
N3492=12-0182
Revision of N3403=12-0093
2012-11-03
Mike Spertus, Symantec
mike_spertus@symantec.com

Use Cases for Compile-Time Reflection (Rev. 2)
Overview
There have been many proposals around compile-time reflection, some accepted, like type traits, some
proposed like n2965 and n3326, and some still to come, hopefully like Matus Chochlik's static reflection (which
develops a number of the ideas in this paper much further than here). In order to ensure a coherent and
powerful framework for compile-time reflection in C++1y, we need to have an understanding of questions like
what are its goals and what use cases does it need to support.

The purpose of this paper is to start to collect use cases for compile-time reflection that we can use to help
evaluate proposals and seek out additional proposals. I am well aware that the list is incomplete and does not
represent any agreed on understanding. I am want this paper to serve as a tool to solicit use cases,
requirements, and discussion about compile-time reflection, to help brainstorm how to solve the most difficult
problems and get the most benefits.

For each use case, I include a list of requirements. Not that these requirements are not requirements on the use
case but are instead requirements that the use case is likely to impose on compile-time reflection. I.e., I do not
give a list of requirements that a serialization framework needs to satisfy but instead list requirements that a
serialization framework may be reasonably expected to impose on the reflection framework.

Use cases
Serialization
Parallel hierarchies
Overloading reflection and more perfect forwarding
Delegates
Getter/Setter generation
enum information
Capturing default arguments

Serialization

Reflection can contribute to C++ serialization by making use of the information about data structures that is
already implicit in the program. For example, it is easy to imagine that something simple like the following could
just work out of the box.

struct S {
 int i;
 double d;
};
/* ... */
archive a("data.arch");
S s;
a["s"] >> s;
s.i = 10;
a["s"] << s;

http://kifri.fri.uniza.sk/~chochlik/jtc1_sc22_wg21/std_cpp_refl.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3326.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2965.html
mailto:mike_spertus@symantec.com

Requirements

While there are many questions about the design of a serialization framework (e.g., should serializable classes
have to inherit from serializable?) that can only be decided by the designer of the facility, there are some
tools that the reflection facility can reasonably be expected to provide to make their job easier.

The reflection system needs to enumerate all of the fields and base classes of a class, even the non-
public ones, so the serialization framework can infer (at least a good approximation of) what fields need
to be serialized.
Questions of visibility need to be thought through because the serialization system will require member
pointers to non-public fields. For example, a constexpr function fields<C> that returns a constexpr
tuple of member pointers for all the fields of C would be very useful for serialization but allows client code
to evade access controls.
struct S {
 int i;
private:
 double d;
};
/* ... */// fields<S> is a tuple containing &S::i and &S::d
S s;
s.*get<1>(fields<S>()); // Accessing private member without S' permission

One approach, inspired by that in n3326, would be for fields to return a class containing two tuples, a
private tuple and a public tuple for private and public fields respectively. The members template would list
the serialization framework as a friend. However, that would restrict us to one blessed serialization
framework, which clearly isn't satisfactory. One idea is to require the reflection framework to be able to
enumerate friend declarations, then fields<S> could add all the friends of S to its own friend list. Now, S
could just make the serialization framework a friend.

If D is derived directly from B, we need to be able to find the B "part" of D. Non-public inheritance presents
a challenge here because if D does not inherit publicly from B, an external routine cannot cast from D to B
to find the B part of D.

One approach might be to allow member pointers to point to base classes, so we could have something
like B (D::*p) = &D::B; This would also be a generally helpful feature for working with multiple
inheritance.

Overloading reflection and more perfect forwarding

This is proposed in N3466. The basic observation, taken from that paper is that the moment a programmer first
encounters multithreaded programs, they run into surprises like the following example:

// Inspired by examples in section 2.2 of Anthony Williams C++ Concurrency in Action
void f(int &i) { i = 2; /* ... */ }
int i;
f(i); // i passed by reference, f can change i
thread tf = thread(f, i); // i not passed by reference, so changes to i are silently discarded

While they can always force a pass by reference,e.g., by
thread t(f, ref(i));

this is entirely different from how functions arguments are ordinarily passed, and omitting the ref is likely to
result in a silent failure. My teaching experience is that typical programmers naturally expect thread functions,
async functions, and bind expressions to obey the same parameter passing rules as ordinary function and
functor invocations. The root cause of this inconsistency appears to be that there is no way to query the
signature invoked on the callable passed to the thread constructor, async, or bind, so we don't know what type

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3466.html

to store for the callable to execute when the thread is started or the bind expression is executed, because the
callable may be of a type that has several overloadings of operator().

In N3466, we propose a signature type trait to detect the signature that will actually be called. For example, if
we define C as

struct C {
 int operator()(double d, int i);
 int operator()(double d1, double d2);
};

then signature<C(int, int)>::type would be int(double, double). See the paper for more information and
examples.

Parallel hierarchies

Description

This is proposed in N2965. The basic idea from that paper is that if you have a hierarchy of classes Cn with
various inheritance relationships among the Cn (E.g., C1 inherits directly non-virtually from C2 and C3), then we
may want to construct a parallel hierarchy of classes with the same inheritance relationships.

An example from the paper are if the Cn are a hierarchy of interface classes, then Impl<Cn> is a parallel
hierarchy of implementation classes such that Impl<Cx> should inherit from Cx and from Impl<Cy> for all Cy that
Cx inherits from. Having such a parallel implementation hierarchy is an extremely popular programming pattern.
See the paper for more details and other uses of parallel hierarchies.

Requirement

As in the paper, the only requirement is that we can enumerate all the direct bases of a class. The paper
includes a type trait direct_bases for that purpose. Even if we have a full-blown reflection framework, the
direct_bases type trait may be a useful convenience class due to its simplicity and good instantiation
performance.

Delegation

Description

Along with the rise of "prefer delegation to inheritance" mantra, creating wrapper classes that forward all
methods to the wrapped class has become extremely popular. In this reflection use case, we would like to be
able to, given a class T, construct a new class delegate<T> containing all the public methods of T and forward
them to a contained T *.
#include <delegate>

class C {
public:
 virtual void f();
 int i;
 virtual vector<int> g(double);
private:
 void h(int);
};

// The generic delegate<C> should be identical
to the manual specialization below
template<>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2965.html

class delegate<C> : public C {
public:
 delegate(C *c) : wrapped(c) {}
 virtual void f() { return wrapped->f(); }
 virtual vector<int> g(double d) {
 return wrapped->g(d);
 }
};

Of course, this is most useful with interface classes, but then parallel hierarchies will help with that...

Requirements

It should be possible to enumerate all of the virtual public methods of a class (including inherited ones).
Since producing a full list of members can be expensive in unnecessary instantiation costs and may run
into template instantiation limits. For example, if members<C>::type is the same as tuple<pointers to
all members of C>, then a large class might have more members than tuple can take as parameters
(Only 64 template parameters are available in Visual Studio). This suggests that the member
enumeration facility should be flexible enough enumerate only virtual public methods without enumerating
all members.
Metaprograms need to be able to create methods whose name is given by some kind of "compile-time
string." Since C++ does not have such a facility, this will require a language extension.

Getters and Setters

It is an oft-quoted best practice to provide getters and setters to modify all fields. While this is sometimes taken
too far, it is often good advice. For example, if a data structure is being edited in a GUI using a model-view-
controller operation, the setter functions can update the view. Unfortunately, the dictum to provide getters and
setters is typically honored in the breach due to the painful boilerplate required. This use case is to use
templates to automate such routine boilerplate

Unfortunately, using ordinary templates as getters and setters is awkward, mainly because of the need to fully
qualify the field name.

template<class T, class FieldType>
void set(T *obj, FieldType T::*m, const FieldType &value)
{
 obj->*m = value;
 Code to fire change notifications
}

struct A {
 int i;
 double d;
};

A a;
set(&a, &A::i, 4); // Much worse than a.i = 4;

This use case envisions a template class accessor<T> such that the following specialization is redundant.
template<>
struct accessor<A> : public A {
 int get_i() { return i; }
 void set_i(int new_i) { i = new_i; }
 double get_d() { return d; }
 void set_d(double new_d) { d = new_d; }

Even more ambitiously, the accessor template could create proxy field that overload operator=().

Requirements

This also has the requirement of being able to generate methods whose name is computed at compile-time.

An ambitious solution that doesn't use reflection is to stick with the generic get template above, but create
some way for more simply referring to fields. E.g., if you could somehow say get(a, i) instead of get(a,
&A::i);, but that would require a major change in symbol lookup.

Generate user interfaces for classes, functions, and constructors

Description

(Note: See static reflection for a similar (and different) approach in this vein). Consider a class
class Person {
public:
 string name;
 int age;
 int weight;
};

It would be very nice to be able to use code like
Person p = ...;
getCanvas().edit(p);

to get an editable form like
Of course, it would be better if we could customize the form. For example,

template<typename T> string prompt() {
 return T::name;
}
template<>
string prompt<describe<&Person::weight>>
{
 return "Weight in pounds? Be honest";
}

to get the form
Applying the same techniques to functions creates new challenges but the payoffs are also high
string getEmployeeTitle(int employeeID);

Again,it would be very nice to be able to use code like
string title = getCanvas().invoke(getEmployeeTitle);

to automatically produce a form like:
Of course, it would be better if we could customize the form (along the same lines as the class example) with
something like

template<typename T> string prompt() {
 return T::name;
}
template<>
string prompt<describe<&getEmployeeTitle::employeeID>>() // Not legal C++
{
 return "What is the employee's ID?";
}

to get

http://kifri.fri.uniza.sk/~chochlik/jtc1_sc22_wg21/std_cpp_refl.pdf

Requirement

The reflection framework should be able to enumerate the names of function parameters from the
declaration (heavy reliance on ODR). Likewise, there should be some way of referring to function
parameters, as desired in the mythical use of &getEmployeeTitle::employeeID above.
It might be useful for reflection to enumerate comments, especially doxygen comments. Those could be
displayed when mousing over the fields. There are many other benefits to this (e.g., producing online help
in a single pass). The ability to understand comments has served Java well.

enum information
Scott Schurr suggests

On several different occasions I've relied on macro trickery to generate enumerations that have
additional machinery for converting those enumerations into strings -- often for serialization or error
message generation. I like to type in the enumeration entries only once. In my implementations this
has required the enumeration elements to be wrapped in macro names and put in a separate file.
Clumsy.

A well-worthwhile use case in may opinion.

Capturing default arguments

Both Rick Yorgason points out that enumerating default argument values is important to building calls to
callables. One obvious example is that the user-interfaces shown above should fill in the default values.

Performance requirements
This doesn't really fit into any of the above use cases, or rather it fits into all of them. Enumerating all of the
members of something in a kind of template sequence can be very expensive. Consider something like
members<namespace std>. Furthermore, it may exceed template argument limits. Therefore, we probably need

1. Membership enumerators that only enumerate the requested types of members (e.g., enumerate public
methods) rather than filtering the entire list of members

2. We need some mechanism to get arbitrarily long compile-time sequences. One approach would be to
return chunks. See n3416 for another approach.

