
Document No: WG21 N3733
Date: 2013-08-26
Project: Programming Language C++
References: WG21 N3690, SC22 N4836: ISO/IEC CD14882
Reply to: Barry Hedquist <beh@peren.com>
 INCITS/PL22.16 IR

ISO/IEC CD 14882, C++ 2014, National Body Comments

Attached is a complete set of National Body Comments submitted to JTC1 SC22 in response to
the SC22 Ballot for ISO/IEC CD 14882, Committee Draft of the revision of ISO/IEC
14882:2011, aka C++ 2014.

This document is a revision to SC22 N4836, CD14882 Collated Comments. The revision
contains a consistent numbering scheme for all comments. Comments that contained no
numbering were numbered sequentially in the exact order presented in SC22 N4836. Comments
that were numbered in the "Line Number" column (column 2) were moved to the MB/NC
column (column 1). No other editing was done on any of the comments.

Document numbers referenced in the ballot comments are WG21 documents unless otherwise
stated.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the IS
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 15

O/CS editing unit are identified by **)

CH 1 all Ge The active issues on the issues lists (WG21 N3674,
N3682 and N3687) shall be addressed before the
standard becomes final.

CH 2 all Ge C++14 is intended to be a bugfix release with minor
new features.

Remove any new feature if it negatively affects the
quality of the standard.

CH 3 all Ge C++14 is intended to be a bugfix release with minor
new features.

Introduce no breaking changes for C++14.
This applies specifically to 30.3.1 (~thread()) and
30.6.8 (~future() for asyncs).This also applies to
constexpr nonconst member functions, but for this
case the CH NB support is not unanimous.

ES 1 Te N3674 still includes many unsolved core issues Solve all the issues identified in N3674.

ES 2 Te N3687 still includes many unsolved library issues Solve all the issues identified in N3687.

NL1 te Reconsider adding digit separators, for example as
proposed in N3661.

US 14 (library) ge Address open LWG Issues Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

FI 14 [futures] te It is unfortunate that futures sometimes block in their
destructor and sometimes don’t. There have been
recommendations to move the futures when unsure,
and make sure get() is invoked before the destructor.
However, not having a certainly blocking-future in the
standard leads to proliferation of custom solutions to
the same problem. Similarly, the lack of a certainly-non-
blocking future leads to such proliferation.

It seems more future types should be added to
establish reasonable semantics. Note that we do
not support changing the return type of std::async
due to these issues – breaking std::async in any
way is harmful to users who already use it for what
it was designed, and don’t return the futures from it
so that there would be confusion about the
blocking.

US 1 All Clauses ed/ge In lists of specifications, the use of anonymous bullets
makes it difficult (in correspondence and speech) to
refer to individual list items. Moreover, the longer the
list, the greater the opportunity to mistake the structure,
most especially in the presence of bullets in sublists.

In all lists of bulleted items, provide a distinct
numbered or lettered identification in place of each
bullet. Because paragraphs are already numbered,
it seems best to use letters for top-level list items
within paragraphs and then to use Roman numerals
for any sublist items. (A few parts of the Standard
already do this.)

US 15 All Library ed/te Given the adoption of N3655, it is possible to rephrase
uses of the type traits throughout and thus both simplify

Replace each occurrence of the form
“cv typename typetrait<…>::type” or the form

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 15

Clauses and clarify the text. “cv typetrait<…>::type” by
”cv typetrait_t<…>”.

US 4 1.9, 1.10 te Resolve CWG issues 1441, 1466, 1470 on
concurrency. (lower priority).

US 3 1.9,1.10 te The current standard accidentally and gratuitously
restricts signal handlers much more than was originally
intended. Conforming signal handlers cannot even use
local variables. They cannot use atomic variables to
avoid undefined behaviour as was originally intended.

Correct misstatements, and clarify that atomic<T>
operations can be used to communicate with signal
handlers, and that objects last modified before a
signal handler was installed can be safely
examined in a signal handler, e.g. by adopting
N3633 or a refinement.

US 5 1.10, 29.4,
29.6.5

 Te Resolve LWG issue 2075 on concurency.

FI 1 1-16 te All Core issues with priorities zero or one up to and
including the Core Issues List published in the pre-
Chicago mailing shall be resolved

As viewed fit by the Core Working Group

US 2 1-16 Te/Ge The active issues identified in WG21 N3539, C++
Standard Core Language Active Issues, must be
addressed and appropriate action taken.

Appropriate action would include making changes
to the CD, identifying an issue as not requiring a
change to the CD, or deferring the issue to a later
point in time.

US 6 2.14 Te Provide digit separators. See N3661.

ES 3 2.14.2 Te Reconsider adding digit separators for integer decimal
literals.

Add digit separators for integer decimal literals as
specified in N3661. No counter-example has been
presented for integer octal literals.

ES 4 2.14.2 Te Add digit separators for integer binary literals. No interaction has been identified with digit
separators for binary literals

ES 5 2.14.2 Te Reconsider adding digit separators for integer octal
literals

Add digit separators for integer octal literals as
specified in N3661. No counter-example has been
presented for integer octal literals.

ES 6 2.14.2 Te Reconsider adding digit separator for integer
hexadecimal literals

A different solution can be evaluated for the
conflicting case of digit separators in hexadecimal
literals. This case could be solved by using a
different prefix to indicate the presence of digit
separators.

ES 7 2.14.2 Table 6 Ed Header of last columns says: Modify accordingly table header.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 15

“Octal or hexadecimal constant”

This does not include binary constants

GB 1 Line 40,
Page 28

2.14.5 Para 8 Te The string literal u8"À" (that is, u8"\u00c0") creates a
"const char[3]" initialized by { 0xc3, 0x80, 0 }. However,
"char" is not guaranteed to be able to represent 0x80.

Change type of u8 string literals to unsigned char,
or require signed char to be able to represent 0x80.

ES 8 3.7.4 Member operator delete[] may take a second
parameter indicating the size of the object to be
deallocated. However, global operator delete[] does not
support this variant.

Provide a global operator delete[] with an optional
size parameter along the lines of N3663.

GB 2 Line 8,
Page 78

4.1 Para 2 Te Reconsider resolution of core issue 616.
Under core issue 616, certain lvalue-to-rvalue
conversions on uninitialized objects of type unsigned
char provide an unspecified value with defined
behavior. That is extremely harmful for optimizers,
since they must distinguish between a specific
unspecified value (which would compare equal to itself,
after being copied into another variable) and a fully-
uninitialized value.

Further restrict loads of uninitialized unsigned char
such that the value can only be stored, and the
result of storing it is to make the destination contain
an indeterminate value.

ES 9 5.1.2 Te Closure objects are never literal types Consider allowing the generation of literal closure
objects.

GB 3 Line 37,
Page 92

5.1.2 Para 11 Te The access of the non-static data member declared for
an init-capture is not specified.

Make the init-capture field unnamed, like other
captures.

GB 4 Line 21,
Page 111

5.3.4 Para 8 Te We are concerned that the change in N3664 may
change a small memory leak into a large one.
Consider
class P {
 int x;
};
class Q {
public:
 Q(){ throw 42; }
private:

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 15

 int x[LARGE_NUMBER];
};

{
 P* p1 = new P();
 Q* q1 = new Q(); // bang :-(
 // don't get here
 delete q1;
 delete p1;
}
We fear, if the freedom of N3664 is exercised, that this
code block leaks a memory of size at least sizeof(P) +
sizeof(Q).
The C++11 code would only leak the allocation for p1,
of size closer to sizeof(P).
This could result in programs with an insignificant
memory leak becoming ones with a more serious leak.

ES 10 7.6 Te [[deprecated]] attribute is missing from the CD. Apply N3394 to the CD.

US 8 7.6 Te Paper N3394, "[[deprecated]] attribute," was intended
to be included in the CD, but it was unintentionally
omitted due to administrative issues.

Incorporate the changes from that paper for the
final draft.

US 10 8.3.4 1 te The next bullet item appears to the reference the "Size
of an object" limit in Annex B. However, in many
implementations, object size limits on the stack are
quite different from other object size limits, and the limit
is very dynamic (especially in the presence of
recursion). A check against an fixed (and arbitrary)
limit will only cover a subset of the size values that are
problematic. In total, we throw on:

 - negative values and zero (first bullet)

 - object sizes above the limit

We do not throw for:

 - object sizes which can be allocated successfully

 - object sizes which cannot be allocated successfully

Do not check at runtime whether the allocated array
would exceed the implementation-defined limit on
object size.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comm
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 15

ents from the ISO/CS editing unit are identified by **)

on the stack, but are less than the object size limit

The second item creates significant unpredictability for
programmers. Existing VLA implementations for C and
C++ lack fully deterministic stack size checks.
Obtaining stack is fairly difficult in widely deployed
environments (both in terms of availability of the metric
and high-performance access to it). An exact check
against the dynamic limit is difficult to implement, and
would not even cover other causes of stack overflow.

US 9 8.3.4 1 te The draft currently requires that if a runtime bound
evaluates to 0 at run-time, and exception is thrown.
This means that correct C99 code that is also well-
formed C++14 code, and has worked fine under the
widespread VLA extensions to C++, will fail at runtime;
affected code was encountered immediately after the
proposal was implemented in G++.

A check for negative values makes sense and can be
avoided by the programmer by using an unsigned type
for the expression. The check against 0 would still be
required by the current draft, and is not required by
typical VLA usage (because the code deals correctly
with this boundary case). It is also surprising because
operator new[] lacks such a check.

This is a VERY CRITICAL ISSUE..

Allow an array of runtime bound that evaluates to 0
at run-time.

US 11 8.3.4
[dcl.array],
etc.

 ed Two distinct terms of art, bound and extent, are now
used to denote an array’s number of elements. For
both consistency and improved technical accuracy, a
single term of art should be adopted and used
throughout the standard.

Because extent is the user-visible term used in the
Library’s interface, its consistent use would avoid
breaking existing programs. See the wording
proposed in N3549.

CH 4 8.3.4,
23.3.4

 te VLAs without dynarray is giving wrong direction, and
dynarray without full allocator support is just wrong.

Add full allocator support to dynarray or remove
both, dynarray and VLAs completely.

 CH 5 8.4.1 p8 te It’s unclear from the text that __func__ is allowed in
non function context lambda expressions, i.e.,
namespace level lambda expressions in initializers.

Specify that __func__ is allowed in such contexts.

US 12 12.8 31 Te std::move inhibits copy elision, and so can be a Ignore calls to std::move, std::move_if_noexcept,
and casts to rvalue reference type when

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the IS ents from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 15

O 3166 two-letter country code, e.g. CN for China; comm

pessimization determining whether copy elision is permitted

US 13 12.8 32 Returning a local variable should always imply move
semantics.

In return statement, when the expression is the
name of a non-volatile automatic object, the
expression should be treated as an rvalue for
purposes of overload resolution, even if it does not
have the same cv-unqualified type as the function
return type.

CH 6 13.5.8 p8 ed float operator ""E(const char*);// OK should be float
operator ""E(const char*);// OK, but reserved
(17.6.4.3.5) [usrlit.suffix].

Change the example accordingly.

FI 2 17-30 te All Library issues up to and including the Library Issues
List published in the pre-Chicago mailing shall be
resolved

As viewed fit by the Library Working Group

GB 5 Line 22,
Page 485

20.2.3 Para 1 Ed The wording describes example code including the call
of a move constructor, but there is no requirement
stated that T be move constructible.

We would like to add a new Para 1 before existing
paragraph:
 Requires: Type T shall be MoveConstructible
(Table 20) and MoveAssignable (Table 22).
However the MoveAssignable concept currently
does not cover cases where the source and
destination types may differ.

ES 11 20.4.2.4 5-6 Te forward_as_tuple is not currently constexpr Make forward_as_tuple constexpr.
CH 7 20.5.1 p2 ed The example uses the names “index_sequence” and

“make_index_sequence” whereas the following
sections define “integer_sequence” and
“make_integer_sequence”.

Change the names in the example accordingly.

ES 12 20.6.4 Te Without operator != users need to evaluate expressions
like !(a==b) instead of (a!=b)

Add operator!= for optional<T>

US 16 20.9.1.3 te Resolve LWG issue 2118 on unique_ptr.

ES 13 20.10.11.2 Te Polymorphic function wrappers do not take move-only
callable types in their constructor.

Provide a mechanism to pass move-only callable
types to polymorphic function wrappers.

US 17 20.10.11.2
&
30.6.9

 te Provide a way to pass a packaged_task<T()> to a
function accepting function<void()> or another type-
erasing callable-wrapper.

This is important for concurrency constructs where we

Either change function<> to accept move-only
callable types, probably by refcounting the callable,
or provide a separate class to turn a move-only
callable into a copyable callable.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 15

need to pass tasks between threads using queues.
These queues must store a type general enough to
represent any task, which includes a task for filling in a
future<>. However, function<> currently doesn't accept
move-only types like packaged_task<>, so it's not
sufficient for the value-type of these queues.

US 18 20.11.4.3
[meta.unary.
prop]

¶ 6 te/ed The trait is_constructible<T, Args...> is defined in terms
of a helper template, create<>, that is identical to
std::declval<> except for the latter’s noexcept clause.

If the absence of noexcept is critical to this
definition, insert a Note of explanation; otherwise,
excise create<> and reformulate in terms of
declval<> the definition of is_constructible.

US 19 21.2.3 te Resolve LWG issue 2232 Proposed Change: Add constexpr to char_traits
functions. As a second- best option, resolve LWG
issue 2013 to allow libraries to do this as an
extension.

ES 14 21.2.3.1,
21.2.3.2,
21.2.3.3,
21.2.3.4

 Te The following functions are not constexpr in char_traits
specializations for char, char16_t, char32_t, and
wchar_t:
compare()
length()
find()
However, with the addition N3652 a recursive
implementation is not needed. Thus they can be easily
and efficiently made constexpr.

Make those functions constexpr for the mentioned
specializations.

GB 6 Line 17,
Page 689

22.4.1 Ed 17.5.2.3 [objects.within.classes] defines the use of
"exposition only" in the library:
 The declarations for such member objects and the
definitions of related member types are followed by a
comment that ends with exposition only,
22.4.1 [category.ctype] has members which are
preceded (not followed) by a comment ending
"exposition only".
and 28.12.1 [re.regiter] and 28.12.2 [re.tokiter]

Reformat to follow 17.25.2.3

GB 7 Line 34,
Page 732

23.2.1 Para 4 Ed Table 98 refers to a and b without defining them.
Obviously they are the same as in Tables 96 and 97
but paragraph 23.2.1 / 4 fails to mention Table 98.

Add Table 98 to the scope of paragraph 23.2.1 / 4:
In Tables 96, 97 and 98, X denotes ...

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 15

ES 15 23.2.4 8 Ed Terminology for table 102 states that “u denotes an
identifier”, yet u is not further referred to.

Delete “,u denotes an identifier”.

ES 16 23.2.4 8 Te The condition “X::key_compare::is_transparent exists”
does not specify that the type be publicly accessible.

Consider the public accessibility of
X::key_compare::is_transparent and whether its
potential inaccesibility should be banned for a
compliant key_compare type.

GB 8 Line 11,
Page 770

23.3.4 Te The current spec for std::dynarray is contradictory and
broken, these open issues should be addressed:
 - LWG 2253
 - LWG 2254
 - LWG 2255
 - LWG 2264

See related LWG issues at
http://cplusplus.github.io/LWG/lwg-active.html

ES 17 23.4.4.5,
23.4.5.4

 Te Sections are redundant with general associative
container requirements at 23.2.4, table 102.

Delete sections.

ES 18 24.4 Te Current standard stream does not provide a
mechanism for synchronized I/O

Provide a simple mechanism for performing
synchronized I/O in multithreaded environments.

See N3678

US 20 Clause 26
[numerics]

 ed/te The Bristol meeting postponed consideration of N3648
because it was assumed that, if adopted, the proposal
could be issued in some future Technical Specification.
However, N3648 proposes to merge ISO/IEC 29124
into C++14, and it is unclear whether this would even
be possible in a TS. Further, such merger is time-
sensitive, since ISO/IEC 29124 will be up for review in
2015 and, if merged into C++14, can be retired
(“withdrawn”) at that time.

Review and adopt for C++14 the proposal in N3648
(or in a successor document, if any).

CH 8 26.4 te Specify user-defined literals for standard complex
types.

Accept ISO/IEC JTC1 SC22 WG21 N3660 with the
modification to use operator""if for complex.

US 22

 27.4.1 4 Te Enable standard stream synchronization. See N3535, N3665, N3678

GB 9 Line 14,
Page
1086

27.9.2 Table 134 Te C11 no longer defines the dangerous gets() function.
Even if we still refer to C99, which includes gets(), it
would be preferable to strike std::gets() from <cstdio>

- Remove gets from Table 134 and Table 153.
- Add a note to [c.files] saying the C function gets()
is not part of C++

http://cplusplus.github.io/LWG/lwg-active.html#2253
http://cplusplus.github.io/LWG/lwg-active.html#2254
http://cplusplus.github.io/LWG/lwg-active.html#2255
http://cplusplus.github.io/LWG/lwg-active.html#2264
http://cplusplus.github.io/LWG/lwg-active.html

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 15

- Add the removal of gets to Annex C.3.

GB 10 Line 14,
Page
1103

28.7 Para 12 Te The current wording is totally broken. Even if the whole
proposed resolution at http://www.open-
std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018 isn't
accepted the "bitwise or" part must be fixed.

Accept the proposed resolution.

GB 11 Line 4,
Page
1128;
Line 12,
Page
1131

28.12 Para 1 and 2 Ed 17.5.2.3 [objects.within.classes] defines the use of
"exposition only" in the library:
 The declarations for such member objects and the
definitions of related member types are followed by a
comment that ends with exposition only,
28.12.1 [re.regiter] and 28.12.2 [re.tokiter] have
members which are preceded (not followed) by a
comment ending "exposition only".

Reformat to follow 17.25.2.3

US 23 29 Te Resolve LWG issues 2130, 2138, 2159, 2165 on
atomics.

US 27 30 Te Resolve LWG issues 2080, 2097, 2100, 2104, 2120,
2135, 2142, 2185, 2186, 2190 on threads.

US 28 30 Te Resolve LWG issues 2095, 2098, 2140, 2202 on
threads. (lower priority)

ES 19 30.3.1.3 Te std::thread destructor calls terminate() if the thread has
not been joined. Changing this behaviour is
unacceptable for existing code.

A different compatible class or wrapper should be
provided to support RAII pattern and joining on
destruction.

US 25

 30.3.1.3 te (Small defect) It is a defect that the thread destructor
calls terminate() if the thread has not been joined.
Thread is an RAII type and if the user is required to
explicitly call .join() or similar in all cases if it has not
been called already, this should be done automatically.

A resolution along the lines of that proposed in
paper WG21/N3636 or similar would be acceptable.

US 24 30.6 te (Severe defect) Like iterators, futures are essential
vocabulary types whose major benefit is to permit
composability between various providers (containers,
async launchers) and consumers (algorithms, async
consumers). To be usable as such, they must work
predictably.

It is a serious defect that ~future and ~shared_future

A resolution along the lines of that proposed in
paper WG21/N3637 or similar would be acceptable.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#2018

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 15

might block unpredictably, depending only on whether
the provider was launched with std::async. In all cases
in the standard except where the provider is launched
with std::async, ~future does not block; if it is launched
with std::async, it may block.

We understand there are desirable reasons to block
(such as to achieve structured resource lifetime control)
and not block (such as to achieve responsive
nonblocking concurrency), but this decision should be
up to each consumer of a given future to select
explicitly, not baked inscrutably into an unpredictably
dual-mode single future object whose consumer cannot
select the appropriate behavior and furthermore the
current workarounds to do so are effectively unusable.

Futures may or may not block in their destructor,
depending on how they were created. Many clients
must rely on one behavior or the other, making it
impossible to use futures as the general
communication mechanism they would like to be.

GB 12 Line 4,
Page
1198

30.6.6 Para 9 Te Make it explicit that ~future and ~shared_future may
block if the future originates from std::async.

Add notes to 30.6.6p9, 30.6.6p10, 30.6.7p11,
30.6.7p12 and 30.6.7p14 after the "releases any
shared state" part of the effects saying
 "[Note: If this is the last reference to the shared
state from a call to std::async with a policy of
std::launch::async, then this will wait for the async
task to complete (30.6.8p5) —End Note]"
Add a note to the first bullet of 30.6.4p5:
"[Note: this may cause the function that released
the shared state to block if this is the last reference
to the shared state from a call to std::async with a
policy of std::launch::async (30.6.8p5) —End Note]"

US 26 30.6.8 Te Deprecate std::async due to the inability to reconcile
the blocking semantics of the destructor of the returned
values with the growing expected semantics of
std::future's destruction. The problems of this
inconsistency are outlined in N3630, but the solutions
there didn't work. Another solution was proposed in
N3637 which also did not satisfy people. Thus, we

Mark std::async as deprecated to help discourage
its use and to reconcile the necessity of advising
programmers to never pass or return the std::future
received from std::async across an interface
boundary.

Change either 3.6.6p9 to specify that the std::future

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 11 of 15

request to simply deprecate the problematic feature
without changing any behavior in the library, and pave
a path forward with new functionality that addresses
these concerns.

destructor does not block except when the value is
one returned by the deprecated std::async function
(or change 3.6.4p5 to specify the equivalent in
terms of the shared state).

FI 15 [basic.life] paragraph 7 te See https://groups.google.com/a/isocpp.org/d/msg/std-
proposals/93ebFsxCjvQ/myxPG6o_9pkJ
It seems that the restrictions of class types with
reference members potentially cause a very hard
implementation problem. It’s palatable to re-fetch
pointers and references, but how does one “refresh” a
named reference to storage that was destroyed and re-
initialized with placement new?
In Ivchenkov’s example, is it sufficient to destroy the
storage_ union and re-initialize the whole union,
instead of just its value member?

Clarify what poor programmers need to do if they
want to destroy+placement-new-initialize an object
of class type, avoiding problems with reference
members. Alternatively, consider the solutions
presented by Ivchenkov. Our preference leans
towards the direction of solutions 5 and 6.

 FI 6 [class.ctor] paragraph 8 te In a function returning void, "return E;" where E is of
type void is permitted. In contrast, for constructors and
destructors, this is not allowed, which is an arbitrary
restriction for a corner case.

Remove the prohibition for "return E;" where E is of
type void in constructors and destructors.

CH 9 D.7 te strstream is dangerous to use and the interface does
not fulfill current library requirements.

Delete D.7 from the standard.
The CH NB is aware that this proposed change
conflicts with the comment to not introduce any
breaking changes. So the CH NB support for this
comment is not unanimous.

FI 13 [dcl.attr.gram
mar]

 te It seems that a [deprecated] attribute fell between the
cracks in the EWG->CWG workflow.

Flush the pipeline and add the [deprecated]
attribute as proposed in N3394.

FI 3 [dcl.spec.auto
]

paragraph 6 te As proposed in N3681, an auto specifier should not
result in an initializer_list when used with a braced-init-
list.

Adopt the solution proposed in N3681, make auto
not deduce an initializer_list from a braced-init-list
of a single element, make auto with a braced-init-
list of multiple elements ill-formed

FI 4 [dcl.spec.auto
]

paragraph 2 te Function return type deduction also covers conversion
functions, that is "operator auto". This is undesirable,
because the whole point of a conversion function is to
have an explicit (not implicitly deduced) return type.
Also, only a single "operator auto" conversion function
can exist in a class, limiting its utility.

Exclude conversion functions from return type
deduction. Strike conversion-function-id from
paragraph 2.

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/93ebFsxCjvQ/myxPG6o_9pkJ
https://groups.google.com/a/isocpp.org/d/msg/std-proposals/93ebFsxCjvQ/myxPG6o_9pkJ

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 12 of 15

FI 5 [dcl.spec.auto
]

paragraph 2 te Function return type deduction avoids the need to
repeat the function body to specify the return type in
function templates, e.g. the "-> decltype(x1+x2)" below
is redundant:
 template<class T>
 auto f(T x1, T x2) -> decltype(x1+x2) { return x1+x2; }
However, that syntax does not cover exception
specifications, again necessitating to repeat the
function body:
 template<class T>
 auto f(T x1, T x2) noexcept(noexcept(x1+x2)) { return
x1+x2; }
The specification machinery is readily available with
core issue 1351, and the concerns about instantiating
definitions to determine properties of the declaration
have already been addressed with the introduction of
function return type deduction.

Reconsider noexcept(auto), or extend the meaning
of "auto" return types to cause exception
specification deduction, or find another syntactic
means to express deduction of exception
specifications.

FI 8 [expr.prim.la
mbda]

 te A closure object is not of a literal type, the function call
operator of a closure object type is not ever constexpr.
These restrictions mean that lambdas cannot be used
in constant expression. It seems unfortunate that
lambdas and constant expressions do not work
together. One of the benefits of relaxing the restrictions
of constant expressions was that that relaxation allows
writing template code that can be constexpr but is not
sub-optimal at run-time and vice versa. It would seem
reasonable to allow lambdas to be used in such code.

Allow lambdas to be used in constant expressions,
if the captures of the lambda are of literal type, and
if the call operator of the closure object type fulfils
the requirements for a constant expression
otherwise.

FI 9 [optional.relo
ps]

 te It is unacceptable that optional doesn’t have an
operator!=.

Define operator!= as the negation of operator==

FI 10 [optional.relo
ps]

 te It is unacceptable that optional doesn’t have operator>,
operator<= etc. relational operators in addition to
operator<.

Define relational operators as they are defined for
tuple and containers. In addition, adopt FI 7 to add
a specialization of std::less for optional<T*>.

FI 7 [pairs.spec],
[tuple.special]
,
[container.req

 te std::less is specialized for pointer types so that it yields
a total ordering. It seems that utility classes and
containers in the library fail to establish the same total
ordering, so eg. tuple<T*> or pair<T*, U*> or

Specialize std::less for pair, tuple, optional and
containers for pointer types.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 13 of 15

uirements.ge
neral],
[comparisons
]

vector<T*> will not have a guaranteed total ordering,
since there’s no std::less specialization for them and
the default std::less will invoke operator< which will use
the operator< of the underlying type, hence failing to
establish a total ordering.

FI 16 [support.dyna
mic]

paragraph 1 te According to N3396, “In this example, not only is an
implementation of C++11 not required to allocate
properly-aligned memory for the array, for practical
purposes it is very nearly required to do the allocation
incorrectly; in any event, it is certainly required to
perform the allocation by a process that does not take
the specified alignment value into account.

This represents a hole in the support for alignment in
the language, which really needs to be filled.”

Adopt the solution in N3396.

FI 12 [temp.func.or
der]

 te In [c++std-ext-14217], Andrew Sutton writes:
If I have two functions:

template<typename... Args> void f() { } // #1
template<typename T, typename U> void f() { } // #2

Should overload resolution be able to distinguish
these? What I want is this:

f<int, int>() // Calls #2
f<char>() // Calls #1
f<int, char, float>() // Calls #1

What I get is, "no matching function" (using an older
revision of GCC-4.8). I haven't thoroughly searched the
standard for an answer, but I suspect the answer will
also be "no".
If those are template parameters reflect function
parameters, then the overloads can be distinguished.

Make non-deduced function templates with pack
arguments less viable than function templates
without packs, that is, partially order currently
equal/ambiguous candidates so that a pack is a
worse match than no pack.

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 14 of 15

template<typename... Args> void f(Args...);
template<typename T, typename U> void f(T, U);

It seems like this fact could be extended to non-
deduced arguments as well. Just curious.

The question/proposal would seemingly allow
metaprogramming techniques that, in conjunction with
decltype, allow extracting types from packs without
having to resort to traits-like classes with nested
typedefs.

FI 11 [thread.threa
d.destr]

paragraph 1 te It is most unfortunate that there is no RAII thread type
in the standard. The lack of it leads to proliferation of
custom solutions.

We do not support modifying ~thread to join; it has
shipped in C++11, and people rely on the
terminate() in it. It would be better to introduce a
thread_guard that joins the underlying thread
automatically upon destruction of the guard.

US 7 3.7, 5.3, 12.5,
17.6, 18.6,
Annex C

 te Enable sized deallocation. See N3663

US 21 26.5 [rand],
Annex D
[depr], etc.

 te The Bristol meeting postponed consideration of N3647
because it was assumed that, if adopted, the proposal
could be issued in some future Technical Specification.
However, N3647 proposes some deprecations, and it is
unclear what it would mean to issue any deprecation in
TS form.

Review and adopt for C++14 at least the
deprecations proposed by N3647 (or by a
successor document, if any). Preferably adopt the
entire document, as its proposals are intertwined.

H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_BSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_NEN.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_SFS.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_SNV.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_ANSI.doc: Collation successful
H:\cc51\Public\SC 22 Project\4850\ISO_IEC 14882_2011_PDAM 1_AENOR.doc: Collation successful
Collation of files was successful. Number of collated files : 6

Template for comments and secretariat observations Date:2013-08-26 Document: WG21 N3733 Project:
Programming Language C++

MB/
NC1

Line
number

Clause/
Subclause

Paragraph/
Figure/Table

Type of
comment2

Comments Proposed change Observations of the
secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 15 of 15

SELECTED (number of files): 6 .
FILES IN THIS GROUP(number of files): 6.
PASSED TEST (number of files): 6.
FAILED TEST (number of files): 0.

