
Proposing [[pure]]

Document #: WG21 N3744
Date: 2013-08-30
Revises: N1664
Project: JTC1.22.32 Programming Language C++
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background 1
2 Well- and ill-behaved functions . . . 1
3 Benefits 2
4 Characteristics of pure functions . 3
5 Prior art 4

6 Proposed wording 5
7 Acknowledgments 6
8 Bibliography 6
9 Revision history 7

Abstract

Following significant prior art, this paper proposes a pure attribute to specify that a function
or statement is free of observable side effects.

1 Background

Our nearly decade-old paper [Bro04] aimed to provide “. . . Improved Optimization Opportunities
in C++0X” by proposing new function qualifiers nothrow and pure. Alas, that paper did not find
favor with EWG at the time. However, hindsight strongly suggests that we were on the right
track after all, because our proposed nothrow qualifier has turned out to be a precursor of the
noexcept qualifier proposed five years later [GA09] and adopted for C++11.1

We believe it is time to revisit our other proposed annotation, pure. In doing so, we selectively
borrow from relevant parts of our earlier paper because the rationale, expectations, benefits, and
prior art seem as applicable today as they were in 2004. However, we adapt our proposal to take
advantage of C++11 attribute syntax.

2 Well- and ill-behaved functions

A free function or a member function is described as well-behaved or, equivalently, as pure2 if it:

1. communicates with client code solely via the function’s argument list3 and return value, and
2. is incapable of observable side effects.

1 We had even proposed functionality, then in the form of a trait named isnothrow, that C++11 has since incarnated
in the form of a noexcept-expression [expr.unary.noexcept].

2 See http://en.wikipedia.org/wiki/Pure_function as of 2013-07-10. This pure nomenclature is of long standing, so
we have adopted it even though it overlaps and potentially could be confused with the established C++ terms pure virtual
and pure-specifier [class.abstract]/2.

3 Where applicable, we treat this as an (implicit) argument.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf
mailto:webrown.cpp@gmail.com
http://en.wikipedia.org/wiki/Pure_function

2 N3744: Proposing [[pure]]

Eric White puts it less formally, saying that “A pure function is one that doesn’t affect the
state of anything outside of it, nor depends on anything other than the arguments passed to
it” [Whi06]. Equivalently, Keith Sparkjoy says that “A pure function doesn’t rely on any state
beyond what’s passed to it via its argument list, and the only output from a pure function is its
return value” [Spa13].

Among its other characteristics, a well-behaved function exhibits results that are reproducible:
no matter how often such a function is called, its results will be identical so long as all val-
ues provided via the argument list remain unchanged. In the standard library, forward<>,
string::length, and hash<>::operator() for the specializations specified in [unord.hash]
exemplify well-behaved functions.

In contrast, a function that is not well-behaved is said to be ill-behaved or, equivalently, impure.
An ill-behaved function may violate the above strictures via such behaviors as:

• relying on the value of a non-local object outside its argument list,
• modifying the value of a non-local object outside its argument list,
• throwing an exception without catching it,
• modifying and relying on the value of non-const private state such as a local static variable,
• failing to return,
• allocating dynamic storage without freeing it, or
• calling any ill-behaved function.

Standard library examples of ill-behaved functions include

• printf, because I/O is an observable side effect;
• tan, because it may update the global errno variable;
• longjmp, because it fails to return; and
• mersenne_twister_engine<>::operator(), because it updates and relies on the private

state of *this.

3 Benefits

The ability to discriminate between well- and ill-behaved functions can be significant for the
generation of high-performance code at and near a call site: If it can be determined at a point of
call that the callee is well-behaved (and thus that its results are reproducible), additional caller
optimizations may be applicable.

Walter Bright provides the following example in [Bri08]:

Common subexpression elimination is an important compiler optimization, and with
pure functions this can be extended to cover them, so: int x = foo(3) + bar[foo(3)];
need only execute foo(3) once.

An article by embedded development tools producer KEIL [KEIL] confirms this analysis: A side-by-
side comparison of the object code produced by the ARM C/C++ Compiler from identical calls to
unannotated and pure-annotated versions of the same function shows that approximately 33%
less code is generated when the called function is declared as pure. The reduction is attributed to
a common subexpression elimination.

Selected optimizations may be applicable even if a callee is ill-behaved, but in such a case the
safe application of optimizing code transformations generally requires more detailed knowledge
regarding callee behavior. Such information is traditionally available only by inspecting the
body of the callee. Because function inlining, by definition, makes function bodies visible at
the point of call, compilers can make better decisions regarding both local and global code

N3744: Proposing [[pure]] 3

improvement opportunities relative to such a call site; such additional knowledge therefore
contributes significantly toward the improved code very often attributed to inlining technology.4

Conversely, in the absence of inlining, a called function’s body is traditionally opaque to its
callers. Caller code improvement may therefore be inhibited by such lack of knowledge regarding
callee behavior, especially with respect to side effects.5

In [Raa12], Frerich Raabe points out that “In addition to possible run-time benefits, a pure
function is much easier to reason about when reading code.” Walter Bright refers to this
characteristic as self-documentation and argues [op. cit.] that “This greatly reduces the cognitive
load of dealing with [a function]. A big chunk of functions can be marked as pure, and just this
benefit alone is enough to justify supporting it.”

Raabe continues, “Furthermore, it’s much easier to test a pure function since you know that
the return value only depends on the values of the parameters.” Keith Sparkjoy [op. cit.] makes
and expands on the same point: “Pure functions are straighforward to test. They only depend on
their arguments; there’s no obscure environmental setup that’s required—just input and output.
And testing is only one example of reuse—if something is easy to test, it’s usually easy to reuse in
other parts of your code.”

Finally, Bright also promotes [op. cit.] the following additional benefits:

• “Pure functions do not require synchronization for use by multiple threads, because their
data is all either thread local or immutable.”

• “User level code can take this further by noting that the result of a pure function depends
only on the bits passed to it on the stack (as the transitivity of invariants guarantees the
constancy of anything they may refer to). Those bits can therefore be used as a key to access
memoized results of the function call, rather than calling the function again.”

• “Pure functions can be executed asynchronously. This means that not only can the function
be executed lazily, it can also be farmed out to another core. . . .”

• “[Pure functions] can be hot swapped (meaning replaced at runtime), because they do not
rely on any global initialization or termination state.”

As John Cook summarizes: “You can’t avoid state, but you can partition the stateful and
stateless parts of your code. 100% functional purity is impossible, but 85% functional purity may
be very productive” [Coo10].

4 Characteristics of pure functions6

A well-behaved free function will exhibit the following characteristics and behaviors of interest, as
will a well-behaved static member function:

1. It takes arguments passed:

a) by value, or
b) by const indirection (reference-to-const, pointer-to-const, const_iterator, etc.).

2. It uses a modifiable lvalue to refer to an object, in whole or in part, only if that object:

a) is local to the function, and has automatic lifetime (storage class), or
b) is dynamically allocated by the function and is freed before returning.

4Whole-program optimization promises similar improvements, but tends to be far more demanding on resources
during compilation and linking.

5 A future proposal for modules might ameliorate such difficulties, but for now we can only speculate.
6 Note that the core language already constrains constexpr functions to meet these expectations.

4 N3744: Proposing [[pure]]

3. It uses either a non-modifiable lvalue or an rvalue to refer to (any part of) an object only if
that object is non-volatile and:

a) is an argument to the function, or
b) is local to the function and has automatic lifetime, or
c) is dynamically allocated by the function and is freed before returning, or
d) is local to the function and has static lifetime and is declared const.

4. Its return type is non-void.

5. It respects all const qualifications. (That is, it does not circumvent any const-qualification
via const_cast or the like.)

6. It permits no exceptions to escape.

7. It invariably returns control to the point of invocation.

8. It calls other functions (or member functions; see below) only if such functions are likewise
well-behaved.

A well-behaved non-static member function shares the same characteristics and behaviors
exhibited by a well-behaved free function. In addition:

9. It is always declared const so that its invoking object is always passed by pointer-to-const
(i.e., this will always have a pointer-to-const type).

10. It respects all const qualifications, even in the presence of a mutable declaration.

11. If declared virtual, it is never overridden by an ill-behaved function.

5 Prior art

Several C++ compiler vendors provide implementations that encompass language extensions
substantively corresponding to a pure annotion as proposed herein. Diego Pattenò argues
in [Pet08] that these can successfully lead to improvements in generated code when consistently
applied.

• GCC has long supported an __attribute__((pure)), as described in [Sta13, §6.30], “Many
functions have no effects except the return value and their return value depends only on the
parameters and/or global variables.. . . These functions should be declared with the attribute
pure.” The same section describes a similar __attribute__((const)): “Many functions
do not examine any values except their arguments, and have no effects except the return
value. Basically this is just slightly more strict class than the pure attribute.. . . ”

• Further, “GCC does have the warning options -Wsuggest-attribute=pure and -Wsuggest-
attribute=const, which suggest functions that might be candidates for the pure and
const attributes” [ehi12].

• The .NET Framework 4.5 documents7 a PureAttribute class that “Indicate[s] that a type or
method is pure, that is, it does not make any visible state changes.”

• The D programming language permits functions to be declared pure: “Pure functions are
functions which cannot access global or static, mutable state save through their arguments.
This can enable optimizations based on the fact that a pure function is guaranteed to mutate
nothing which isn’t passed to it, and in cases where the compiler can guarantee that a pure
function cannot alter its arguments, it can enable full, functional purity. . . .”8

• The ARM C/C++ Compiler supports a __pure keyword with semantics equivalent to GCC’s
__attribute__((const)).

7 See http://msdn.microsoft.com/en-us/library/system.diagnostics.contracts.pureattribute.aspx as of 2013-07-13.
8 See http://dlang.org/function.html as of 2013-07-13.

http://msdn.microsoft.com/en-us/library/system.diagnostics.contracts.pureattribute.aspx
http://dlang.org/function.html

N3744: Proposing [[pure]] 5

• Other compilers (e.g., ICC and clang) are also reported9 to mimic or directly support the
above-described GCC attributes.

• While Mathematica supports the nomenclature of a pure function, it uses (abuses?) the
term to denote a lambda-like construct instead.10 Mathematica is therefore an inappropriate
precedent for the present purpose.

It has been argued that these attribute declarations are redundant in the sense that whole-
program interprocedural analysis can determine these properties. However, we believe that such
analysis is often not feasible and sometimes not possible. For example, (a) pre-compiled code,
(b) dynamically-linked libraries, and (c) time-sensitive compilation issues each provide challenges
to the methods underlying interprocedural analysis.

6 Proposed wording

Incorporate the following new subclause within [dcl.attr] in WG21 Working Draft [DuT13]. (Note
that paragraphs 3 through 5 are substantively based on wording in current use to specify existing
attributes.)

7.6.x Pure attribute [dcl.attr.pure]

1 A function f is said to be well-behaved if, when called, (a) f commits no observable side
effects ([intro.execution]) and (b) f communicates with client code solely via the function’s
return value and argument list (including this, where applicable). A statement S in the body
of a function g is said to be well-behaved if S, when executed, exhibits behavior that is not
inconsistent with a well-behaved g. If a function or a statement is not well-behaved, it is said to
be ill-behaved.

2 [Example: A function f is ill-behaved if:

• it can ever fail to return to its caller, or
• its body contains an ill-behaved statement S that

– reads (loads) the value of any volatile, mutable, or non-const variable whose lifetime
began before f is called or whose lifetime will end after f returns,

– updates (stores) the value of any variable whose lifetime began before f is called or
whose lifetime will end f after returns,

– performs I/O or commits any other observable side effect, or
– calls an ill-behaved function.

— end example]

3 The attribute-token pure specifies that a function or statement is well-behaved. [Footnote: The

pure attribute is unrelated to the C++ terms pure virtual and pure-specifier ([class.abstract]). — end footnote] The
attribute shall appear at most once in each attribute-list and no attribute-argument-clause shall
be present. The attribute may be applied to the declarator-id in a function declaration. The
first declaration of a function shall specify the pure attribute if any declaration of that function
specifies the pure attribute. If a function is declared with the pure attribute in one translation
unit and the same function is declared without the pure attribute in another translation unit,
the program is ill-formed; no diagnostic required.

9 See http://stackoverflow.com/questions/2798188/pure-const-function-attributes-in-different-compilers as of
2013-07-13.

10 See http://reference.wolfram.com/mathematica/tutorial/PureFunctions.html as of 2013-07-22.

http://stackoverflow.com/questions/2798188/pure-const-function-attributes-in-different-compilers
http://reference.wolfram.com/mathematica/tutorial/PureFunctions.html

6 N3744: Proposing [[pure]]

4 [Note: When applied to a well-behaved function, the pure attribute does not change the
meaning of the program, but may result in generation of more efficient code. When applied to
an arbitrary statement S, the pure attribute does not change the meaning of the program, but
specifies that the implementation may assume (without further analysis) that, when executed,
S will not cause the containing function to be ill-behaved. — end note]

5 If an ill-behaved function f is called where f was previously declared with the pure attribute,
the behavior is undefined.

6 [Note: Implementations are encouraged to issue a warning if a function f marked [[pure]]
is ill-behaved or exhibits any characteristic that is inconsistent with a well-behaved function.
However, implementations should issue no such warning on the basis of any statement (even if
ill-behaved) that is marked [[pure]]. [Example: A warning would be in order if f:

• has a void return type,
• is declared with the noreturn attribute,
• is declared noexcept(false),
• is a non-const non-static member function,
• is overridden by a function that is neither declared constexpr nor marked [[pure]], or
• calls a function that is neither declared constexpr nor marked [[pure]], unless the call is

part of a statement that is marked [[pure]].

— end example] — end note]

7 Acknowledgments

Many thanks, for their insightful comments, to the readers of early drafts of this paper.

8 Bibliography

[Bri08] Walter Bright: “Pure Functions.” 2008-09-21.
http://www.drdobbs.com/architecture-and-design/pure-functions/228700129.

[Bro04] Walter E. Brown and Marc F. Paterno: “Toward Improved Optimization Opportunities in C++0X.”
ISO/IEC JTC1/SC22/WG21 document N1664 (mid-Sydney/Redmond mailing). 2004-07-16.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf.

[CO79] Robert Cartwright and Derek Oppen: “The Logic of Aliasing.” Computer Science Department Re-
port No. STAN-CS-79-740. September 1979.
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/740/CS-TR-79-740.pdf.

[Coo10] John D. Cook: “Pure functions have side-effects.” 2010-05-18.
http://www.johndcook.com/blog/2010/05/18/pure-functions-have-side-effects/.

[DuT13] Stefanus Du Toit: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N3691 (mid-Bristol/Chicago mailing), 2013-05-06.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3691.pdf.

[ehi12] ehird [sic]: Response to “Can a compiler automatically detect pure functions without the type
information about purity?” 2012-01-12.
http://stackoverflow.com/questions/8760956/can-a-compiler-automatically-detect-pure-
functions-without-the-type-information.

[GA09] Douglas Gregor and David Abrahams: “Rvalue References and Exception Safety.” ISO/IEC JTC1/
SC22/WG21 document N2855 (post-Summit mailing). 2009-03-23.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html.

[KEIL] KEIL: “Comparison of pure and impure functions.” undated.
http://www.keil.com/support/man/docs/ARMCC/armcc_BABBCHHF.htm.

http://www.drdobbs.com/architecture-and-design/pure-functions/228700129
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/740/CS-TR-79-740.pdf
http://www.johndcook.com/blog/2010/05/18/pure-functions-have-side-effects/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3691.pdf
http://stackoverflow.com/questions/8760956/can-a-compiler-automatically-detect-pure-functions-without-the-type-information
http://stackoverflow.com/questions/8760956/can-a-compiler-automatically-detect-pure-functions-without-the-type-information
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2855.html
http://www.keil.com/support/man/docs/ARMCC/armcc_BABBCHHF.htm

N3744: Proposing [[pure]] 7

[Pet08] Diego Pattenò: “Implications of pure and constant functions.” 2008-06-10.
http://lwn.net/Articles/285332/.

[Raa12] Frerich Raabe: “Benefits of pure function” (response). 2012-06-22.
http://stackoverflow.com/questions/11153796/benefits-of-pure-function.

[Spa13] Keith Sparkjoy: “My Clojure journey: pure functions.” 2013-03-13.
http://blog.pluralsight.com/2013/03/13/my-clojure-journey-pure-functions/.

[Sta13] Richard M. Stallman and the GCC Developer Community: “Using the GNU Compiler Collection
for GCC version 4.8.1.” 2013.
http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc.pdf.

[Whi06] Eric White: “Pure Functions.” 2006-10-03.
http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/pure-functions.aspx.

9 Revision history

Version Date Changes

1 2013-08-30 • Published as N3744.

http://lwn.net/Articles/285332/
http://stackoverflow.com/questions/11153796/benefits-of-pure-function
http://blog.pluralsight.com/2013/03/13/my-clojure-journey-pure-functions/
http://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc.pdf
http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/pure-functions.aspx

	1 Background
	2 Well- and ill-behaved functions
	3 Benefits
	4 Characteristics of pure functions Note that the core language already constrains constexpr functions to meet these expectations.
	5 Prior art
	6 Proposed wording
	7 Acknowledgments
	8 Bibliography
	9 Revision history

