful it
has to be combined with the matching range adaptor. By separating the pure position
into the index, and the operations into the range adapter, we are now able to use the
original ranges iterator (which are usually slim) throughout the adapter stack.

Iterator it

range_adaptor*

index

filter(i%5)

range_adaptor*

functor*

vec

0

1

2

3

4

end

Iterator end

range_adaptor*

index

filter(i%3)

range_adaptor*

functor*

filter(i%2)

range_adaptor*

functor*

Separating the index is mainly an implementation detail, the ranges we propose are mix
and match perfectly iterator based implementations. However this design drives some
of the decision about how to handle the details of lifetime management or constness.

Lifetime
Range adaptors usually store a reference to their base range, and thus are susceptible to
dangling references if the base range goes out of scope before the adapter does. Range
adaptors do however aggregate their base range (i.e. store it by value) iff the base range
is an rvalue. This enables us to have a optimal size of range adapters. It is either
constant size or grows linearly with the number of adapted ranges.

To implement this we use a reference_or_value template which might be of more
general interest as a basic building block.

Constness
A range will transitively ”inherit” the constness from its base range or range adaptor.
That means that the elements of a Range const& can never be modified.

2

Generator Ranges
This proposal can be extended to support a further range category below the one that
provides input iterators. We propose to call ranges that fit into this category generator
ranges. A generator range does not provide iterators but simply calls a functor on each
of its elements. The functor is passed to the ranges operator().

The generator interface is enough to implement a great number of algorithms (e.g.
for_each, all_of, any_of, none_of, ...) and is trivially implementable for all input
ranges. Furthermore for certain Ranges like join Ranges or tree traversals it can be
implemented with less overhead than iterator based categories.

This makes it very easy to create on-the-fly ranges:

1 struct generator_range {
2 template< typename Func >
3 void operator()(Func func) {
4 for(int i=0;i<50;++i) {
5 func(i);
6 }
7 }
8 };
9

10 for_each(make_filter_range(generator_range(), [](int i){ return i%2==0; }),
11 [](int i)
12 {
13 std::cout << i << ", ";
14 });

To support unlimitied generator ranges we propose that the functor to be passed
to the generated range supports a protocol to break out of an iteration. We call this
break_or_continue and it works like this.

1 struct generator_range_break {
2 template< typename Func >
3 break_or_continue operator()(Func func) {
4 for(int i=0;i<5000;++i) {
5 if (func(i)==break_) { return break_; }
6 }
7 return continue_;
8 }
9

3

10 };
11

12 for_each(make_filter_range(generator_range_break(), [](int i){ return i%2==0; }),
13 [](int i) -> break_or_continue
14 {
15 std::cout << i << ", ";
16 return (i>=50)? break_ : continue_;
17 });

4

