
N3556: Thread-Local Storage in X-Parallel Computations 1 of 11 | P a g e

Document Number: N3556

Date: 2013-03-18

Pablo Halpern, Intel Corp.

pablo.g.halpern@intel.com

Charles E. Leiserson, MIT

cel@mit.edu

Thread-Local Storage in X-Parallel

Computations

Abstract

The C and C++ Standards Committees are considering several proposals for adding

parallelism to their respective languages and/or libraries, especially to support fork-join

parallelism [N3409] and vector units [N3419]. It is prudent, naturally, to consider the

impact of any linguistic proposal on the semantics of existing features. In this

document, we consider specifically the impact of parallelism on the semantics of thread-

local storage (TLS). Although our discussion is generic and not dependent on any

particular parallel model, it is convenient to have a stand-in name for a particular

model. To this end, we designate the model under discussion as being an X-parallel

model, where X might represent a variety of individual parallelization technologies,

including vector units, GPU’s, task-based multithreading, attached processing, and the

like.1 Fundamental to the discussion is the notion that, just as threading augments a

single process with concurrency, an X-parallel model augments a single thread with

parallelism. That is, we are interested in models that augment threading, not models

that compete with threading.

The purpose of this paper is to develop terminology so that the impact of any X-parallel

model on TLS can be described clearly and evaluated effectively. We compare the

semantics of accessing a TLS variable within an X-parallel region to the semantics of

accessing the same variable in serial execution. We propose a 5-level hierarchical

1We are not suggesting that the Standards Committees consider standardizing linguistics and libraries for

all these technologies. Rather, it is our belief that a generic discussion helps to separate those issues that

transcend any particular X-parallel model from those issues that are model specific.

mailto:pablo.g.halpern@intel.com
mailto:cel@mit.edu
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3419.pdf

N3556: Thread-Local Storage in X-Parallel Computations 2 of 11 | P a g e

taxonomy of TLS concordance, where each level in the hierarchy is more faithful to the

way the existing threading model treats TLS than the level below. Placing an X-parallel

model lower within the taxonomy does not necessarily mean that it is a bad model, but

lower in the hierarchy does mean that an X-parallel model is a less faithful extension to

the existing standard than a higher-level model, at least as far as its adherence to legacy

TLS behavior is concerned.

We conclude with a brief discussion in which we advocate that any X-parallel model

should provide Level-5 (full) concordance — the highest level — unless there is a

compelling reason to the contrary.

Contents

1. An evolutionary view of thread-local storage .. 2

2. Nomenclature for describing X-parallel computations .. 4

3. Characterizing TLS accesses within X-parallel regions of code 5

4. Races and X-local storage .. 9

5. Implementation concerns .. 10

6. Recommendations .. 10

7. Acknowledgments .. 11

8. References .. 11

1. An evolutionary view of thread-local storage

Long before thread-local variables were invented, programming languages had global

variables: variables with unlimited scope. But global variables are not truly global

because they are local to the process in which they are defined; each separate process

has its own global variables. Using today’s terminology, we might rightly refer to them

as “process-local variables.” Moreover, within a process execution was serial.

Eventually, multithreading facilities were added to allow single processes to be

concurrent. Instead of consisting of a serial chain of executing instructions, a process

now consists of a collection of serial threads sharing the same address space. A new-

style process containing only one thread continues to act like an old-style process, but

the shared-memory multithreading model tore down the protective walls between

cooperating threads in a single process. Each thread has its own execution stack, but

any thread in a process can access any memory address in the process, including each

others’ stacks and global variables.

N3556: Thread-Local Storage in X-Parallel Computations 3 of 11 | P a g e

The ability of multiple concurrent threads to share data, especially global data, meant

that the problem of race conditions had to be addressed. Multiple concurrent threads

accessing a global variable create a race if at least one of those threads writes to the

variable. Two solutions emerged: synchronization (mutex locks, condition variables,

and the like) and TLS. In both cases, the burden of using these facilities to prevent races

and ancillary anomalies such as deadlocks falls to the programmer.

TLS exhibits particular advantages over synchronization, not the least of which is that it

avoids communication overheads. Since each thread maintains its own version of a

thread-local variable, races on an otherwise global variable can be avoided. (It is

possible for two threads to race on a thread-local variable if the address of the thread-

local variable is passed from one thread to another, but this is rare.) A thread can

typically access its own local version of a variable, which is guaranteed to be different

from the local version of the variable in another thread. By providing local copies of

variables, TLS avoids unintended communication without requiring radical

restructuring of code when it is threaded.

One unfortunate fact about TLS is its name. Thread-local variables actually have more

in common with global variables than with local variables. Unlike stack-based local

variables, which are well structured and whose scope and lifetime are tied to a block,

thread-local variables are unstructured. They have global scope and visibility, as well

as comparatively messy lifetimes. It probably would have been better to use a term like

“thread-specific global storage” rather than “thread-local storage,” but this

nomenclature ship has sailed, and changing terms would likely only compound

confusion.

With the advent of vector units, multicore computing, graphical processing units, and

attached parallel processors, the problem of incorporating X-parallel computations

within a single thread has emerged. It is plain that some parallel models, such as vector

units, are X-parallel models, because they clearly parallelize a single instruction stream

using a SIMD model, but are clearly different from threads. It may be confusing to

some, however, that other parallel models, such as some forms of task parallelism, are

also X-parallel models. The confusion stems from the fact that existing implementations

of tasking are usually built using multiple OS threads as “workers.” How can a model

that is built using multiple threads — multiple instruction streams — be viewed as

parallelizing a single thread?

The answer lies in abstraction. Cilk [MIT], for example, ensures that every parallel

computation has serial semantics: it can always be executed as a single linear

instruction stream, even though it can also be executed in parallel. Moreover, Cilk — as

well as other task-parallel models such as Habanero, OpenMP, TBB, TPL, and X10, to

name a few — can be implemented without OS threads. Indeed, there exists at least one

http://supertech.csail.mit.edu/cilk/

N3556: Thread-Local Storage in X-Parallel Computations 4 of 11 | P a g e

implementation of Cilk technology that does not bind Cilk “workers” to OS threads.

Threads provide a particular implementation technology, which is a technical detail and

not fundamental to this particular task model.

Of particular relevance, the proposal for fork-join parallelism [N3409] we are

developing for the C++ Standards Committee regards an X-parallel model. That is, our

proposal aims to augment threads, not compete with them. Similarly, the proposal for

vector-unit parallelism [N3419] and various proposals for parallel libraries [N3408 and

N3429] are also X-parallel models. Thus, whatever the X-parallel model, it behooves us

to understand how X-parallel models interact with the legacy C++ TLS model

generically.

2. Nomenclature for describing X-parallel computations

It is helpful to agree on some basic nomenclature for X-parallel computations. An

X-parallel computation can be described in terms of an execution DAG (directed acyclic

graph) that describes the ordering constraints among operations. In such a DAG (see

Figure 1), two operations a and b relate in exactly one of the following ways:

Figure 1: An execution DAG for an X-parallel computation. Circles represent operations, and

arrows between them represent scheduling dependencies.

1. a = b: They are the same operation.

2. a ≺ b (a precedes b): There exists a directed path through the DAG from a to b

(but not vice-versa). Operation a must execute before operation b.

3. a ≻ b (a follows b): Equivalent to b ≺ a. Operation a must execute after operation

b.

4. a ∥ b (a parallels b): No directed path exists in the DAG from a to b nor does one

from b to a. The logical order of a and b is indeterminate.

The DAG from Figure 1 shows the following relationships, among others:

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3419.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3408.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf

N3556: Thread-Local Storage in X-Parallel Computations 5 of 11 | P a g e

1 ≺ 2

2 ∥ 5

3 ∥ 5

6 ≻ 5

1 ≺ 6 ≺ 7

The execution DAG is dynamic and can be different for each set of inputs to a program.

For example, a vector or parallel loop with iterations I0, I1, I2, …, In–1 might have an

execution DAG that looks something like Figure 2, where the structure depends on the

value of n for the specific execution.

Figure 2: An execution DAG for a vector or parallel loop

3. Characterizing TLS accesses within X-parallel regions of code

When a new X-parallel model is proposed, we contend that the proposers should

specify how the new paradigm interacts with existing global and thread-local storage.

In this section, we propose a taxonomy of “concordance” as a multi-level hierarchy that

describes how an X-parallel model interacts with the existing standard for thread-local

storage. Our taxonomy is not exhaustive, and any X-parallel model must address

additional concerns depending on the level of concordance it purports to support.

If a user creates multiple separate threads, accesses to a single thread-local variable V

yield different objects in each thread. The value of V is not of interest here, but its

identity in each thread (usually, different identities are detectible by V having a

different address in each thread). For the purpose of this discussion, we'll use the

notation Vx to describe the identity of V at a specified location x in the program.

N3556: Thread-Local Storage in X-Parallel Computations 6 of 11 | P a g e

Figure 3: A thread containing an X-parallel region.

Recall that our goal is to understand how TLS should operate when a thread is

augmented with an X-parallel region. Figure 3 illustrates a portion of a thread

containing an X-parallel region for some unspecified parallelism technology X. A

thread local variable V may be accessed at up to six points within the thread, labeled

0, 1, …, 5.

Suppose that the computation accesses V before and after the X-parallel region —

namely, at points 0 and 5 — and that TLS accesses to V within the X-parallel region are

forbidden. If the access to V at point 5 always yields the identical object as at point 0 (V5

≡ V0), then the X-parallel model has achieved a minimal level of TLS concordance. In

other words, the meaning of TLS accesses at points 0 and 5 when using the X-parallel

technology is consistent with a serial implementation of the intervening computation in

which the X-parallel technology is not used. As we shall see, we describe this minimal

degree of thread concordance as “Level 1” concordance. We believe that every X-

parallel model should support at least Level 1.

Suppose now that the computation accesses V at points 0 and 1 with no other accesses

to V within the X-parallel region. Considering point 1, the X-parallel model may

support one of three possibilities:

 The TLS access to V at point 1 is forbidden (that is, ill-formed or undefined).

 The TLS access to V at point 1 is discordant in that the object V1 produced is not

guaranteed to be identical to (have the same identity as) V0.

 The TLS access to V at point 1 is concordant in that the object V1 produced is

identical to V0, that is, V2 ≡ V0.

It is fair to say that if one TLS access within the X-parallel region is forbidden, so are

multiple accesses. If multiple accesses are permitted, however, the behavior may

depend on whether the accesses are in series or in parallel.

N3556: Thread-Local Storage in X-Parallel Computations 7 of 11 | P a g e

For example, suppose that the multiple TLS accesses that occur within the X-parallel

region are all in series. For example, in Figure 3, the accesses might occur at points 1

and 2, points 1 and 4, or points 1, 2, and 4. Since these accesses are all in series, we treat

them as concordant only if all of the individual TLS accesses are concordant, and

otherwise discordant.

The behavior for parallel TLS accesses may be different than for TLS accesses that are in

series. For example, a vector model may allow one lane to access TLS but forbid

multiple lanes from doing so. The behaviors can be grouped into a hierarchy of

concordance levels, where each higher-numbered level provides stronger guarantees

than lower-numbered levels, as shown in Table 1.

 Parallel access in X-parallel region

Serial-only access in
X-parallel region

 forbidden discordant concordant

forbidden Level 1

discordant Level 2 Level 3a

concordant Level 3b Level 4 Level 5

Table 1: Hierarchy of concordance levels in an X-parallel region.

Thus, Level-1 concordance provides the minimum thread concordance described

earlier, guaranteeing only that V0 ≡ V1, and level 5 provides the maximum thread

concordance, guaranteeing that V0 ≡ V1 ≡ V2 ≡ V3 ≡ V4. Levels 3a and 3b are

incomparable; neither has strictly stronger guarantees than the other.

Each level shown in Table 1 is characterized in more detail in Table 2.

Level
serial

access

parallel

access
Description Example

1 forbidden forbidden
No TLS access is allowed
within the X-parallel region.

An attached or GPU model
that does not have access to
TLS.

2 discordant forbidden

Serial access to TLS within
the X-parallel region is
allowed, but the identity of
the object may differ from
the serial region.

An X-parallel model that
always runs in a special
thread.

N3556: Thread-Local Storage in X-Parallel Computations 8 of 11 | P a g e

Level
serial

access

parallel

access
Description Example

3a discordant discordant

Full access to TLS is
allowed, but the identity of
the object within the
parallel region may differ
from the serial region.

A model that exposes the use
of threads for parallel

computation (std::async is
such a model).

3b concordant forbidden

Serial access to TLS is
permitted, but parallel
accesses are not.

A vector model where only
the first lane may access
TLS.

4 concordant discordant

Serial access to TLS within
the parallel region is
concordant with the serial
region, but parallel accesses
to TLS may identify
different objects.

A vector model in which the
first lane gets the concordant
view, and the others have
their own view — a
“merging” of X-local and
thread-local storage.

5 concordant concordant

All TLS accesses in the
parallel region produce the
same identity as in the
serial region.

Most vector models (all lanes
run in the same thread).

Table 2: Characteristics of each TLS concordance levels

The easiest levels to reason about appear to be Level 1 (no TLS accesses are permitted in

an X-parallel region) and Level 5, what we call full concordance. An advantage of full

concordance over Level-1 concordance is that it makes the X-parallel model modeless

with respect to TLS — the programmer need not distinguish whether a TLS access

belongs to an X-parallel region, which has implications for modularity and

composability. Table 2 gives examples where other levels might show up in practice.

Because global (i.e., process-local) variables have the same identity in every thread

within the process, the C++ (as well as POSIX and Windows) threading model can be

said to implement full concordance for process-local storage.

Although it might seem that Level-5 concordance is the ideal to strive for, it is not

always practical. Full TLS concordance is natural for vector parallelism, but it would be

hard to implement for X-models that involve offloading computations to separate

coprocessors or GPGPU’s. For strict fork-join models like parallel_for,

parallel_invoke, and cilk_spawn, full TLS concordance can be attained, but users

should be discouraged from thinking of workers as threads, since they may not be

implemented as threads in all cases.

N3556: Thread-Local Storage in X-Parallel Computations 9 of 11 | P a g e

4. Races and X-local storage

In addition to specifying the level of TLS concordance, an X-parallel model should also

specify the expected results of reads and writes to a thread-local variable, especially

with respect to potential races among TLS accesses.

 If an access is read-only, then no races can occur, regardless of thread

concordance level.

 For Levels 1, 2, and 3b, no races can occur because parallel accesses to a TLS

variable are forbidden.

 For Levels 3a and 4, the X-parallel model should specify whether read-write or

write-write accesses to the same thread-local variable in parallel might create a

race. If so, the X-parallel model might provide X-locks or X-local storage (see

below) to mitigate such a race.

 For Level 5 (full TLS concordance), parallel read-write or write-write accesses to

a TLS variable can create a race. Again, the X-parallel model may provide

facilities to mitigate such races.

To help avoid races, X-parallel models may provide X-local storage specific to the

model. Generally, X-local storage is tied to the conceptual owner of the storage —

usually the entity to which the variable’s lifetime is tied. Table 3 lists some examples of

X-local storage.

Name Owner Model

simd-lane local a lane within a CPU’s
vector unit

Vector parallelism (single-instruction stream,
multiple-data stream)

gpu-thread local a single GPU thread GPGPU parallelism

warp local jointly owned by all
threads in a warp

GPGPU parallelism

worker local a worker (scheduling)
thread

Fork-join parallelism

task local a task Fork-join parallelism or multithreaded
concurrency

attached local an attached computing
device

Attached processing unit

Table 3: Examples of X-local storage

N3556: Thread-Local Storage in X-Parallel Computations 10 of 11 | P a g e

5. Implementation concerns

In order to achieve a high level of TLS concordance, it may be necessary to make

std::thread a slightly thicker layer around the underlying OS thread than would

otherwise be needed, in order to accommodate parallelism technologies that are

implemented on top of OS threads. For example, within the Intel® Cilk™ Plus

scheduler, the workers that are managed by the scheduler are usually implemented

using OS threads, but to achieve full TLS concordance, they must be treated as X-

parallel components of the initial (serial) thread. Since a thread ID is just a read-only

thread-local variable, if TLS is correctly handled by the scheduler, then all X-parallel

subparts can return the same thread ID.

Intel® Cilk™ Plus has given us considerable experience with fork-join parallelism and

vector parallelism, both areas that the committee hopes to standardize in the C++17 time

frame. With no implementation effort, vector code naturally achieves full concordance.

That is, any access to a TLS variable within a vector-parallel region of code accesses the

identical object as an access in the serial portion of the same thread. We have found it

desirable to also support full concordance within the fork-join technology. With

remarkably little effort, we were able to implement a library class that modeled the

desired behavior of TLS, complete with lazy construction and end-of-thread

destruction. Since we did not have a standard-compliant implementation of

thread_local to work with at the time, nor were we working with compiler sources,

we were not able to investigate whether a compiler implementing this model could

retain binary link-time compatibility with object files compiled before such a change.

We recognize that binary compatibility and ABI stability are important and that there

are challenges involved in this transition. Similarly, there were challenges involved

when threads were first introduced as a layer on top of the operating system. There

was a time, for example, when making a blocking I/O call from any thread would block

the entire process. Eventually, however, thread facilities were moved into the OS

proper, and the runtime libraries got a little thinner. Although it is critical that

everything we propose be implementable and efficient, we believe that any short-term

difficulties will be ameliorated as time produces more parallel-aware operating

systems.

6. Recommendations

When discussing any parallel extension to C++, regardless of the X-parallel model, its

interaction with TLS must be considered and specified. Failure to do so can result in an

incomplete standard or, worse, result in unnecessary anxiety within the standards

Committee such that no parallelism proposal is accepted into the standard.

N3556: Thread-Local Storage in X-Parallel Computations 11 of 11 | P a g e

In this paper, we have presented a vocabulary and taxonomy for cleanly describing the

interactions between TLS and X-parallel computations. We recommend that this

terminology be used to inform discussions of the various X-parallelism proposals that

are before the Committee.

Specifically, we advocate that a proposal to add an X-parallel facility to C++ answer the

following questions:

 Does the X-parallel model meet the minimum concordance guarantee that a TLS

access after an X-parallel computation refers to the same object as an access

before the X-parallel computation?

 What level of thread concordance does the X-parallel model offer for TLS?

 What restrictions does the X-parallel model impose on TLS accesses? For

example, the model might forbid writing to TLS in parallel.

 If races are possible on TLS variables, how can they be resolved or avoided?

 If logical and practical, are there new types of X-local storage that should be

introduced to support new X-parallelism models?

An X-parallel model can be useful and easy to reason about even if it supports a low

level of thread concordance with respect to TLS. An X-parallelism proposal should be

precise about its assumption about TLS concordance, and it should otherwise provide

enough details to assure the Committee that the model is consistent with the rest of the

standard.

7. Acknowledgments

Thanks to all who reviewed earlier drafts and provided feedback.

8. References

N3487 TLS and Parallelism (presentation to SG1, 2012-05-08)

N3409 Strict Fork-Join Parallelism, Pablo Halpern, 2012-09-24

N3419 Vector loops and Parallel Loops, Robert Geva, 2012-09-21

MIT The Cilk Project Home Page

N3408 Parallelizing The Standard Algorithms Library, J. Hoberock, O. Giroux, V. Grover, J.

Marathe, et al., 2012-09-21

N3429 A C++ Library Solution To Parallelism, A. Laksberg, H. Sutter, A. Robison,

S. Mithani, 2012-09-21

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3487.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3419.pdf
http://supertech.csail.mit.edu/cilk/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3408.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3429.pdf

