
Concepts Lite: Constraining Templates with
Predicates

Andrew Sutton, Bjarne Stroustrup, Gabriel Dos Reis

Texas A&M University
Department of Computer Science and Engineering

College Station, Texas 77843

Document number: N3580
Date: 2013-03-17

Study group: Concepts
Reply to: Andrew Sutton <asutton@cs.tamu.edu>

Bjarne Stroustrup <bs@cs.tamu.edu>
Gabriel Dos Reis <gdr@cs.tamu.edu>

1 Introduction
In this paper, we introduce template constraints (a.k.a., “concepts lite”), an
extension of C++ that allows the use of predicates to constrain template argu-
ments. The proposed feature is minimal, principled, and uncomplicated. Tem-
plate constraints are applied to enforce the correctness of template use, not the
correctness of template definitions. The design of these features is intended to
support easy and incremental adoption by users. More precisely, constraints:

• allow programmers to directly state the requirements of a set of template
arguments as part of a template’s interface,

• support function overloading and class template specialization based on
constraints,

• fundamentally improve diagnostics by checking template arguments in
terms of stated intent at the point of use, and

• do all of this without any runtime overhead or longer compilation times.

This work is implemented as a branch of GCC-4.8 and is available for down-
load at http://concepts.axiomatics.org/˜ans/. The implementation includes a
compiler and a modified standard library that includes constraints. Note that,
as of the time of writing, all major features described in this report have been
implemented.

This paper is organized like this:

• Tutorial: introduces the basic notions of constraints, shows examples of
their use, and gives examples of how to define constraints.

1

http://concepts.axiomatics.org/~ans/

• Discussion: explains what constrains are not. In particular, we try to
outline constraints’s relation to concepts and to dispel some common mis-
conceptions about concepts.

• User’s guide: provides many more tutorial examples and demonstrate the
completeness of the constraints mechanism.

• Implementation: gives an overview of our GCC compiler support for con-
straints.

• Extensions: we discuss how constraints might be extended to interact with
other proposed features.

• Language definition: presents a semi-formal definition of constraints

2

2 Constraints Tutorial
This section is a tutorial of the template constraints language feature. We
present the basic concepts of the feature and describe how to constrain tem-
plates, and show what constraint definitions are.

2.1 Introducing Constraints
A template constraint is part of a template parameter declaration. For example,
a generic sort algorithm might be declared as:

template<Sortable Cont>
void sort(Cont& container);

Here, Sortable is a constraint that is written as the “type” of the template
parameter Cont. The constraint determines what kinds of types can be used
with the sort algorithm. Here, Sortable specifies that any type template ar-
gument for sort must be “sortable,” that is, be a random-access container with
an element type with a <. Alternatively, we can introduce constraints using a
requires clause, in which constraints are explicitly called:

template<typename Cont>
requires Sortable<Cont>()

void sort(Cont& cont)

These two declarations of sort are equivalent. The first declaration is a
shorthand for the second. We generally prefer the shorthand since it is often
more concise and resembles the conventional type notation.

The requires clause is followed by a Boolean expression that evaluates pred-
icates. There is no magic to the definition of Sortable: it is just a constexpr
function returning true when its type argument is a permutable random access
container with a totally ordered element type. The predicate is evaluated at
compile time and constrains the use of the template.

Trying to use the algorithm with a list does not work since std::sort is
not directly implemented for bidirectional iterators in the standard library.

list<int> lst = ...;
sort(lst); // Error

In C++11, we might expect a fairly long error message. It depends how
deeply in the sequence of nested function calls the sort algorithm tries to do
something that a bidirectional iterator does not support, like adding n to an
iterator. The error messages tend to be somewhat cryptic: “no ‘operator[]’
available”. With constraints, we can get much better diagnostics. Then pro-
gram above results in the following error.

error: no matching function for call to ‘sort(list<int>&)’
sort(l);

^
note: candidate is:
note: template<Sortable T> void sort(T)

3

void sort(T t) { }
^

note: template constraints not satisfied because
note: ‘T’ is not a/an ‘Sortable’ type [with T = list<int>] since
note: ‘declval<T>()[n]’ is not valid syntax

Please note that this is real computer output, rather than a mere conjecture
about what we might be able to produce. If people find this too verbose, we
plan to provide a compiler option to suppress the “notes”.

Constraints violations are diagnosed at the point of use, just like type errors.
C++98 (and C++11) template instantiation errors are reported in terms of
implementation details (at instantiation time), whereas constraints errors are
expressed in terms of the programmer’s intent stated as requirements. This is
a fundamental difference. The diagnostics explain which constraints were not
satisfied and the specific reasons for those failures.

The programmer is not required to explicitly state whether a type satisfies a
template’s constraints. That fact is computed by the compiler. This means that
C++11 applications written against well-designed generic libraries will continue
to work, even when those libraries begin using constraints. For example, we
have put constraints on almost all STL algorithms without having to modify
user code.

For programs that do compile, template constraints add no runtime over-
head. The satisfaction of constraints is determined at compile time, and the
compiler inserts no additional runtime checks or indirect function calls. Your
programs will not run more slowly if you use constraints.

Constraints can be used with any template. We can constrain and use class
templates, alias templates, and class template member function in the same way
as function templates. For example, the vector template can be declared using
shorthand or, equivalently, with a requires clause.

// Shorthand constraints
template<Object T, Allocator A>
class vector;

// Explicit constraints
template<typename T, typename A>
requires Object<T>() && Allocator<A>()

class vector;

When we have constraints on multiple parameters, they are combined in
the requires clause as a conjunction. Using vector is no different than before,
except that we get better diagnostics when we use it incorrectly.

vector<int> v1; // Ok
vector<int&> v2; // Error: ‘int&’ does not satisfy the constraint ‘Object’

Constraints can also be used with member functions. For example, we only
want to compare vectors for equality and ordering when the value type can be
compared for equality or ordering.

4

template<Object T, Allocator A>
class vector
{
requires Equality_comparable<T>()
bool operator==(const vector& x) const;

requires Totally_ordered<T>()
bool operator<(const vector& x) const;

};

The requires clause before the member declaration introduces a constraint
on its usage. Trying to compare two vectors of a type that are not equality
comparable or totally ordered results an an error at the point of use, not from
inside std::equal or std::lexicographical_compare, which is what happens in
C++98 and C++11.

2.1.1 Multi-type Constraints

Constraints on multiple types are essential and easily expressed. Suppose we
want a find algorithm that searches through a sequence for an element that
compares equal to value (using ==). The corresponding declaration is:

template<Sequence S, Equality_comparable<Value_Type<S>> T>
Iterator_type<S> find(S&& sequence, const T& value);

Sequence is a constraint on the template parameter S. Likewise, Equality_-
comparable<Value_type<S>> is a constraint on the template parameter T. This
constraint depends on (and refers to) the previously declared template param-
eter, S. It’s meaning is that the parameter T must be equality comparable with
the value type of S. We could alternatively and equivalently express this same
requirement with a requires clause.

template<typename S, typename T>
requires Sequence<S>() && Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

Why have two alternative notations? Some complicated constraints are best
expressed by a combination of the shorthand notation and requires expressions.
For example:

template<Sequence S, typename T>
requires Equality_comparable<T, Value_type<S>>()

Iterator_type<S> find(S&& sequence, const T& value);

The choice of style is up to the user. We tend prefer the concise shorthand. In
“Concept Design for the STL” (N3351=12-0041) we showed that the shorthand
notation is sufficiently expressive to handle most of the STL [1].

2.1.2 Overloading

Overloading is fundamental in generic programming. Generic programming re-
quires semantically equivalent operations on different types to have the same

5

name. In C++11, we have to simulate overloading using conditions (e.g., with
enable_if), which results in complicated and brittle code that slows compila-
tions.

With constraints, we get overloading for free. Suppose that we want to add
a find that is optimized for associative containers. We only need to add this
single declaration:

template<Associative_container C>
Iterator_type<C> find(C&& assoc, const Key_type<C>& key)
{
return assoc.find(key);

}

The Associative_container constraint matches all associative containers:
set, map, multimap, ... basically any container with an associated Key_type and
an efficient find operation. With this definition, we can generically call find for
any container in the STL and be assured that the implementation we get will
be optimal.

vector<int> v { ... };
multiset<int> s { ... };

auto vi = find(v, 7); // calls sequence overload
auto si = find(s, 7); // calls associative container overload

At each call site, the compiler checks the requirements of each overload to
determine which should be called. In the first call to find, v is a Sequence
whose value type can be compared for equality with 7. However, it is not an
associative container, so the first overload is called. At the second call site s is
not a Sequence; it is an Associative_container with int as the key type, so the
second overload is called.

Again, the programmer does not need to supply any additional information
for the compiler to distinguish these overloads. Overloads are automatically dis-
tinguished by their constraints and whether or not they are satisfied. Basically,
the resolution algorithm picks the unique best overload if one exists, otherwise
a call is an error. For details, see Section 4.3.

In this example, the requirements are largely disjoint. It is unlikely that
we will find many containers that are both Sequences and Associations. For
example, a container that was both a Sequence and an Association would have
to have both a c.insert(p,i,j) and a c.equal_range(x). However, it is often
the case that requirements on different overloads overlap, as with iterator re-
quirements. To show how to handle overlapping requirements, we look at a
constrained version of the STL’s advance algorithm in all its glory.

template<Input_iterator I>
void advance(I& i, Difference_type<I> n)
{
while (n--) ++i;

}

6

template<Bidirectional_iterator I>
void advance(I& i, Difference_type<I> n)
{
if (n > 0) while (n--) ++i;
if (n < 0) while (n++) --i;

}

template<Random_access_iterator I>
void advance(I& i, Difference_type<I> n)
{
i += n;

}

The definition is simple and obvious. Each overload of advance has progres-
sively more restrictive constraints: Input_iterator being the most general and
Random_accesss_iterator being the most constrained. Neither type traits nor
tag dispatch is required for these definitions or for overload resolution.

Calling advance works as expected. For example:

list<int>::iterator i = ...;
advance(i, 2); // Calls 2nd overload

As before, some overloads are rejected at the call site. For example, the
random access overload is rejected because a list iterator does not satisfy those
requirements. Among the remaining requirements the compiler must choose the
most specialized overload. This is the second overload because the requirements
for bidirectional iterators include those of input iterators; it is therefore a better
choice. We outline how the compiler determines the most specialized constraint
in 4.3.

Note that we did not have to add any code to resolve the call of advance.
Instead, we computed the correct resolution from the constraints provided by
the programmer(s).

A conventional (unconstrained C++98) template parameter act as of “catch-
all” in overloading. It is simply represents the least constrained type, rather than
being a special case . For example, a print facility may have:

template<typename T>
void print(const T& x);

template<Container C>
void print(const C& container);

// ...
vector<string> v { ... };
print(v); // Calls the 2nd overload

complex<double> c {1, 1};
print(c); // Calls the 1st overload.

An unconstrained template is obviously less constrained than a constrained
template and is only selected when no other candidates are viable. This implies

7

that older templates can co-exist with constrained templates and that a gradual
transition to constrained templates is simple.

Note that we do not need a “late check” notion or a separate language con-
structs for constrained and unconstrained template arguments. The integration
is smooth.

2.2 Defining Constraints
We now look at the definition of constraints. What do they look like? Here is
a declaration of Equality_comparable.

template<typename T>
constexpr bool Equality_comparable();

A constraint is simply an unconstrained, constexpr function template that
takes no arguments and returns bool. It is—in the most literal sense—a predi-
cate on template arguments. This also means that the evaluation of constraints
in a requires clause is the same as constexpr evaluation.

The Equality_comparable constraint can be defined like this:

template<typename T>
concept Equality_comparable()
{
return has_eq<T>::value && is_convertible<eq_result<T>, bool>::value

&& has_ne<T>::value && is_convertible<ne_result<T>, bool>::value;
}

Here, has_eq and has_neq are type traits that determine whether arguments
of type T can be used with the == and != operators. These can be implemented
in C++11 using advanced metaprogramming techniques. is_convertible is also
a type trait, defined in the Standard Library. eq_result and ne_result are alias
templates referring to the result type of the corresponding expressions.

The use of traits and aliases to define syntactic requirements does not scale.
For every conceivable expression, a library writer may require several template
facilities to evaluate different properties. This can dramatically increase the size
of a library and reduce compile times.

To aid in the implementation of constraints, we introduce a new feature
aimed at minimizing these overheads. We can express exactly the same require-
ments using a requires expression.

template<typename T>
constexpr bool Equality_comparable()
{
return requires (T a, T b) {
bool = {a == b};
bool = {a != b};

};
}

The requires expression introduces a conjunction of syntactic requirements,
properties of types that can be checked at compile time. The expression can

8

introduce local parameters which are used in the writing of nested requirements.
Here, a and b can be used to denote values or expressions of type T for the
purpose of writing constraints.

Each statement nested in a requires expression denotes a conjunction of
requirements on a valid expression or associated type. A valid expression is an
expression that must compile when instantiated with template arguments. A
statement can also include requirements on the result type of a valid expression.
For example, the statement bool = a == b includes two requirements:

• a == b must be a valid expression for all arguments of type T, and

• the result of that expression must be convertible to bool.

The result type could also be constrained to be the same as another type by
writing e.g., bool == {a == b}, or the result type requirement can be omitted
by simply writing the valid expression e.g., a == b. If the expression cannot
be compiled when instantiated, or if the result type requirement returns false,
then the syntactic requirement is not satisfied and also returns false.

An associated type requirement is also a syntactic requirement. For example,
the Readable concept requires an associated Value_type, which represents the
type of object referenced. We can implement a constraint as:

template<typename T>
constexpr bool Readable()
{
return requries (T i) {
typename Value_type<I>;
const Value_type<I>& = {*i};

}
}

The statement typename Value_type<I> requires that the alias Value_type<I>
must compile when instantiated. If not, the requirement is not satisfied and
returns false.

We further explain features of the requires expression in Section 4.7.

9

3 Constraints and Concepts
Template constraints (concepts-lite) provide a mechanism form constraining
template arguments and overloading functions based on constraints. Our long-
term goal is a complete definition of concepts, which we see as a full-featured
version of constraints. With this work, we aim to take that first step. Con-
straints are a dramatic improvement on enable_if, but they are definitely not
complete concepts.

First, constraints are not a replacement for type traits. That is, libraries
written using type traits will interoperate seamlessly with libraries written us-
ing constraints. In fact, the motivation for constraints is taken directly from
existing practice—the use of enable_if and type traits to emulate constraints
on templates. Many constraints in our implementation are written directly in
terms of existing type traits (e.g., std::is_integral).

Second, constraints do not provide a concept or constraint definition lan-
guage. We have not proposed any language features that simplify the definition
of constraints. We hold this as future work as we move towards a complete
definition of concepts. Any new language features supporting constraint defi-
nition would most likely be obviated by concepts in the future. That said, our
implementation does provide some compiler intrinsics that support the imple-
mentation of constraints and would ease the implementation of concepts. This
feature is detailed in Section 5.

Third, constraints are not concept maps. Predicates on template arguments
are automatically computed and do not require any additional user annota-
tions to work. A programmer does not need to create a specialization of
Equality_comparable in order for that constraint to be satisfied. Also unlike
C++0x concepts, constraints do not change the lookup rules inside concepts.

Finally, constraints do not constrain template definitions. That is, the mod-
ular type checking of template definitions is not supported by template con-
straints. We expect this feature to be a part of a final design for concepts.

The features proposed for constraints are designed to facilitate a smooth
transition to a more complete concepts proposal. The mechanism used to eval-
uate and compare constraints readily apply to concepts as well, and the language
featurese used to describe requirements (type traits and compiler intrinsics) can
be used to support various models of separate checking for template definitions.

The constraints proposal does not directly address the specification or use
of semantics; it is targetted only at checking syntax. The constraint language
described in this papers has been designed so that semantic constraints can be
readily integrated in the future.

However, we do note that virtually every constraint that we find to be useful
has associated semantics (how could it not?). Semantics should be documented
along with constraints in the form of e.g., comments or other external definitions.
For example, we might document Equality_comparable as:

template<typename T>
constexpr bool Equality_comparable()
{

10

... // Required syntax
}
// Semantics:
// For two values a and b, == is an equivalence relation that
// returns true when a and b represent the same entity.
//
// The != operator is equivalent to !(a == b).

Failing to document the semantics of a constraint leaves its intent open to
different interpretations. Work on semantics is ongoing and, for the time being,
separate from constraints. We hope to present on the integration of these efforts
in the future. We see no problems including semantic information in a form
similar to what was presented in N3351 [1].

11

4 User’s Guide
This section expands on the tutorial and gives more examples of how constraints
interact with various language features. In particular, we look more closely at
constraints, discuss overloading concerns, examine constraints on member func-
tions, partial class template specializations. This section also describes con-
straints on non-type arguments and the interaction of constraints with variadic
templates. We begin with a thorough explanation of constraints.

A constraint is simply a C++11 constant expression whose result type can
be converted to 0. For example, all of the following are valid constraints.

Equality_comparable<T>()
requires (T a) { bool = {a < a}; }
!is_void<T>::value
is_lvalue_reference<T>::value && is_const<T>::value
is_integral<T>::value || is_floating_point<T>::value
N == 2
X < 8

A constraint is satisfied when the expression evaluates, at compile-time to true.
This is effectively everything that a typical user (or even an advanced user)
needs to know about constraints.

However, in order to solve problems related to redeclaration and overloading,
and to improve diagnostics, the compiler must reason about the content of these
constraints.

4.1 Anatomy of a Constraint
The following section describes the compiler’s view of a constraint and is pri-
marily intended as an introduction to the semantics of the proposed features.

In formal terms, constraints are written in a constraint language over a set
of atomic propositions and using the logical connectives and (&&) and or (||).
For those interested in the logical aspects of the language, it is a subset of
propositional calculus.

In order to reason about the equivalence and ordering of constraints the com-
piler must decompose a constraint expression into sets of atomic propositions.

An atomic proposition is a C++ constant expression that evaluates to either
true or false. These terms are called atomic because the compiler can only
evaluate them. They are not further analyzed or decomposed. These include
things like type traits (is_integral<T>::value), relational expressions (N == 0),
and some constexpr functions are also atomic (e.g., is_prime(N)).

The reason that expressions like is_integral<T>::value and is_prime(N) are
atomic is that there they may be multiple definitions or overloads when instan-
tiated. is_integral could have a number of specializations, and is_prime could
have different overloads for different types of N. Specializations or overloads
could also be defined after the first use in a constraint. Trying to decompose
these declarations would be unsound. However, they can still be used and

12

evaluated as constraints. Some functions are given special meaning, which we
describe in the next section.

Negation (e.g., !is_void<T>::value) is also an atomic proposition. These
expressions can be evaluated but are not decomposed. While negation has
turned out to be fairly common in our constraints (see Section 5.3), we have
not found it necessary to assign deeper semantics to the operator.

Atomic propositions can be also be nested and include arithmetic opera-
tors, calls to constexpr functions, conditional expressions, literals, and even
compound expressions. For example, (3 + 4 == 8, 3 < 4) is a perfectly valid
constraint, and its result will always be true.

4.1.1 Constraint Predicates

While some function calls in constraints are atomic propositions, calls to simple
functions like Equality_comparable and Convertible are decomposed into their
constituent parts. We call these kinds functions are constraint predicates. A
function is constraint predicate only if it is

• a function template,

• has no function parameters,

• returns bool,

• is constexpr,

• and has a single definition for all template arguments.

A call to any other kind of function is an atomic proposition.
Recall that the definition of Equality_comparable from Section 2:

template<typename T>
constexpr bool Equality_comparable()
{
return requires (T a, T b) {
bool = {a == b};
bool = {a != b};

}
}

It is a constraint predicate that is a conjunction of four requirements: the
validity of the expressions a == b and a != b and the convertibility of each
expression to bool.

When included in a template’s requires clause, a call to a constraint pred-
icate is called a constraint check. Check expressions are recursively expanded,
inlining the definition of the predicate into the expression. For example, suppose
we have this:

template<Equality_comparable T>
bool distinct(T a, T b) { return a != b; }

13

The shorthand Equality_comparable requirement is first transformed into a
constraint expression: Equality_comparable<T>(). Because Equality_comparable
is a constraint predicate, it is recursively expanded (as is the nested check of
Convertible). Ultimately, the previous declaration is equivalent to having writ-
ten this:

template<typename T>
requires has_eq<T>::value

&& is_convertible<eq_result<T>, bool>::value
&& has_ne<T>::value
&& is_convertible<ne_result<T>, bool>::value

bool distinct(T a, T b)

Note that the representation of syntactic constraints is internal to the com-
piler. Here, we have chosen to represent the corresponding syntactic require-
ments as type traits.

Obviously, it is far more concise to express constraints in terms of constraint
predicates than formulas comprised of atomic propositions. They are the basic
building block of conceptual abstractions. Concepts like Input_iterator, Range,
and Relation are defined through the composition of constraint predicates.

Recursively breaking constraint predicates into their constituent parts allows
us much better analysis, more flexibility, and greatly simplifies the definition of
overloading and ambiguity.

4.1.2 Overloading Constraints

Constraint predicates can be overloaded based on the number of type parame-
ters. For example, in [1], we found it useful to define cross-type concepts that
extended the usual definitions of equality and ordering to operands of different
(but related) types.

template<typename T>
constexpr bool Equality_comparable();

template<typename T, typename U>
constexpr bool Equality_comparable();

A number of algorithms require the equality comparison of two value types
that are not necessarily related.

Note that specializing or refining constraint predicates is allowed, but it will
change the meaning of the predicate. For example, if a user provides a new
declaration of Equality_comparable like this

template<typename T>
requires is_same<T, my_type>::value

constexpr bool Equality_comparable();

Any subsequent use of Equality_comparable will be an atomic proposition.
That is, the compiler will no longer be able to order constraints based on its
individual syntactic requirements.

14

It has been requested that we provide some annotation on constraint pred-
icates that would make this kind of overloading an error. However, no syntax
could be agreed upon as of the time of writing. We further discuss annotations
for constraints in Section 6.

4.1.3 Connectives

Once we have broken predicates up into atomic propositions, we can use straight-
forward classical logic and logical algorithms. Constraints are composed of
propositions joined by the logical connectives && (conjunction, and) and ||
(disjunction, or). These have the usual meanings, but cannot be overloaded.
Parentheses can also be used for grouping.

In order to solve problems related to redeclaration and overload resolution,
the compiler must decompose constraints into sets of atomic propositions based
on the connectives in the constraint expression.

Conjunction (and) results in the union of requirements into a single set.
For example, the distinct function in the previous has a set comprised of four
requirements:

has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value

Constraints in the sets can be differentiated syntactically. That is, if two
expressions have the same syntax, then only one needs to be retained in the set.

Disjunction (or) results in the creation of alternatives. Suppose we have con-
straints describing the distinct requirements for Containers and Ranges, where a
container has value semantics and ranges have reference semantics.

template<typename T>
constexpr bool Container()
{
return value_semantic<T>::value

&& Equality_comparable<T>()
&& has_begin<T>::value
&& has_end<T>::value
&& has_size<T>::value; // Probably more..

}

template<typename T>
constexpr bool Range()
{
return reference_semantic<T>::value

&& Equality_comparable<T>()
&& has_begin::value
&& has_end::value;

}

15

The value_semantic and reference_semantic type traits are hypothetical,
but could possibly be implementing using traits classes or associated types or
values. The remaining traits are similar to the has_eq and has_neq traits used
earlier. The two concepts have some syntax in common, but are otherwise
disjoint. It should not be possible to define a type that implements both value
and reference semantics.

Nearly every algorithm in the STL can be extended to require a disjunction
of these requirements. For example:

template<typename T>
requires Container<T>() || Range<T>()

auto find(const T& x) -> decltype(begin(x))
{
return find(begin(x), end(x));

}

The algorithm is written in the shared syntax of the different constraints.
Either constraint may be satisfied, but it would be incorrect (for example) to
call size(x) since it is not required by both constraints.

The decomposition of these requirements creates alternative sets of require-
ments. They are:

// Alternative 1 (Container<T>)
value_semantics<T>::value
has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value
has_begin<T>::value
has_end<T>::value
has_size<t>::value

// Alternative 2 (Range<T>)
reference_semantics<T>::value
has_eq<T>::value
is_convertible<eq_result<T>, bool>::value
has_neq<T>::value
is_convertible<neq_result<T>, bool>::value
has_begin<T>::value
has_end<T>::value

Finally, we note that the decomposition of constraints can be used to im-
prove diagnostics. The error messages shown in Section 2 are derived from the
decomposed requirements of the Sortable constraint. Specific messages can be
crafted for specific kinds of requirements, especially those written using intrinsic
functions.

The reason that negation (!) is not included as a logical connective in the
constraints language has to do with the evolution of these features as we move
towards a fuller definition of concepts. In particular, we assume that a template
definition will be checked against sets of requirements included by a constraint.

16

As of this writing, it is not clear what a “negative requirement” means in that
context. This does not mean, however, that a programmer cannot use ! in a
constraint. It simply means that the expression will be treated as atomic, even
if the operand is a constraint predicate.

4.1.4 Relations on Constraints

In order to support redeclaration, overloading, and partial specialization, con-
straints must be compared for equivalence and ordering. This is done by com-
paring sets of propositions. Note that propositions are compared syntactically.

Two constraints are equivalent when the contain the same propositions. Be-
cause equivalence is based on the decomposed sets of propositions, two requires
clauses may have different spellings, but may require the same things.

Constraints are partially ordered by the subsumes relation. Specifically,
one constraint subsumes another when its requirements include those of the
other. The subsumes relation is actually a generalization of the subset relation
on sets that can accommodate alternatives. When neither constraint contains
alternatives, the relations are the equivalent.

For example, we define Totally_ordered like this:

template<typename T>
constexpr bool Totally_ordered()
{
return Weakly_ordered<T>() && Equality_comparable<T>();

}

The relationship between the requirements of Totally_ordered and Equality_comparable
can be pictured like this:

Totally_ordered

Equality_comparable

Totally_ordered subsumes Equality_comparable because its requirements in-
clude those of the latter. This relation holds for any constraint predicate that
explicitly includes another.

It is often the case the case that constraints overlap, with neither subsum-
ing the other. For example, this is true of the Container and Range concepts
described in the previous section. The relationship between those constraints
can be pictured this way:

17

Container Range

The subsumes relation is used to determine which of two templates is more
constrained. In particular, a template T is more specialized than another, U iff
they have the same generic type and the requirements of T subsume those of U .
This relation is used to different templates with the same type when computing
which is more specialized. Note that a constrained template is always more
specialized than an unconstrained template.

This concludes the logical foundation of the constraints language and its
associated relations. The remaining sections of this chapter describe how con-
straints interact with the C++ programming language.

4.1.5 Decomposition and Subsumption

The algorithms used to decompose a constraint into sets of atomic proposi-
tions and to determine the subsumption of constraints are simple algorithms
used to support automated deduction in propositional logic. They are based
on the application of sequent calculus to decompose complex expressions into
simpler search problems. A good introduction to the underlying theory and its
application can be found in “ML for the Working Programmer” [10].

Given two constraints, P and Q, determining if P subsumes (or includes)
Q is equivalent to determining logically if P ` Q is a valid statement. In other
words, if we assume P to be true, does Q necessarily follow as a consequence?

For example, if P is the conjunction of requirements of Totally_ordered
and Q is conjunction of requirements of Equality_comparable, is P ` Q a valid
statement? Yes. Whenever P is true, it must also be the case that Q is true.
Therefore P subsumes Q, and any declaration requiring only Totally_ordered is
more constrained than a similar declaration requiring only Equality_comparable.

To solve this problem, both P and Qmust be decomposed into lists of atomic
propositions. This is achieved by the application of the left and right logical
rules of sequent calculus. The result is a list of subproblems, each having the
form Pi ` Qi where Pi is a list of atoms derived from P and Qi is a list of atoms
derived from Q. A subproblem is valid when any atom in Qi matches another
in Pi.

Atomic propositions are compared syntactically; two propositions match iff
they have the same spelling.

The initial statement P ` Q is valid only when all subproblems are valid. If
valid, then P subsumes Q. If the statement is not valid, the P does not subsume
Q.

18

We can also determine if Q subsumes P . Note that if both P ` Q and are
Q ` P valid, then P = Q. That is, the constraints are equivalent.

Formalism aside, the algorithms are easily implemented and efficiently exe-
cuted. Although from the user’s perspective, it may be easier to think of the
problem as it relates to sets rather than formal logic.

4.2 Declarations, Redeclarations, and Overloading
Constraints are a part of a declaration, and that affects the rules for declarations,
definitions, and overloading.

First, any two declarations having the same name, equivalent types, and
equivalent constraints declare the same element. For example:

template<Floating_point T>
class complex; // #1

template<typename T>
requires Floating_pont<T>()

class complex; // #2

template<typename T>
requires is_same<T, float>::value

|| is_same<T, double>::value
|| is_same<T, long double>::value

class complex; // #3

The first two declarations introduce the same type, since the shorthand
constraint in #1 is equivalent to writing #2. If Floating_point is defined as a
disjunction of same-type constraints, then all three declarations would introduce
the same type since their sets of propositions are the same.

This holds for functions as well:

template<Totally_ordered T>
const T& min(const T&, const T&); // #1

template<Totally_ordered T>
const T& min(const T& a, const T& b) { ... } // #2

Here, #2 gives a definition for the function declaration in #1.
When two functions have the same name and type but different constraints,

they are overloads.

template<Input_iterator I>
ptrdiff_t distance(I first, I last); // #1

template<Random_access_iterator I>
ptrdiff_t distance(I first, I last); // #2

int* p = ...;
int* q = ...;
auto n = distance(p, q);

19

When distance is called, the compiler determines the best overload. The
process of overload resolution is described in 4.3. In this case, this is determined
by the most constrained declaration. Because Random_access_iterator subsumes
Input_iterator, the compiler will select #2.

Defining two functions with identical types and identical constraints is an
error.

Classes cannot be overloaded. For example:

template<Floating_point T>
class complex; // #1

template<Integral T>
class complex; // Error, redeclaration of #1 with different constraints

The reason this is not allowed is that C++ does not allow the arbitrary over-
loading of class templates. This language extension does not either. However,
constraints can be used in class template specializations.

template<Arithmetic T>
class complex;

template<Floating_point T>
class complex<T>; // #1

template<Integral T>
class complex; // #2

complex<int> g; // Selects #2

As with function overloads, the specializations are differentiated by the
equivalence of their constraints. Choosing among constrained specializations
is similar to the selection of constrained overloads: choose the most constrained
specialization.

Suppose Arithmetic has the following definition:

template<typename T>
constexpr bool Arithmetic()
{
return Integral<T>() || Floating_point<T>();

}

The reason that the compiler selects #2 is that a) int is not a floating
point type, and b) Integral subsumes the set of requirements denoted by
Integral<T>() || Floating_point<T>().

Note that partial specializations must be more specialized than the primary
template (see Section 4.3 for more information). The reason is simply that if
this is not the case, then the partial specialization will never be selected.

20

4.3 Overloading and Specialization
The overload resolution process is extended to support constraints. Briefly, for
some call expression, that process is:

1. Construct a set of candidate functions

• If a candidate is a template, deduce the template arguments.
• If the template is constrained, instantiate and check constraints.
• If the constraints are satisfied, instantiate the declaration.

2. Exclude non-viable candidates

3. Select the best of the viable candidates.

• If there is one viable candidate, select it.
• If there are multiple viable candidates, select the most specialized.

Constructing the candidate set entails the instantiation of function tem-
plates declarations. This is done by first deducing the template arguments from
the function arguments. If the template is constrained, then those constraints
must also be checked. This is done immediately following template argument
deduction. Once all template arguments have been deduced, those arguments
are substituted into the declaration’s constraints and evaluated as a constant
expression. If the constraints expression evaluates to true, then the declaration
is instantiated (but not the definition).

A (template) function is not a viable candidate if a) template argument
deduction fails, b) the constraints are not satisfied, or c) instantiating the dec-
laration results in a substitution failure.

If there are multiple viable candidates in the candidate set, the compiler
must choose the most specialized. When the candidates are both template
specializations, having equivalent types, we compare the templates to see which
is the most constrained.

Consider the following:

template<Container C>
void f(const C& c); // #1

template<typename S>
requires Container<S>() || Range<S>()

void f(const S& s); // #2

template<Equality_comparable T>
void f(const T& x); // #3

...
vector<int> v { ... };
f(v) // calls #1
f(filter(v, even)); // calls #2
f(0); // calls #3

21

The first call of f resolves to #1. All three overloads are viable, but #1 is
more constrained than both #2 and #3. Assuming filter returns a range
adaptor (as in boost::filter), the second call to f resolves to #2 because
a range adaptor is not a Container and Equality_comparable is subsumed by
Container<S>() || Range<S>(). The third call resolves to #3 since int is nei-
ther a Container nor a Range.

Selecting partial specializations is a similar process. As with overload resolu-
tion, determining which specialization is to be instantiated requires the compiler
to:

1. Construct a set of candidate specializations

• If the candidate is a partial specialization, deduce the template ar-
guments.

• If the candidate is constrained, instantiate and check the constraints.

• If the constraints are satisfied, instantiate the non-deduced special-
ization arguments

2. Exclude non-viable candidates

3. Select the best viable specialization

• If there is one one viable candidate, select it.

• If there are multiple viable candidates, select the most specialized.

When collecting candidates for instantiation, the compiler must determine
if the specialization is viable. This is done by deducing template arguments and
checking that specializations constraints.

A specialization is not viable if template argument deduction fails, con-
straints are not satisfied, or the instantiation of the non-deduced arguments
results in a substitution failure.

If there are multiple viable specializations, the compiler must select the most
specialized template. When no other factors clearly distinguish two candidates,
we select the most constrained, exactly as we did during overload resolution.

For example, we can implement the is_signed trait using constraints.

template<typename T>
struct is_signed : false_type { };

template<Integral T>
struct is_signed<T> : integral_constant<bool, (T(-1) < T(0))> { };

template<Floating_point T>
struct is_signed<T> : true_type { };

The definitions corresponding to Integral and Floating_point types are par-
tial specializations of the primary template. Note that they are also more spe-
cialized, since any constrained template is more constrained than an equivalently

22

typed unconstrained template. Because of this, the instantiation of this trait
will always select the correct evaluation for its type argument. That is, the
result is computed for integral types, and trivially true for floating point types.
For any other type, the result is false.

4.4 Non-Type Constraints
Thus far, we have only constrained type arguments. However, predicates can
just as easily be used for non-type template arguments as well.

For example, in some generic data structures, it is often more efficient to
locally store objects whose size is not greater than some maximum value, and
to dynamically allocate larger objects.

template<size_t N, Small<N> T>
class small_object;

Here, Small<N> is just like any other type constraint except that it takes
an integer template argument, N. The equivalent declaration written using a
requires clause is:

template<size_t N, typename T>
requires Small<T, N>()

class small_object;

The constraint is true whenever the sizeof T is smaller than N. It could have
the following definition:

template<typename T, size_t N = sizeof(void*)>
constexpr bool Small()
{
return sizeof(T) <= N;

}

The parameter N defaults to sizeof(void*) . Default arguments can be
omitted when using shorthand. We might, for example, provide a facility for
allocating small objects:

template<Small T>
class small_object_allocator { ... };

Shorthand constraints can also introduce non-type parameters. Suppose we
define a hash_array data structure that has a fixed number of buckets. To reduce
the likelihood of collisions, the number of buckets should be prime. The Prime
constraint has the following declaration:

template<size_t N>
constexpr bool Prime() { return is_prime(N); }

Note that the expression is_prime(N) does not denote a constraint check
since the is_prime function takes an argument (it may also be overloaded) so it
is an atomic proposition.

The hash table’s can declared like this:

23

template<Object T, Prime N>
class hash_array;

or equivalently:

template<typename T, size_t N>
requires Object<T>() && Prime<N>()

class hash_array;

Because constraints are constexpr functions, we can evaluate any property that
can be computed by constexpr evaluation, including testing for primality. Ob-
viously, constraints that are expensive to compute will increase compile time
and should be used sparingly.

Note that the kind of the template parameter N is size_t, not typename. A
shorthand constraint declares the same kind of parameter as the first template
parameter of the constraint predicate.

The proposed language does not currently support refinement based on in-
teger ranges. That is, suppose we have the two predicates:

template<int N>
constexpr bool Non_negative() { return N >= 0; }

template<int N>
constexpr bool Positive() { return N > 0; }

Both N >= 0 and N > 0 are atomic propositions. Neither constraint subsumes
the other, nor do they overlap.

4.5 Template Template Parameters
Template template parameters may both use constraints and be constrained.
For example, we could parameterize a stack over an object type and some
container-like template:

template<Object T, template<Object, Allocator>> class Cont>
class stack
{
Cont<T> container;

};

Any argument substituted for the Cont must have a conforming template
“signature” (same number and kinds of parameters) and also be at least as con-
strained as that parameter. This is exactly the same comparison of constraints
used to differentiate overloads and partial specializations. For example:

template<Object T, Allocator A>
class vector;

template<Regular T, Allocator A>
class my_list;

template<typename T, typename A>

24

class my_vector;

stack<int, vector> a; // OK: same constraints
stack<int, list> b; // OK: more constrained
stack<int, my_vector> c; // Error: less constrained.

The vector and list templates satisfy the requirements of stack Cont. How-
ever, my_vector is unconstrained, which is not more constrained than Object<T>()
&& Allocator<T>().

Template template parameters can also be introduced by shorthand con-
straints. For example, we can define a constraint predicate that defines a set of
templates that can be used in a policy-based designs.

template<template<typename> class T>
constexpr bool Checking_policy()
{
return is_checking_policy<T>::value;

}

Below are the equivalent declarations of a policy-based smart_ptr class using
a constrained template template parameter.

// Shorthand
template<typename T, Checking_policy Check>
class smart_pointer;

// Explicit
template<typename T, template<typename> class Check>
requires Checking_policy<Check>()

class smart_pointer;

This restricts arguments for Check to only those unary templates for which
a specialization of is_checking_policy yields true.

4.5.1 Variadic Constraints

Constraints can also be used with variadic templates. For example, an algorithm
that computes an offset from a stride descriptor and a sequence of indexes can
be declared as:

template<Convertible<size_t>... Args>
void offset(descriptor s, Args... indexes);

The name Convertible<size_t> is just like a normal constraint. The ...
following the constraint means that the constraint will be applied to each type
in the parameter pack Indexes. The equivalent declaration, written using a
requires clause is:

template<typename... Args>
requires Convertible<Args, size_t>()...

void offset(descriptor s, Args... indexes);

25

The meaning of the requirement is that every template argument in the pack
Args must be convertible to size_t. When instantiated, the argument pack ex-
pands to a conjunction of requirements. That is, Convertible<Args, size_t>()...
will expand to:

Convertible<Arg1, size_t>() && Convertible<Arg2, size_t>() && ...

For each Argi in the template argument pack Args. The constraint is only
satisfied when every term evaluates to true.

A constraint can also be a variadic template. These are called variadic con-
straints, and they have special properties. Unlike the Convertible requirement
above, which is applied to each argument in turn, a variadic constraint is ap-
plied, as a whole, to an entire sequence of arguments.

For example, suppose we want to define a slicing operation that takes a
sequence of indexes and slice objects such that an index requests all of the
elements in a particular dimension, while a slice denotes a sub-sequence of
elements. A mix of indexes and slices is a “slice sequence”, which we can describe
using a variadic constraint.

template<typename... Args>
constexpr bool Slice_sequence()
{
return is_slice<Args...>::value;

}

It is a variadic function template taking no function arguments and returning
bool. The definition delegates to a metafunction that computes whether the
property is satisfied.

Our function that computes a matrix descriptor based on a slice sequence
has the following declaration.

template<Slice_sequence... Args>
descriptor sub_matrix(const Args&... args);

Or equivalently:

template<typename... Args>
requires Slice_sequence<Args...>()

descriptor sub_matrix(const Args&... args);

Note the contrast with the Convertible example above. When the constraint
declaration is not variadic, the constraint is applied to each argument, individu-
ally (the expansion is applied to constraining expression). When the constraint
is variadic, the constraint applies to all of the arguments together (the pack
expansion is applied directly to the template arguments).

4.6 Constrained Members
Member functions, constructors, and operators can be constrained and over-
loaded just like regular function templates. For example, the constructors of
the vector class are declared like this:

26

template<Object T, Allocator A>
class vector
{
requires Movable<T>()
vector(vector&& x); // Move constructor

requires Copyable<T>()
vector(const vector& x); // Copy constructor

// Iterator range constructors
template<Input_iterator I>
vector(I first, I last);

template<Forward_iterator I>
vector(I first, I last);

};

Each constrained member has as its requirements, the conjunction of all con-
straints in the enclosing scope (all enclosing scopes) in addition to the member-
specific constraints introduced by the requires clause.

Definitions could be written outside the class declaration by re-stating the
requirements. For example:

template<Object T, Allocator A>
requires Copyable<T>()

vector<T, A>::vector(const vector& x) { ... }

template<Object T, Allocator A>
template<Input_iterator I>
vector<T, A>::vector(I first, I last) { ... }

The out-of-class declarations are matched against the members declared in-
side the class based on their types and constraints.

4.7 Writing Requirements
This proposal includes new syntax directly aimed at the specification of syntactic
requirements in the form of the requires expression. A requires expression
is a constant, Boolean expression that introduces a conjunction of syntactic
requirements. For example, Totally_ordered could be defined as:

template<typename T>
constexpr bool Totally_ordered()
{
return Equality_comparable<T>()

&& requires (T a, T b) {
bool = {a < b};
bool = {a > b};
bool = {a <= b};
bool = {a >= b};

};

27

}

The requires clause introduces local parameters a and b, which can be used
as notation in nested syntactic requirements. The requires clause is followed by
an enclosing block: a sequence of syntactic requirements.

A syntactic requirement introduces a conjunction of requirements involving
valid expression. Syntactic requirements are interpreted as Boolean expressions;
they evaluate to true or false.

The full range of syntactic requirements is summarized below. Here e is an
expression, and T is a type.

e; // e is a valid expression
constexpr e; // e is a valid constant expression
e noexcept; // e does not propagate exceptions

T = {e} // decltype(e) is convertible to T
T == {e}; // decltype(e) is the same as T
constexpr T == {e}; // e is a constant expression
T == {e} noexcept; // e does not propagate exceptions

An expression by itself is simply a requirement for a valid expression: an
expression that must compile when instantiated. If the expression cannot be
instantiated (due to a substitution failure), the requirement evaluates to false.

Writing constexpr before e requires that e must be compile-time evaluable.
Writing noexcept after e indicates that e must not propagate exceptions.

A syntactic requirement of the form T = e adds the requirement that decltype(e)
must be convertible to T. A syntactic requirement of the for T == e requires that
decltype(e) is the same as T. The constexpr and noexcept keywords can be used
in conjunction with result type conversions as well.

Note that valid expressions written as syntactic requirements are never eval-
uated at runtime. They are only instantiated to determine validity.

A requires expression can also introduce associated type requirements, ei-
ther as member types or alias templates. Associated type requirements are
introduced by the typename keyword. They can be written as:

typename A<T>;
typename T::x;

The requirement typename X<T> requires the alias A to compile when instan-
tiated with a template argument T. The requirement evaluates to true when
this is the case.

Note that requiring the valid instantiation of a class template is not currently
supported. Unfortunately, the instantiation of a class template may fail in a
different instantiation context, resulting in unexpected compiler errors.

The requirement typename T::x requires T to define a nested type named x.
The requirement is true when instantiation succeeds (i.e., does not result in a
substitution failure).

28

4.8 Designing Concepts
Constraints provide use-site checking for template arguments, which is only one
part of what a full definition of concepts will do. But constraints are an impor-
tant stepping stone in that direction. They provide a basis for experimenting
with the required interfaces of concepts moving forward. In this section, we
discuss what makes a good concept based on our experience from our concept
design experience [1, 8], and our work with constraints.

4.8.1 Intensional and Extensional Definitions

The first observations we make is that good concepts are defined intensionally
by specifying all of the properties that are required to model that concept.
Concepts defined in this way can be readily refined to define more specialized
abstractions simply by adding more requirements.

The opposite is to define concepts extensionally by providing a list of types
known to be models of that concept. Many of the type traits in the Standard
Library are defined extensionally (e.g., Integral, Floating_point). These exten-
sional definitions are rigid and difficult to extend. For example, the Arithmetic
constraint in our implementation is defined as:

template<typename T>
constexpr bool Arithmetic()
{
return Integral<T>() || Floating_point<T>();

}

However, any program that would wish to use complex<double> with an
Arithmetic algorithm would be unable to do so. The programmer would have
to create a new constraint and define a new algorithm (probably with the same
syntax) to accommodate complex numeric types.

We note that the design of effective concepts for mathematic structures has
not proven to be an easy task and requires a good understanding of abstract
algebra.

4.8.2 Expressivity

There has been an unfortunate tendency in the generic programming community
over the past decade to reduce the requirements of algorithms to a minimal
kernel of valid expressions. For example, an algorithm comparing values for
equality, or more specifically its inverse, must be written as !(a == b) instead
of the more natural expression a != b.

This reduction has been made for the sake of users, so they don’t have to
implement the full set of overloads for inherently related operations, only ==, <,
+=, etc. But this reduction has also been made at the expense of expressiveness
and specifiability within templates. Library implements may not be able to use
syntax that is natural to the expression of an algorithm, and its requirements
must be made in terms of the least syntactic units.

29

In Elements of Programming, Stepanov and McJones state that a computa-
tional basis must be efficient and expressive [5]. This ideal was used throughout
the design of concepts in both [8] and [1]. Concepts must not be reduced to the
least syntactic requirement of a set of related operations.

We think it is both possible and desirable to have expressive concepts and
also a mechanism for simplifying implementations. We have not yet thoroughly
investigated how such a mechanism might be provided, but we see it as being
separate from the design and specification of concepts.

30

5 Implementation
We have implemented the most features as a branch of GCC 4.8. A few features
are currently still incomplete or being refined. In particular, we are revamping
the implementation to use the new requires expression

In this section, we describe the implementation and some extensions we have
provided to simplify the writing of constraints.

5.1 Compiler Support
One of the goals of this implementation is to decrease compile times by pro-
viding facilities to help eliminate complexity in the definition of type traits and
constraints. In particular, we have internalized several of the Standard type
traits to support efficient computation and extensions to the logical rules for
constraints.

The __is_same intrinsic is a compiler implementation of the is_same type
trait. This helps reduce the number of template instantiations and specializa-
tions needed to define type traits. For example, our definition of is_floating_point
is:

template<typename T>
struct is_floating_point
: integral_constant<bool,

__is_same(T, float) ||
__is_same(T, double) ||
__is_same(T, long double)

>
{ };

The _is_convertible_to trait determines whether a user-defined conversion
sequence can be found from one type T to another U. Currently, this is imple-
mented as a library feature with a complex implementation.

These traits, together with the __is_base_of intrinsic, have special logical
rules in our implementation of the subsumes algorithm. In particular, the fol-
lowing statements are always valid:

• __is_same(T, U) ` __is_convertible_to(T, U)

• __is_same(T, U) ` __is_base_of(U, T)

• __is_base_of(U, T) ` __is_convertible_to(T, U)

That is, whenever the left side of ` is true, the right side is also true. This
has the nice property of ordering these relationships by their “strength”. These
properties are used in some STL implementations to select optimized algorithms
when comparing values of the same type vs. those that are simply convertible.

31

5.2 Syntactic requirements
Suntactic requirements are represented as a conjunction of intrinsic expressions.
Valid expression requirements is represented using the __is_valid_expr intrinsic,
and associated type requirements are represented using the __is_valid_type
intrinsic.

For example, this sequence of requirements

requies (T a, T b) {
typename T::additive_id;
T = {a + b} noexcept;

}

is decomposed into the following conjunction of atoms:

__is_valid_type(typename T::additive_id)
&& __is_valid_expr(a + b)
&& __is_convertible_to(decltype(a + b), T)
&& noexcept(a + b);

Note that the primitives are currently exposed and available to be used
wherever a requires expression can be used. As of the time of writing, support
for the requires expression has not yet been implemented. It is highly likely
that these intrinsics will not be available in the future.

Checking for constexpr requirements has not yet been implemented.

5.3 Standard Library
With our implementation, we have also introduced constraints to a small sub-
set of the standard library. This is not a straightforward proposition because
virtually every component in the standard library is a template. This section
serves primarily to document our experience with these constraints. The dec-
larations and constraints described herein should not be considered as part of
this proposal.

We modified the <type_traits>, <iterator>, and <algorithm> headers to
include new constraint definitions and applied them to the required interfaces
in those modules. Details and discussion follow.

5.3.1 Type Traits

There are two major changes to the this module. First, we rewrote all of the
standard type trait implementations to use intrinsics and constraints where
possible, and replaced the use of logical metafunctions with the usual logical
C++ operators. The goal is to reduce complexity and compile times. The
result is about 25% less code. We haven’t measured compile-times yet, but we
expect a reasonable improvement due to the smaller number of instantiations
required to evaluate those properties.

Second, we added constraint predicates for all of the unary type predicates,
and aliases for many of the type transformations (this is a work in progress).
The constraint predicates allow the use of standard type traits as constraints:

32

template<Floating_point T>
class complex;

Some of the type properties, especially those related to construction and
destruction have been implemented in a way that supports ordering for overload
resolution. In particular, it must be the case that all constructible types are
destructible, and that all copy operations are also valid move operations. In the
latter case, this means that copy constructible and copy assignable types are
also move constructible and move assignable, respectively.

We also added constraints for the foundational and function concepts found
in [1]. In the <type_traits> header, this includes:

• Equality_comparable

• Totally_ordered

• Movable

• Copyable

• Semiregular

• Regular

• Function

• Regular_function

• Predicate

• Relation

Their definitions follow from those given in [1].

5.3.2 Iterator

The iterator header is extended with new constraints and aliases. The aliases
provide access to the associated types of an iterator. There are three:

• Iterator_category

• Value_type

• Difference_type

The pointer type and reference type are not used in this iterator design;
neither is the iterator_traits traits class. The reason is that the reference
type is always the same as decltype(*i), and the pointer type is never needed
by any standard algorithms. The use of auto further reduces the need for these
names.

For reference, the implementation of Value_type is:

33

template<typename T>
struct __value_type
{ using type = __subst_fail; };

template<typename T>
requires __is_valid_type(typename T::value_type)

struct __value_type<T>
{ using type = typename T::value_type; };

template<typename T>
requires __is_valid_type(typename T::value_type)

&& __is_same(typename T::value_type, void)
struct __value_type<T>
{ using type = __subst_fail; };

template<typename T>
struct __value_type<T*>
{ using type = T; };

template<typename T>
struct __value_type<const T*>
{ using type = T; };

template<typename T>
using Value_type = typename __value_type<T>::type;

We need a specialization of __value_type to accommodate the fact that the
output_iterator template sets the value type to void. This prevents substitution
failures when writing type names like, const Value_type<I>&.

The __subst_fail type indicates substitution failure. Determining whether
Value_type<I> is defined for requires us to test that the alias is not a name for
__subst_fail. For example, the Input_iterator constraint includes this test:

!__same(Value_type<I>, __subst_fail).

There are a number of support constraints in the library module. Most of
these are defined in [1].

• Readable

• Writable

• Permutable

• Mutable

• Advanceable (was WeaklyIncrementable)

• Incrementable

The standard iterator hierarchy is unchanged.

34

• Input_iterator

• Output_iterator

• Forward_iterator

• Bidirectional_iterator

• Random_access_iterator

The design in [1] did not include an output iterator. In truth, the supporting
concepts (esp., Writable and Advanceable) largely eliminate the specific need for
the concept. However, we have retained it in this design for parity with input
iterators.

5.3.3 Algorithm

We constrained all of the standard algorithms, except those taking random
number generators as arguments. To help simplify the constraints, which can
get fairly verbose, we introduced a number of algorithmic abstractions. Some
of these were used in [1], others are new.

• Indirectly_movable

• Indirectly_copyable

• Indirectly_swappable

• Indirectly_equal

• Indirectly_ordered

• Indirectly_comparable

• Sortable

• Mergeable

The “indirectly” constraints describe operations between two pairs of dif-
ferently typed iterator parameters (e.g., copying between iterators, comparing
elements of two iterators for equality). The names might be improved; these
are primarily intended for convenience. We are not proposing that they should
be part of the Standard Library.

35

6 Extensions
The following sections describe features that we have considered, but have not
yet implemented, or have just begun to experiment with.

6.1 Concepts
Eventually, we hope to see a full concept design, with full checking of template
bodies and semantics. For now, we are convinced that it can be done (see [1]),
but do not have a complete design.

6.2 Terse Templates
We consider generic lambdas and constraints very closely related. In this section,
we present an extension for “terse templates”, an extension of the proposal aimed
at providing a uniform notation for constraining both templates and generic
lambdas.

The purpose of this extension is to provide a very terse notation to constrain
simple templates and lambdas. This design aims for minimalism, not complete-
ness. If you want completeness, write a template. We see this as an exercise in
making simple things simple.

The aim is to come up with a uniform notation that can be used to constrain
both templates and generic lambdas. For lambdas, we are convinced that we
want a terse syntax, primarily for relatively simple sets of template argument
types. We would hate to see an “unconstrained lambda” subculture grow up as
a result of a clumsy syntax for constraints. It is this potential problem with
generic lambdas that caused us to move ahead now (and encouragement from
the SG8).

6.2.1 The basics

We use Number as an example of a constraint or concept. We can define a
constrained lambda like this:

[](Number n) ...

This means that Number must be a type for which some numeric constraint
is true; n is a constrained parameter. Let us first explain how this works for
templates, and then come back to lambdas.

For a template, we can write:

void sort(Cont& c);

Here, Cont must be known to be a constrained parameter, and this is short-
hand notation for

template<Container Cont>
void sort(Cont& c);

which again is a shorthand for

36

template<typename Cont>
requires Container<Cont>()

void sort(Cont& c);

Somewhere, somehow (described below), Cont must be defined to be the
name of a type than satisfies the constraint/concept Container.

We note that when programmers first see something new, they clamor for
“heavy” syntax, such as the last example. Later, they complain about verbosity,
and prefer the terser forms. Later generations of programmers typically fail to
understand why the long form exists at all. If you like the “heavy syntax”, you
can simply use that.

6.2.2 Type compatibility

What if we need two argument types of the same concept? Consider

void sort(Ran p, Ran q);

For this to make sense, p and qmust be of the same type, and that is the rule.
By default, if you use the same constrained parameter name for two arguments,
the types of those arguments must be the same. We chose to make repeated
use of a constrained parameter name imply “same type” because that (in most
environments) is the most common case and the aim here is to optimize for
terse notation of the simplest case. Also, a constrained parameter is the name
of a type, and having two type names refer to different types in the same scope
would cause chaos.

When we need to make the requirement for commonality explicit, we do so
by introducing a name for a type that must meet a concept. For example:

using Randon_access_iterator{Ran};
// ...
void sort(Ran p, Ran q);

This using-declaration introduces the constrained parameter name Ran and
associates it with the constraint named Random_access_iterator. When Ran is
used as a parameter of a function, the function is a function template using
the terse form, and a function argument used in a call of the must be of a
type that satisfies Ran’s concept, here Random_access_iterator. The “long hand”
declaration of sort could be equivalently written:

template<typename Ran>
requires Random_access_iterator<Ran>

void sort(Ran p, Ran q);

To our eyes, this latter version is beginning to look verbose. Note that
we can place the using-declaration for Ran in a namespace and/or as part of a
library header to avoid namespace pollution and gain uniformity of use across
the library.

Now, what do we do when we want two argument types of the same concept
that may differ? Consider merge():

37

template<typename For, typename For2, typename Out>
void merge(For p, For q, For2 p2, For2 q2, Out p);

Merge has been a long-standing example of (necessary) complexity of spec-
ification, but the mechanism for naming types that meet a concept, handles
this:

using Forward_iterator{For};
using Forward_iterator{For2};
using Output_iterator{Out};
// ...
void merge(For p, For q, For2 p2, For2 q2, Out p);

For and For2 are simply different names for types that must meet the Forward_iterator
concept but types that match different names may differ.

We can do better still. In reality, the three template argument types for this
merge() are not independent, but must meet some fairly intricate constraints
that can be expressed as a concept taking three type arguments. For details,
see the Palo Alto TR. At a minimum, we need to write:

template<Forward_iterator For, Forward_iterator For2, Output_iterator Out>
requires Mergeable<For,For2,Out>

void merge(For p, For q, For2 p2, For2 q2, Out p);

Using the terse syntax, this becomes:

using Mergeable{For,For2,Out};
// ...
void merge(For p, For q, For2 p2, For2 q2, Out p);

There are five algorithms in the STL that requires Mergeable, so this notation
is even more economical than it appears when used in a single example.

The syntax of this using-declaration is:

using name-of-concept { identifier-list };

So, we have a very terse syntax that minimizes repetition and can distinguish
between two uses of the same type of a concept and (potentially) two different
type of a concept. In case, you lost track of the reason for going in this direction:
This terse syntax can be used for lambdas, where the old (verbose) syntax is
either impossible or so verbose that it would encourage the use of unconstrained
lambdas. For example:

[] (For p, For q, For2 p2, For2 q2, Out p) { /∗ do some merging ... ∗/ }

6.2.3 The “Dual Name” Problem

We used Ran for a constrained parameter name for Random_access_iterators,
For for Forward_iterators, and Number for some numeric concept. We actually
like such short names, but they will have to be in namespace scope to be usable
for many terse templates and not everybody likes short names. It seems that
we need two names for every concept: one for the concept/constraint itself plus

38

one for its constrained parameter name. It would be nice if the constrained
parameter names were conventional and standard, so that when we see one it
is obvious what it is. We struggled trying to find a suitable naming scheme.
Consider

1. Randon_access_iterator Ran first letters)
2. Randon_access_iterator RandomAccessIterator (CamelCase)
3. Random_access_iterator Random_access_iterator1 (index)

After trying those, and more, we hated them all. Our solution is that the
name of a constraint doubles as the name of its constrained parameter. This
then implies that a constraint that is to be used for the terse syntax must be
syntactically distinguished. In other words, it must be defined to be a concept
using a special syntax or a keyword. We use concept.

From comments on the reflectors and in the phone meeting, we are under
the impression that many would like to have at least some constraints explicitly
declared to be concepts anyway, so this may be a popular choice.

So, when used as a type in a function declaration, the name of a concept
denotes its constrained parameter. For example, we can write

template<class T>
concept bool Number() { /∗ what it takes to be a number ∗/ }

Simply replacing constexpr with concept and allowing a bit of extra checking.
Give that we can write

[](Number n) ...

void f(Number n) ...

as desired and without introducing new syntax, potentially confusing dual names,
or conventions.

From a language-technical point of view, the dual name solution is marginally
simpler, but from a user’s point of view, having to introduce a second name only
when a second name is needed (e.g., For2 above) or wanted for terse notation
(e.g., For above) is far more convenient.

6.2.4 Technicalities

This simple design leaves many questions for language experts, such as

• How do we define a constraint so that it is recognized as a concept?

• How do we define two names for a concept?

• How do we define return values that depend on a template argument?

The answers are essential, but not fundamental as long as we preserve the
simplicity of use. We are not married to any particular syntax.

39

6.3 How do we recognize a parameter type?
We suggest that a constexpr function declared with concept as its keyword
rather than constexpr is recognized as a parameter type in the implicit template
shorthand syntax. For example

template<typename T> constexpr bool One(); // a constraint
template<typename T> concept bool Two(); // a concept

void algo1(One t) ...
void algo2(Two t) ..

We could shorten the definition of Two() by letting conceptmean constexpr bool,
but left such further elaboration to the future. I note that we reserved concept
as a keyword for future use.

6.4 How do we define two names for a concept?
We need to define an alias for a concept that is recognized as distinct by the
terse template syntax. For example:

Using Forward_iterator{For};

This would be sufficient to make the merge example work. I don’t think we
need anything more elaborate.

6.5 What about return types?
Expressing a return type without access to template arguments or function
arguments can be rather tricky. For example:

Forward_iterator find(Forward_iterator p, Forward_iterator q,
Equality_comparable<Value_type<Forward_iterator> v);

Here, Forward_iterator is used as a return type before it is recognized as
a parameter type. This might work, but I suspect problems, notably lookup
problems. This was one problem that stumped us years ago. However, Daveed
pointed out that now we have the suffix return type notation, so let’s use it

auto find(Forward_iterator p, Forward_iterator q,

Equality_comparable<Value_type<Forward_iterator> v) -> Forward_iterator;

But Wait! C++14 will almost certainly allow deduction of the return value
so we can write

auto find(Forward_iterator p, Forward_iterator q,
Equality_comparable<Value_type<Forward_iterator> v)
{

// ...
}

40

This reduces the problem to a previously solved one. If you don’t like the
shorthand notation or don’t like the suffix return type syntax, don’t use them.
This is all shorthand.

If you like short names, you can get:

auto find(For p, For q, Equality_comparable<Value_type<For> v)
{

// ...
}

6.6 Constraints on Non-templates
It should also be possible to add constraints to non-template declarations, al-
though this is purely speculative discussion. One use of this feature would be
to conditionally define functions based on the compiler vendor.

requires Compiler == MSVC
string get_type_name();

requires Compiler == GCC
string get_type_name();

Since the constraints are non-dependent, they should be evaluated prior to
the parsing of the declaration. It is unclear whether the declaration should be
parsed or not if the constraints are not satisfied. Reasonable arguments could
be made for either choice. The definition should not be parsed, however.

It’s not hard to imagine the application of constraints to virtually any dec-
laration (e.g., aliases, namespaces, variables, etc). This may prove to be a rich
source of new features for C++. However, careful consideration must be given
to the semantics of those constraints and how they can be used in a principled
way. We would like to avoid the use of constraints as a low-level mechanism for
controlling compilation.

41

7 Standard Wording
The proposed standard wording covers only template constraints. It does not
describe the features discussed in Section 6.

7.1 5.1.1 [expr.prime.general]

primary-expression::
literal
this
...
requires-expression

7.2 5.1.3 [expr.prim.requires]

A requires expression provides a concise way to define syntactic requirements
for template constraints. [Example:

template<typename T>
constexpr bool Readable() {
return requires (T i) {
typename Value_type<T>;
const Value_type<T>& = {*i};

};
}

— end example]

requires-expression:
requires parameter-declaration-clauseopt{ requirement-list }

requirement-list:
requirement-statementopt
requirement-list ; requirement-statementopt

requirement-statement:
syntactic-requirement
associated-type-requirement

syntactic-requirement:
constexpropt valid-expression-requirement noexceptopt

valid-expression-requirement:
expression
type-id (expression) type-id = { expression }
type-id == { expression }

associated-type-requirement:
typename type-id

42

A requires-expression shall only appear inside a template.

The type of a requires-expression is bool; it is a constant expression.

The requires-expression may be introduce local objects via a parameter-declaration-
clause. These parameters have no linkage, storage, or lifetime; they are used as
notation for the purpose of writing requirements.

The body of requires-expression is a conjunction of requirements. A requirement-
statement introduces one or more requirements, also as a conjunction.

The presence of constexpr in a syntactic requirement that precedes a valid-
expression-requirement denotes the requirement that the expression must be
compile-time evaluable. The presence of noexcept following a valid-expression-
requirement denotes the requirement that the expression must not propagate
exceptions.

A valid-expression-requirement started by a type-id denotes an additional type
requirement. The use of parentheses indicates that the specified type-id must be
constructible from the result of the required expression. The = denotes a require-
ment that the decltype of the required expression is convertible to the type-id.
The == denotes a requirement that the decltype of the required expression is
the same type as the type-id.

A substitution failures occurring from the instantiation of a requires-expression
expression causes the entire expression to evaluate to false. If instantiation
succeeds, the result of the requires-expression is the result of the conjunction
of sub-requirements. The expression in valid-expression-requirement is never
evaluated.

7.3 14 [temp]

A template defines a family of classes or functions or an alias for a family of
types.

template-declaration:
template < template-parameter-list > requires-clauseopt declaration

[Note: ... — end note]

7.4 14.2 [temp.param]

The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration
constrained-template-parameter

43

constrained-template-parameter:
constraint-id ...opt identifier
constraint-id ...opt identifier = constrained-default-argument

constraint-id:
identifier simple-template-id

constrained-default-argument:
type-id
template-name
expression

A constrained-template-parameter is introduced by a constraint-id.

A constraint-id refers to a constraint predicate 7.8. The template parameter
introduced by the constraint has the same properties as the first template pa-
rameter of the constraint. The id is used to construct a requirement on the
introduced parameter, X.

• If the constraint-id is an identifier, C, the constructed requirement is
C<X>().

• If the constraint-id is a simple-template-id, C<Args>, then requirement
C<X, Args>().

The kind of constrained-default-arg shall match the kind of parameter intro-
duced by the constrained-id.

7.5 14.5.6 Template template arguments [tmp.arg.template]

(3) A template-argument matches ..., and the P is more constrained than A.

7.6 14.5.6 Function templates [tmp.func]

(6) Two function templates are equivalent when ..., and have equivalent con-
straints.

7.7 14.5.6.2 Partial ordering of function templates [tmp.func]

(5) If neither template is more specialized than the other based on template
argument deduction, the most specialized template is the most constrained 7.8.2.

7.8 14.9 [temp.cons]

If a requires-clause is present, the template is a constrained template. Otherwise,
it is an unconstrained template.

44

requires-clause:
constant-expression

A requires-clause introduces template constraints in the form of a bool constant-
expression. A constrained template can only be instantiated when the con-
straints are satisfied.

If the requires-clause contains a call to constraint predicate, the body of that
function is expanded, in-line into the required constant-expression. No other
call expressions are expanded.

A constraint predicate is a function template that:

• is constexpr,

• returns bool,

• has function arguments, and

• has exactly one definition for all type arguments.

[Note: One purpose for inlining requirements is that syntactic requirements can
be lifted out of a function definition, and bringing them into the local instan-
tiation context. Constraint predicates are inherently SFINAE-friendly. — end
note]

7.8.1 14.9.1 Constraint Satisfaction [temp.cons.sat]

A constrained templates constraints are checked just after template argument
deduction and before the declaration is instantiated.

The deduced arguments are substituted into the required constant- expression.
If a substitution failure occurs, the expression evaluates to false. Otherwise, the
resulting expression is constexpr evaluated, returning either true or false.

If the template constraints are not satisfied, the declaration is treated as if
template argument deduction had failed. [Note: Whether or not this results in
diagnostics depends on the context in which instantiation is requested. — end
note]

7.8.2 14.9.3 Constraint Relations [temp.cons.rel]

To determine if one declaration is more constrained than another, we determine
if its constraints subsume the other’s.

A constraint P subsumes a constraint Q iff P ` Q is logically valid statement.

[TODO: Write a formal definition of subsumes].

An unconstrained template has an empty set of constraints. [Note: This implies
that an constrained template is always more constrained than an unconstrained
template — end node].

45

A constrained template T is more constrained than a similarly typed template
S iff T’s constraints subsume those of the S.

Two constraints P and Q are equivalent when P ` Q and Q ` P .

Acknowledgements

We are grateful for the input, comments, and corrections from Jason Merril,
Greg Marr, Chris Jefferson, Daveed Vandevoorde, Matt Austern, Herb Sutter,
Tony Van Eerd, and Michael Lopez

46

References

[1] Bjarne Stroustrup, Andrew Sutton, et al., A Concept Design for the STL,
Technical Report N3351=12-0041, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jan 2012.

[2] Pete Becker, Working Draft, Standard for Programming Language C++
Technical Report N2914=09-0104, ISO/IEC JTC 1, Information Technol-
ogy Subcommittee SC 22, Programming Language C++, Jun 2009.

[3] Gabriel Dos Reis, Bjarne Stroustrup, and Alisdair Meredith, Axioms:
Semantics Aspects of C++ Concepts Technical Report N2887=09-0077,
ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Program-
ming Language C++, Sep 2009.

[4] Stephan Du Toit (ed), Working Draft, Standard for Programming Lan-
guage C++ Technical Report N3337=12-0027, ISO/IEC JTC 1, Informa-
tion Technology Subcommittee SC 22, Programming Language C++, Nov
2012.

[5] Alexander Stepanov and Paul McJones, Elements of Programming, Addison
Wesley, 2009, pp. 250.

[6] Douglas Gregor, Jaakko Järvi, Jeremy G. Siek, Bjarne Stroustrup, Gabriel
Dos Reis, and Andrew Lumsdaine, “Concepts: Linguistic Support for
Generic Programming in C++”, Proceedings of the 21th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’06), Oct 22-26, 2006, Portland, Oregon, pp.
291-310.

[7] Gabriel Dos Reis and Bjarne Stroustrup, “Specifying C++ concepts”, In
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’06), Jan 11-13, 2006, Charleston,
South Carolina, pp. 295-308.

[8] Andrew Sutton and Bjarne Stroustrup “Design of Concept Libraries for
C++” In Proceedings of the 4th International Conference on Software Lan-
guage Engineering (SLE’11), Jul 3-4, 2011, Braga, Portugal, pp. xxx-yyy.

[9] Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine, “Concept-
Controlled Polymorphism”, Proceedings of the 2nd International Confer-
ence on Generative Programming and Component Engineering (GPCE’03),
Sep 22-25, 2003, Erfurt, Germany, pp. 228-244.

[10] Larry Paulson, ML for the Working Programmer, Cambridge University
Press, 1996, pp. 500.

47

	Introduction
	Constraints Tutorial
	Introducing Constraints
	Multi-type Constraints
	Overloading

	Defining Constraints

	Constraints and Concepts
	User's Guide
	Anatomy of a Constraint
	Constraint Predicates
	Overloading Constraints
	Connectives
	Relations on Constraints
	Decomposition and Subsumption

	Declarations, Redeclarations, and Overloading
	Overloading and Specialization
	Non-Type Constraints
	Template Template Parameters
	Variadic Constraints

	Constrained Members
	Writing Requirements
	Designing Concepts
	Intensional and Extensional Definitions
	Expressivity

	Implementation
	Compiler Support
	Syntactic requirements
	Standard Library
	Type Traits
	Iterator
	Algorithm

	Extensions
	Concepts
	Terse Templates
	The basics
	Type compatibility
	The ``Dual Name'' Problem
	Technicalities

	How do we recognize a parameter type?
	How do we define two names for a concept?
	What about return types?
	Constraints on Non-templates

	Standard Wording
	5.1.1 [expr.prime.general]
	5.1.3 [expr.prim.requires]
	14 [temp]
	14.2 [temp.param]
	14.5.6 Template template arguments [tmp.arg.template]
	14.5.6 Function templates [tmp.func]
	14.5.6.2 Partial ordering of function templates [tmp.func]
	14.9 [temp.cons]
	14.9.1 Constraint Satisfaction [temp.cons.sat]
	14.9.3 Constraint Relations [temp.cons.rel]

