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Abstract 

The C and C++ Standards Committees are considering several proposals for adding 

parallelism to their respective languages and/or libraries, especially to support fork-join 

parallelism [N3409] and vector units [N3419].  It is prudent, naturally, to consider the 

impact of any linguistic proposal on the semantics of existing features.  In this 

document, we consider specifically the impact of parallelism on the semantics of thread-

local storage (TLS).  Although our discussion is generic and not dependent on any 

particular parallel model, it is convenient to have a stand-in name for a particular 

model.  To this end, we designate the model under discussion as being an X-parallel 

model, where X might represent a variety of individual parallelization technologies, 

including vector units, GPU’s, task-based multithreading, attached processing, and the 

like.1  Fundamental to the discussion is the notion that, just as threading augments a 

single process with concurrency, an X-parallel model augments a single thread with 

parallelism.  That is, we are interested in models that augment threading, not models 

that compete with threading. 

The purpose of this paper is to develop terminology so that the impact of any X-parallel 

model on TLS can be described clearly and evaluated effectively.  We compare the 

semantics of accessing a TLS variable within an X-parallel region to the semantics of 

accessing the same variable in serial execution.  We propose a 5-level hierarchical 

                                                 
1We are not suggesting that the Standards Committees consider standardizing linguistics and libraries for 

all these technologies.  Rather, it is our belief that a generic discussion helps to separate those issues that 

transcend any particular X-parallel model from those issues that are model specific. 
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taxonomy of TLS concordance, where each level in the hierarchy is more faithful to the 

way the existing threading model treats TLS than the level below.  Placing an X-parallel 

model lower within the taxonomy does not necessarily mean that it is a bad model, but 

lower in the hierarchy does mean that an X-parallel model is a less faithful extension to 

the existing standard than a higher-level model, at least as far as its adherence to legacy 

TLS behavior is concerned. 

We conclude with a brief discussion in which we advocate that any X-parallel model 

should provide Level-5 (full) concordance — the highest level — unless there is a 

compelling reason to the contrary. 
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1. An evolutionary view of thread-local storage 

Long before thread-local variables were invented, programming languages had global 

variables: variables with unlimited scope.  But global variables are not truly global 

because they are local to the process in which they are defined; each separate process 

has its own global variables.  Using today’s terminology, we might rightly refer to them 

as “process-local variables.”  Moreover, within a process execution was serial.   

Eventually, multithreading facilities were added to allow single processes to be 

concurrent.  Instead of consisting of a serial chain of executing instructions, a process 

now consists of a collection of serial threads sharing the same address space.  A new-

style process containing only one thread continues to act like an old-style process, but 

the shared-memory multithreading model tore down the protective walls between 

cooperating threads in a single process.  Each thread has its own execution stack, but 

any thread in a process can access any memory address in the process, including each 

others’ stacks and global variables. 
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The ability of multiple concurrent threads to share data, especially global data, meant 

that the problem of race conditions had to be addressed.  Multiple concurrent threads 

accessing a global variable create a race if at least one of those threads writes to the 

variable.  Two solutions emerged: synchronization (mutex locks, condition variables, 

and the like) and TLS.  In both cases, the burden of using these facilities to prevent races 

and ancillary anomalies such as deadlocks falls to the programmer. 

TLS exhibits particular advantages over synchronization, not the least of which is that it 

avoids communication overheads.  Since each thread maintains its own version of a 

thread-local variable, races on an otherwise global variable can be avoided.  (It is 

possible for two threads to race on a thread-local variable if the address of the thread-

local variable is passed from one thread to another, but this is rare.)  A thread can 

typically access its own local version of a variable, which is guaranteed to be different 

from the local version of the variable in another thread.  By providing local copies of 

variables, TLS avoids unintended communication without requiring radical 

restructuring of code when it is threaded. 

One unfortunate fact about TLS is its name.  Thread-local variables actually have more 

in common with global variables than with local variables.  Unlike stack-based local 

variables, which are well structured and whose scope and lifetime are tied to a block, 

thread-local variables are unstructured.  They have global scope and visibility, as well 

as comparatively messy lifetimes.  It probably would have been better to use a term like 

“thread-specific global storage” rather than “thread-local storage,” but this 

nomenclature ship has sailed, and changing terms would likely only compound 

confusion. 

With the advent of vector units, multicore computing, graphical processing units, and 

attached parallel processors, the problem of incorporating X-parallel computations 

within a single thread has emerged.  It is plain that some parallel models, such as vector 

units, are X-parallel models, because they clearly parallelize a single instruction stream 

using a SIMD model, but are clearly different from threads.  It may be confusing to 

some, however, that other parallel models, such as some forms of task parallelism, are 

also X-parallel models.  The confusion stems from the fact that existing implementations 

of tasking are usually built using multiple OS threads as “workers.”  How can a model 

that is built using multiple threads — multiple instruction streams — be viewed as 

parallelizing a single thread?   

The answer lies in abstraction.  Cilk [MIT], for example, ensures that every parallel 

computation has serial semantics: it can always be executed as a single linear 

instruction stream, even though it can also be executed in parallel.  Moreover, Cilk — as 

well as other task-parallel models such as Habanero, OpenMP, TBB, TPL, and X10, to 

name a few — can be implemented without OS threads.  Indeed, there exists at least one 

http://supertech.csail.mit.edu/cilk/
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implementation of Cilk technology that does not bind Cilk “workers” to OS threads.  

Threads provide a particular implementation technology, which is a technical detail and 

not fundamental to this particular task model.   

Of particular relevance, the proposal for fork-join parallelism [N3409] we are 

developing for the C++ Standards Committee regards an X-parallel model.  That is, our 

proposal aims to augment threads, not compete with them.  Similarly, the proposal for 

vector-unit parallelism [N3419] and various proposals for parallel libraries [N3408 and 

N3429] are also X-parallel models.  Thus, whatever the X-parallel model, it behooves us 

to understand how X-parallel models interact with the legacy C++ TLS model 

generically.  

2. Nomenclature for describing X-parallel computations 

It is helpful to agree on some basic nomenclature for X-parallel computations.  An 

X-parallel computation can be described in terms of an execution DAG (directed acyclic 

graph) that describes the ordering constraints among operations.  In such a DAG (see 

Figure 1), two operations a and b relate in exactly one of the following ways: 

 

Figure 1: An execution DAG for an X-parallel computation.  Circles represent operations, and 

arrows between them represent scheduling dependencies. 

1. a = b: They are the same operation. 

2. a ≺ b (a precedes b): There exists a directed path through the DAG from a to b 

(but not vice-versa).  Operation a must execute before operation b. 

3. a ≻ b (a follows b): Equivalent to b ≺ a.  Operation a must execute after operation 

b. 

4. a ∥ b (a parallels b): No directed path exists in the DAG from a to b nor does one 

from b to a.  The logical order of a and b is indeterminate. 

The DAG from  Figure 1 shows the following relationships, among others: 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3419.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3408.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf
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1 ≺ 2 

2 ∥ 5 

3 ∥ 5 

6 ≻ 5 

1 ≺ 6 ≺ 7 

The execution DAG is dynamic and can be different for each set of inputs to a program.  

For example, a vector or parallel loop with iterations I0, I1, I2, …, In–1 might have an 

execution DAG that looks something like Figure 2, where the structure depends on the 

value of n for the specific execution. 

 

Figure 2: An execution DAG for a vector or parallel loop 

3. Characterizing TLS accesses within X-parallel regions of code 

When a new X-parallel model is proposed, we contend that the proposers should 

specify how the new paradigm interacts with existing global and thread-local storage.  

In this section, we propose a taxonomy of “concordance” as a multi-level hierarchy that 

describes how an X-parallel model interacts with the existing standard for thread-local 

storage.  Our taxonomy is not exhaustive, and any X-parallel model must address 

additional concerns depending on the level of concordance it purports to support.   

If a user creates multiple separate threads, accesses to a single thread-local variable V 

yield different objects in each thread.  The value of V is not of interest here, but its 

identity in each thread (usually, different identities are detectible by V having a 

different address in each thread).  For the purpose of this discussion, we'll use the 

notation Vx to describe the identity of V at a specified location x in the program. 
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Figure 3: A thread containing an X-parallel region. 

Recall that our goal is to understand how TLS should operate when a thread is 

augmented with an X-parallel region. Figure 3 illustrates a portion of a thread 

containing an X-parallel region for some unspecified parallelism technology X.  A 

thread local variable V may be accessed at up to six points within the thread, labeled 

0, 1, …, 5. 

Suppose that the computation accesses V before and after the X-parallel region — 

namely, at points 0 and 5 — and that TLS accesses to V within the X-parallel region are 

forbidden.  If the access to V at point 5 always yields the identical object as at point 0 (V5 

≡ V0), then the X-parallel model has achieved a minimal level of TLS concordance.  In 

other words, the meaning of TLS accesses at points 0 and 5 when using the X-parallel 

technology is consistent with a serial implementation of the intervening computation in 

which the X-parallel technology is not used.  As we shall see, we describe this minimal 

degree of thread concordance as “Level 1” concordance.  We believe that every X-

parallel model should support at least Level 1.  

Suppose now that the computation accesses V at points 0 and 1 with no other accesses 

to V within the X-parallel region.  Considering point 1, the X-parallel model may 

support one of three possibilities: 

 The TLS access to V at point 1 is forbidden (that is, ill-formed or undefined). 

 The TLS access to V at point 1 is discordant in that the object V1 produced is not 

guaranteed to be identical to (have the same identity as) V0. 

 The TLS access to V at point 1 is concordant in that the object V1 produced is 

identical to V0, that is, V2 ≡ V0. 

It is fair to say that if one TLS access within the X-parallel region is forbidden, so are 

multiple accesses.  If multiple accesses are permitted, however, the behavior may 

depend on whether the accesses are in series or in parallel. 
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For example, suppose that the multiple TLS accesses that occur within the X-parallel 

region are all in series.  For example, in Figure 3, the accesses might occur at points 1 

and 2, points 1 and 4, or points 1, 2, and 4.  Since these accesses are all in series, we treat 

them as concordant only if all of the individual TLS accesses are concordant, and 

otherwise discordant. 

The behavior for parallel TLS accesses may be different than for TLS accesses that are in 

series.  For example, a vector model may allow one lane to access TLS but forbid 

multiple lanes from doing so.  The behaviors can be grouped into a hierarchy of 

concordance levels, where each higher-numbered level provides stronger guarantees 

than lower-numbered levels, as shown in Table 1. 

 Parallel access in X-parallel region 

 

 

Serial-only access in 
X-parallel region 

 forbidden discordant concordant 

forbidden Level 1   

discordant Level 2 Level 3a  

concordant Level 3b Level 4 Level 5 
 

Table 1: Hierarchy of concordance levels in an X-parallel region. 

Thus, Level-1 concordance provides the minimum thread concordance described 

earlier, guaranteeing only that V0 ≡ V1, and level 5 provides the maximum thread 

concordance, guaranteeing that V0 ≡ V1 ≡ V2 ≡ V3 ≡ V4.  Levels 3a and 3b are 

incomparable; neither has strictly stronger guarantees than the other. 

Each level shown in Table 1 is characterized in more detail in Table 2. 

Level 
serial 

access 

parallel 

access 
Description Example 

1 forbidden forbidden 
No TLS access is allowed 
within the X-parallel region.   

An attached or GPU model 
that does not have access to 
TLS. 

2 discordant forbidden 

Serial access to TLS within 
the X-parallel region is 
allowed, but the identity of 
the object may differ from 
the serial region.   

An X-parallel model that 
always runs in a special 
thread. 
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Level 
serial 

access 

parallel 

access 
Description Example 

3a discordant discordant 

Full access to TLS is 
allowed, but the identity of 
the object within the 
parallel region may differ 
from the serial region.   

A model that exposes the use 
of threads for parallel 

computation (std::async is 
such a model). 

3b concordant forbidden 

Serial access to TLS is 
permitted, but parallel 
accesses are not.   

A vector model where only 
the first lane may access 
TLS. 

4 concordant discordant 

Serial access to TLS within 
the parallel region is 
concordant with the serial 
region, but parallel accesses 
to TLS may identify 
different objects.   

A vector model in which the 
first lane gets the concordant 
view, and the others have 
their own view — a 
“merging” of X-local and 
thread-local storage. 

5 concordant concordant 

All TLS accesses in the 
parallel region produce the 
same identity as in the 
serial region.   

Most vector models (all lanes 
run in the same thread). 

Table 2: Characteristics of each TLS concordance levels 

The easiest levels to reason about appear to be Level 1 (no TLS accesses are permitted in 

an X-parallel region) and Level 5, what we call full concordance.  An advantage of full 

concordance over Level-1 concordance is that it makes the X-parallel model modeless 

with respect to TLS — the programmer need not distinguish whether a TLS access 

belongs to an X-parallel region, which has implications for modularity and 

composability. Table 2 gives examples where other levels might show up in practice.  

Because global (i.e., process-local) variables have the same identity in every thread 

within the process, the C++ (as well as POSIX and Windows) threading model can be 

said to implement full concordance for process-local storage.   

Although it might seem that Level-5 concordance is the ideal to strive for, it is not 

always practical.  Full TLS concordance is natural for vector parallelism, but it would be 

hard to implement for X-models that involve offloading computations to separate 

coprocessors or GPGPU’s.  For strict fork-join models like parallel_for, 

parallel_invoke, and cilk_spawn, full TLS concordance can be attained, but users 

should be discouraged from thinking of workers as threads, since they may not be 

implemented as threads in all cases. 
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4. Races and X-local storage 

In addition to specifying the level of TLS concordance, an X-parallel model should also 

specify the expected results of reads and writes to a thread-local variable, especially 

with respect to potential races among TLS accesses. 

 If an access is read-only, then no races can occur, regardless of thread 

concordance level. 

 For Levels 1, 2, and 3b, no races can occur because parallel accesses to a TLS 

variable are forbidden. 

 For Levels 3a and 4, the X-parallel model should specify whether read-write or 

write-write accesses to the same thread-local variable in parallel might create a 

race.  If so, the X-parallel model might provide X-locks or X-local storage (see 

below) to mitigate such a race. 

 For Level 5 (full TLS concordance), parallel read-write or write-write accesses to 

a TLS variable can create a race.  Again, the X-parallel model may provide 

facilities to mitigate such races. 

To help avoid races, X-parallel models may provide X-local storage specific to the 

model.  Generally, X-local storage is tied to the conceptual owner of the storage — 

usually the entity to which the variable’s lifetime is tied.  Table 3 lists some examples of 

X-local storage. 

Name Owner Model 

simd-lane local a lane within a CPU’s 
vector unit 

Vector parallelism (single-instruction stream, 
multiple-data stream) 

gpu-thread local a single GPU thread GPGPU parallelism 

warp local jointly owned by all 
threads in a warp 

GPGPU parallelism 

worker local a worker (scheduling) 
thread 

Fork-join parallelism 

task local a task Fork-join parallelism or multithreaded 
concurrency 

attached local an attached computing 
device 

Attached processing unit 

Table 3: Examples of X-local storage 
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5. Implementation concerns 

In order to achieve a high level of TLS concordance, it may be necessary to make 

std::thread a slightly thicker layer around the underlying OS thread than would 

otherwise be needed, in order to accommodate parallelism technologies that are 

implemented on top of OS threads.  For example, within the Intel® Cilk™ Plus 

scheduler, the workers that are managed by the scheduler are usually implemented 

using OS threads, but to achieve full TLS concordance, they must be treated as X-

parallel components of the initial (serial) thread.  Since a thread ID is just a read-only 

thread-local variable, if TLS is correctly handled by the scheduler, then all X-parallel 

subparts can return the same thread ID. 

Intel® Cilk™ Plus has given us considerable experience with fork-join parallelism and 

vector parallelism, both areas that the committee hopes to standardize in the C++17 time 

frame.  With no implementation effort, vector code naturally achieves full concordance.  

That is, any access to a TLS variable within a vector-parallel region of code accesses the 

identical object as an access in the serial portion of the same thread.  We have found it 

desirable to also support full concordance within the fork-join technology.  With 

remarkably little effort, we were able to implement a library class that modeled the 

desired behavior of TLS, complete with lazy construction and end-of-thread 

destruction.  Since we did not have a standard-compliant implementation of 

thread_local to work with at the time, nor were we working with compiler sources, 

we were not able to investigate whether a compiler implementing this model could 

retain binary link-time compatibility with object files compiled before such a change. 

We recognize that binary compatibility and ABI stability are important and that there 

are challenges involved in this transition.  Similarly, there were challenges involved 

when threads were first introduced as a layer on top of the operating system.  There 

was a time, for example, when making a blocking I/O call from any thread would block 

the entire process.  Eventually, however, thread facilities were moved into the OS 

proper, and the runtime libraries got a little thinner.  Although it is critical that 

everything we propose be implementable and efficient, we believe that any short-term 

difficulties  will be ameliorated as time produces more parallel-aware operating 

systems.  

6. Recommendations 

When discussing any parallel extension to C++, regardless of the X-parallel model, its 

interaction with TLS must be considered and specified.  Failure to do so can result in an 

incomplete standard or, worse, result in unnecessary anxiety within the standards 

Committee such that no parallelism proposal is accepted into the standard. 
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In this paper, we have presented a vocabulary and taxonomy for cleanly describing the 

interactions between TLS and X-parallel computations.  We recommend that this 

terminology be used to inform discussions of the various X-parallelism proposals that 

are before the Committee. 

Specifically, we advocate that a proposal to add an X-parallel facility to C++ answer the 

following questions: 

 Does the X-parallel model meet the minimum concordance guarantee that a TLS 

access after an X-parallel computation refers to the same object as an access 

before the X-parallel computation? 

 What level of thread concordance does the X-parallel model offer for TLS? 

 What restrictions does the X-parallel model impose on TLS accesses?  For 

example, the model might forbid writing to TLS in parallel. 

 If races are possible on TLS variables, how can they be resolved or avoided? 

 If logical and practical, are there new types of X-local storage that should be 

introduced to support new X-parallelism models? 

An X-parallel model can be useful and easy to reason about even if it supports a low 

level of thread concordance with respect to TLS.  An X-parallelism proposal should be 

precise about its assumption about TLS concordance, and it should otherwise provide 

enough details to assure the Committee that the model is consistent with the rest of the 

standard. 

7. Acknowledgments 

Thanks to all who reviewed earlier drafts and provided feedback. 

8. References 

N3487 TLS and Parallelism (presentation to SG1, 2012-05-08) 

N3409 Strict Fork-Join Parallelism, Pablo Halpern, 2012-09-24 

N3419 Vector loops and Parallel Loops, Robert Geva, 2012-09-21 

MIT The Cilk Project Home Page 

N3408 Parallelizing The Standard Algorithms Library, J. Hoberock, O. Giroux, V. Grover, J. 

Marathe, et al., 2012-09-21 

N3429 A C++ Library Solution To Parallelism, A. Laksberg, H. Sutter, A. Robison, 

S. Mithani, 2012-09-21 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3419.pdf
http://supertech.csail.mit.edu/cilk/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3408.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf

