
1 

 

Document number:     N3711 
Date:          2013-8-15 
Reply-to:       Artur Laksberg <arturl@microsoft.com>,  

Herb Sutter <hsutter@microsoft.com> 
 

Task Groups As a Lower Level C++ Library 

Solution To Fork-Join Parallelism     



2 

 

Abstract 

This paper introduces the concept of the task_group, a C++ library that enables developers to write 
expressive and portable parallel code. 

Motivation and Related Proposals 

The separate Parallel STL proposal [2] proposes to augment the STL algorithms with the inclusion 
of parallel execution policies. Programmers use these as a basis to write many additional high-level 
algorithms that can be implemented in terms of the provided parallel algorithms. However, the 
scope of [2] does not include lower-level mechanisms to express arbitrary fork-join parallelism. 

A language extension proposal in [3] proposes lower-level parallelism language constructs by 
adding several new keywords such as cilk_spawn and cilk_sync. Several members of the Committee 
have expressed interest in seeing how the functionality of cilk_spawn and cilk_sync can be expressed 
in a library solution. 

Commercial C++ libraries already offer similar functionality as a library-only solution. In particular,  
since 2009 Microsoft and Intel have collaborated to produce a set of common libraries known as 
the Parallel Patterns Library (PPL) by Microsoft and the Threading Building Blocks (TBB) by Intel. 
The two libraries have been a part of the commercial products shipped by Microsoft and Intel and 
have been well received by customers. 

The task_group concept proposed in this document is based on the common subset of the PPL and 
the TBB libraries, which also use task_group internally to implement many of their own parallel 
algorithms. This proposal complements the high-level Parallel STL algorithms proposal [2] by 
enabling arbitrary fork-join parallelism, including arbitrary additional higher-level parallelism 
algorithms, to be built in a natural and portable way. 

Together with [2], we believe this offers a viable alternative to a language-based proposal for low-
level fork-joined parallelism with competitive (or in some cases better) usability, generality, and 
performance. 

Introduction 

The interface of the task_group class is as follows: 
 
class task_group 
{ 
public: 
    static const auto ignore_exceptions = implementation-defined; 
 
    template<typename ExceptionHandler> 
    task_group( ExceptionHandler&& handler ); 
 
    ~task_group() nothrow; 
 
    task_group(const task_group&) = delete; 
    task_group& operator=(const task_group&) = delete; 
 
    template<typename Function, typename... Args> 
    void run(Function&& func, Args&&...args); 



3 

 

 
    template<typename Function, typename... Args> 
    void run_and_wait(Function&& func, Args&&...args); 
 
    void wait() nothrow; 
}; 

The constructor takes an ExceptionHandler parameter that can be either the ignore_exceptions  
value or a callback that accepts an exception_list (defined in [2]). 

The destructor of the task_group calls wait joining all the unfinished tasks. If any tasks have thrown 
exceptions, the destructor invokes the exception handler passing the exception_list of all thrown 
exceptions, and catches and ignores any exceptions thrown from the handler. (See Exception 
Handling, below.) 

The run method takes a callable object func with an optional list of arguments args and spawns a 
task that evaluates func(args). The method throws an exception if there are insufficient resources to 
allocate the task. Otherwise it returns immediately, allowing the evaluation to be performed 
asynchronously on a different thread or later on the calling thread. 

The run_and_wait method is conceptually equivalent to separate calls to run and wait, but can be 
more efficient, because it executes the functor on the calling thread (the process known as inlining, 
see below).  

The run_and_wait is often used as the last task executed before final join on the task_group. For 
example, the parallel_invoke function can be implemented as follows1: 
 
template <typename Func1, typename Func2> 
void parallel_invoke(const Func1& f1, const Func2& f2) 
{ 
    task_group tg(/* ... */); 
    tg.run(f1); 
    tg.run_and_wait(f2); 
} 

Here the task_group runs f1 and f2 potentially in parallel; exceptions from both f1 or f2 are handled 
by the task_groups’ exception handler (omitted for brevity in this example). 

The wait method blocks until all the tasks spawned by the run method have completed. A task is 
considered completed if it runs to completion normally or throws an exception. 

Inlining 

Inlining (also called “waiter-assist”) is an optimization that allows wait (including when called by 
the task_group destructor) to execute one or more unfinished tasks on the calling thread (i.e. 
“inlined”). This capability is essential for divide-and-conquer scenarios that helps to prevent thread 
explosion. 

                                                             
1 A more realistic implementation would, of course, use variadic templates 



4 

 

Exception Handling 

There are two kinds of exceptions that must be considered: exceptions thrown by a task, and 
exceptions thrown by the calling thread containing a task_group. Consider the following code, which 
shows two versions of conceptually the same function, one fully sequential and one internally 
parallel. Assume that g, h, and std::string could all potentially throw. 
 
void f_seq() { 
    g(); 
    h(); 
    string s = "Hello"s + " world"; 
} 
 
void f_par() { 
    task_group tg(/*...*/); 
    tg.run([]{ g(); }); 
    tg.run([]{ h(); }); 
    string s = "Hello"s + " world"; 
} 

Here, f_seq could result in up to one exception being thrown if g, h, or a string operation throws. It 
will propagate the first and only exception encountered, if any. 

Note that f_par could encounter two kinds of exceptions: 

1. An exception from the parent context, thrown by run itself (if there are insufficient 
resources to allocate the task) or a string operation. 

2. An exception from a task potentially on another thread, thrown from g or h. 

If an exception is thrown from the parent context, the task_group object is destroyed as a result of 
stack unwinding. The destructor of the task_group object will wait for all the unfinished tasks to 
complete, invoke the ExceptionHandler if appropriate (see below), and propagate the exception. 

If any of the tasks throws an exception, ~task_group invokes the ExceptionHandler with the 
exception_list containing the std::exception_ptr objects that represent all the exceptions thrown by 
the tasks spawned by the run method. Individual exceptions can be obtained by iterating over the 
exception_list object: 
 
task_group tg( [](const exception_list& ex) { 
    for(auto e : ex) { 
        try { std::rethrow_exception(e); } 
        catch(const some_exception_type&) { 
            ... 
        } 
    } 
}); 

An exception thrown out of the exception handler is ignored. 

Appendix A: Comparison with PPL/TBB 

This proposal is informed by the experience of PPL and TBB (primarily the former) that have been 
part of the commercially shipped software since 2010. 



5 

 

The proposal differs from the PPL/TBB in the following ways: 

1. The task_group proposed for standardization does not have the built-in support for 
cancellation. It has been our experience that cancellation has a non-trivial impact on 
performance and impedes usability. Many of the pitfalls and anti-patterns arising from 
cancellation are captured in [5].  
In Microsoft, we have seen better results with explicit cooperative cancellation model based 
on cancellation tokens. 

2. In PPL and TBB, the task_group destructor terminates the program in the presence of 
unfinished tasks in the task_group during normal destruction, and not during stack 
unwinding. In the proposal, the destructor always implicitly joins. 

3. In the current PPL/TBB implementation, when a task spawned by the run method throws 
an exception, that exception is associated with the task_group and is re-thrown by wait. If 
more than one task throws an exception, only one exception is preserved. The execution of 
other tasks is either cancelled or detached. This behavior is undesirable and is not 
proposed. The proposed semantics preserve all exceptions by aggregating them. 

4. In PPL/TBB, task_group::wait returns a status, indicating whether the execution has 
completed successfully, was cancelled, or finished with an exception. Without cancellation, 
such status is no longer necessary, hence the method returns void in the proposal. 

5. PPL and TBB define an additional type, structured_task_group that introduces some usage 
restrictions compared to the task_group in order to gain performance, as described in [6]. In 
this proposal, task_group and structured_task_group are coalesced into a single type with 
competitive performance. 

Appendix B: Possible Extensions 

make_future 

As specified above, the task_group::run method returns void. It is sometimes useful to deal with the 
individual tasks spawned by the task_group.  

In order to avoid any overhead on task_group::run, it is conceivable to add a new function 
tentatively called make_future. 

Such function can also be written by the user as a global function: 
 
template<typename Func> 
auto make_future(task_group &tg, Func&& func) -> 
std::future<decltype(func())> 
{ 
    typedef decltype(func()) T; 
 
    auto p = std::make_unique<std::promise<T>>(); 
    auto f = p->get_future(); 
    tg.run([func, p{ std::move(p) }] { 
        p->set_value(func()); 
    }); 
    return f; 
} 

We leave it as an open question and seek feedback from the Committee as to whether such an API 
on the task_group is desirable. 



6 

 

Appendix C: Prototype Implementation 

The proposal is closely based on PPL/TBB, modulo the differences described above in Appendix A. 
A prototype implementation that implements this proposal is available at http://aka.ms/Tiop66. 

Achnowledgements 

Authors thank Steve Gates (Microsoft), Niklas Gustafsson (Microsoft), Hong Hong (Microsoft) and 
Arch Robison (Intel) for providing valuable feedback. 

References  

[1] Pablo Halpern, “Considering a Fork-Join Parallelism Library”, WG21 paper N3557:  
http://isocpp.org/blog/2013/03/n3557-considering-a-fork-join-parallelism-library 

[2] Jared Hoberock, et al, “A Parallel Algorithms Library”, WG21 paper N3554: 
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3554.pdf 

[3] Pablo Halpern, “Strict Fork-Join Parallelism”, WG21 paper N3409: 
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf 

[4] Intel ® C++ Compiler XE 13.1 User and Reference Guides, cilk_spawn: 
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-
lin/GUID-6DFD6494-58B4-40ED-88E9-90FEAF5AF8F6.htm 

[5] Messmer, B., Parallel Patterns Library, Asynchronous Agents Library, & Concurrency Runtime: 
Patterns and Practices, 2010. 
http://www.microsoft.com/downloads/en/confirmation.aspx?displaylang=en&FamilyID=0e70b21
e-3f10-4635-9af2-e2f7bddba4ae 

[6] MSDN, structured_task_group specification: 
http://msdn.microsoft.com/en-us/library/dd504799.aspx 

 

http://aka.ms/Tiop66
http://isocpp.org/blog/2013/03/n3557-considering-a-fork-join-parallelism-library
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-6DFD6494-58B4-40ED-88E9-90FEAF5AF8F6.htm
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-6DFD6494-58B4-40ED-88E9-90FEAF5AF8F6.htm
http://www.microsoft.com/downloads/en/confirmation.aspx?displaylang=en&FamilyID=0e70b21e-3f10-4635-9af2-e2f7bddba4ae
http://www.microsoft.com/downloads/en/confirmation.aspx?displaylang=en&FamilyID=0e70b21e-3f10-4635-9af2-e2f7bddba4ae
http://msdn.microsoft.com/en-us/library/dd504799.aspx

