
N3458: Simple Database Integration in
C++11

Thomas Neumann

Technische Univeristät München
neumann@in.tum.de

2012-10-22

Many applications make use of relational database to store and query their
data. However, existing database interfaces like ODBC and JDBC introduce
a significant barrier between the application logic and the database access
itself. This makes database usage intimidating and cumbersome. Here, we
propose a much simpler database integration mechanisms which makes use
of C++11 features to allow for a very natural interaction with the database
itself.

1 Motivation
While database access is very common for various kinds of application, existing database
interfaces are quite cumbersome. For example consider the following somewhat simplified
ODBC fragment (error handling omitted for readability)
SQLHandle statement ;
SQLAllocHandle (SQL_HANDLE_STMT, connect ion ,& statement) ;
SQLPrepare (statement , " s e l e c t a , b from foo where c=? and d=?" ,38) ;
SQLLen len1 =3;
SQLBindParameter (statement , 1 ,SQL_PARAM_INPUT,SQL_C_CHAR,SQL_VARCHAR, len1 , 0 ,

" foo " , len1 ,& len1) ;
SQLINTEGER val =1234; SQLLen len2=s izeof (va l) ;
SQLBindParameter (statement , 2 ,SQL_PARAM_INPUT,SQL_C_SLONG,SQL_INTEGER, len2 , 0 ,

&val , len2 ,& len2) ;
SQLExecute (statement) ;
while (SQLFetch (statement)==SQL_SUCCESS) {

double a , b ;
SQLGetData(statement , 1 ,SQL_C_DOUBLE,&a , 0 , 0) ;
SQLGetData(statement , 2 ,SQL_C_DOUBLE,&b , 0 , 0) ;
cout << a << " " << b << endl ;

}

1 N3458=12-0148

Such a coding style is unfortunate for a number of reasons. First, a large amount
of boilerplate code is required. Partly due to the nature of C (ODBC is a C binding),
but also partly because the database interface is broken into a large number of function
invocations. In addition, the whole code is basically dynamically typed and has a poor
integration of the query result into the containing code.
In contrast to this, we propose a different API style that tightly integrates the database

access into the containing C++ program. A motivating example is shown below (the
code is semantically equivalent to the ODBC fragment above):
prepared_query<s t r i n g , int> ps=conn . prepare_query (" s e l e c t a , b from foo

where c=? and d=?") ;
double a , b ;
for (auto row : ps (" foo " ,1234) . i n to (a , b))

cout << a << " " << b << endl ;

Note that the amount of code is much smaller, and would have been even smaller if
we did not have used a prepared query. Note further, that both the query invocation
and the query result integrate much more naturally in the C++ code. This greatly
simplified the interaction with the database, and removes unnecessary usage barriers. In
the simplest case a database query can look like
int a ;
for (auto row : conn . query (" s e l e c t a from bar ") . i n to (a))

cout << a << endl ;

which is already quite close to the SQL statement itself. Going even further (e.g.,
automatically declaring ”a”) would be nice, but would require language changes, and we
do not propose this here. We discuss possible syntax variations in Section 4.
In general, a database access layer should 1) offer a nice, and elegant interface to the

database, and 2) should allow for efficient implementation. In this order. Simplifying
query formulation and result retrieval is the foremost goal, but of course efficiency is also
important. In this context it is important to note that query languages like SQL are
declarative, and the user should be encouraged to use them in a declarative fashion. As
such it does not appear to be a good idea to expose imperative implementation details
like cursors to the user. Performing ”result comprehension”, i.e., looping over the result
is a concept that is simple to understand and closely matches the internal implementation
of most DBMSs. Therefore such an access pattern should be encouraged, the user can
always buffer the query result himself if needed.
In the following we sketch a database layer that uses C++11 features to expose a more

rich interface. This is intended to be a first step in discussing an appropriate interface.
Nevertheless, the whole interface has been implemented and tested for a main-memory
DBMS at the Technische Universität München.
The whole interface aims at exposing a strongly typed interface to the DBMS that

allows for easy combination of C++ and database queries by using C++11 features.
However, there are cases where the types are not known at compile time, for example
with user-provided queries. Therefore, the access layer has generic classes, where types
are not statically known, and strongly typed classes with known types. The generic
classes can be converted (via move) into strongly typed classes, and this conversion

2 N3458=12-0148

checks the involved types at runtime. As a result, the query interface is completely
type-safe, and reasonable efficient, as this check is only done once per query.

2 Scope
The database interface presented here will usually be used for relational databases, and
as such somewhat implies SQL (see ISO/IEC 9075:2011). However, it tries to be largely
database agnostic due to practical reasons: Virtually no database system implements the
complete SQL 2011 standard, there are unfortunately syntax variations for more rarely
used features, also database systems evolve over time. The older SQL 92 standard is a
useful guideline because most database system support it, but even that is only a hint.
Therefore we only assume the following:

1. queries can be given to the database system in textual form. The interpretation
of the text is up to the database system, the interface does not inspect it.

2. queries may contain placeholders for repeated invocations. The detection of these
placeholders is up to the database system, the interface only allows for binding
them with values.

3. after execution the query result is produced in tabular form, one row after the
other.

Note that these assumptions do not really require SQL, one could offer such an in-
terface for example in RDF databases, too. But most people will use SQL, and we will
therefore consider our example query once again to illustrate the different points:

select a,b from foo where c=? and d=?

Semantically the query looks for all tuples in foo that have certain values for c and
d. But for the database interface the semantic does not really matter, what is impor-
tant is that 1) the query has two placeholder arguments (marked by ”?”), and 2) the
query produces two result columns (a and b). Placeholder arguments are used for effi-
ciency reasons. Query compilation takes some time, and by using placeholders the same
query can be executed over and over again with different bindings. For example some
invocations might produce the following results:

c=’a’∧d=3
a b
1 1
2 2

c=’b’∧d=5
a b
3 2

From the perspective of the database interface a query is like a function invocation. It
has zero or more parameters, and produces a table as result. The goal of this proposal
is to make this query invocation as painless as possible, including simple access to the
query result.

3 N3458=12-0148

3 The Main Interface
The database connection itself is maintained and represented by a connection object, as
show below.
class connect ion
{

public :
// Access modes
enum class access_mode { read_only , read_write } ;
// Unsigned data type f o r t u p l e counts
typedef implementation de f ined card ina l i ty_type ;

// Construc tors
connect ion () ;
connect ion (const std : : s t r i n g& c r e d e n t i a l s , access_mode mode) ;
connect ion (connect ion&& other) ;

// Des truc tor
~ connect ion () ;

// No cop i e s
connect ion (const connect ion&) = delete ;
connect ion& operator=(const connect ion& other) = delete ;

// Move assignment
connect ion& operator=(connect ion&& other) ;

// Connect to the s e r v e r
void connect (const std : : s t r i n g& c r e d e n t i a l s , access_mode mode) ;
// Close the connect ion
void c l o s e () ;

// Prepare a query
generic_prepared_query prepare_query (const std : : s t r i n g& query) ;
// Prepare a s ta tement
generic_prepared_statement prepare_statement (const std : : s t r i n g&

statement) ;

// Execute an (un−prepared) query
template <typename . . . parameter_types>
gener i c_query_resu l t query (const std : : s t r i n g& query , parameter_types

const& . . . arguments)
{ return prepare_query (query) (arguments) ; }
// Execute an (un−prepeared) s ta tement
template <typename . . . parameter_types>
card ina l i ty_type execute (const std : : s t r i n g& statement , parameter_types

const& . . . arguments)
{ return prepare_statement (statement) (arguments) ; }

} ;

It primarily holds the connection, and allows for issuing queries. As a simple query
can be implemented by implicitly first preparing the query and then executing it, we
concentrate on the prepared queries part for now. The prepare_query method gets the

4 N3458=12-0148

query as a string, and returns a generic_prepared_query object. The generic part in
the name implies that we do not statically know the types of the query parameters (if
any). As we will see in a moment we can add that information if available. For now we
consider the generic class, as shown below:
class generic_prepared_query
{

public :
// Construc tors
generic_prepared_query () ;
generic_prepared_query (generic_prepared_query&& other) ;
// Des truc tor
~generic_prepared_query () ;

// Assignment
generic_prepared_query& operator=(generic_prepared_query&& other) ;

// No cop i e s
generic_prepared_query (const generic_prepared_query&) = delete ;
generic_prepared_query& operator=(const generic_prepared_query& other)

= delete ;

// Examine the query parameters
unsigned parameter_count () const ;
type parameter_type (unsigned index) const ;

// Bind the next parameters
template <class T> void bind (const T& value) ;
void bind (nu l lp t r_t n u l l) ;

// Run the query
gener i c_query_resu l t operator () () ;

} ;

The class allows for examining the query parameters (if any), and for binding them
in sequential order. Overloading is used to detect binding NULLs (nullptr). Finally, the
operator () executes the query, but we ignore this for a moment. For now we consider
the more interesting case of prepared queries, namely prepared queries with statically
typed parameters. They are defined below
template <typename . . . parameter_types> class prepared_query
{

public :
// Constructor
prepared_query () ;
prepared_query (prepared_query&& other) ;
// Des truc tor
~prepared_query () {}

// Assignment
prepared_query& operator=(prepared_query&& other) ;

// No cop i e s
prepared_query (const prepared_query&) = delete ;

5 N3458=12-0148

prepared_query& operator=(const prepared_query& other) = delete ;

// Converted a gener ic −typed prepared query i n t o a s t a t i c a l l y typed one
prepared_query (generic_prepared_query&& other) ;
prepared_query& operator=(generic_prepared_query&& other) ;

// Run the query
gener i c_query_resu l t operator () (parameter_types const& . . . arguments) ;

} ;

Note that a generic prepared query can be converted into a strongly typed query using
the appropriate move constructor or move assignment. This conversion method checks
the types involved at runtime, and reports an error in the case of mismatches. After-
wards, the query can be executed by simply invoking the object with the appropriate
query parameters.
The query result itself is represented by the a query result object, again in a generic

flavor for dynamic types and a strongly typed flavor. All query invocations return the
generic object, which can then be converted into the properly typed flavor. The definition
of the generic version is
class gener i c_query_resu l t
{

public :
// Unsigned data type to r e f e r e n c e columns
typedef implementation de f ined index_type ;

// Constructor
gener i c_query_resu l t () ;
gener i c_query_resu l t (gener i c_query_resu l t&& other) ;
// Des truc tor
~ gener i c_query_resu l t () ;

/// Assignment
gener i c_query_resu l t& operator=(gener i c_query_resu l t&& other) ;

// No cop i e s
gener i c_query_resu l t (const gener i c_query_resu l t&) = delete ;
gener i c_query_resu l t& operator=(const gener i c_query_resu l t& other) =

delete ;

// Inspec t the column schema
index_type column_count () const ;
s td : : s t r i n g column_name(index_type index) const ;
type column_type (index_type index) const ;

// Row acces s
class row {

public :
// Constructor
row () ;
row (row&& other) ;

// Assignment

6 N3458=12-0148

row& operator=(row&& other) ;

// No cop i e s
row (const row&) = delete ;
row& operator=(const row&) = delete ;

// I s the column NULL?
bool n u l l (index_type index) const ;
// Access a column
template <class T> T column (index_type index) const ;
// Get a t e x t u a l r e p r e s e n t a t i o n o f the column
std : : s t r i n g to_st r ing (index_type index) const ;

} ;
/// Row access , Input−i t e r a t o r
class row_iterator {

public :
// Constructor
row_iterator () ;
row_iterator (const row& other) ;
row_iterator (row_iterator&& other) ;

// Assignment
row_iterator& operator=(const row& other)
row_iterator& operator=(row_iterator&& other) ;

// Comparison
bool operator==(const row& other) const ;
bool operator !=(const row& other) const ;

// Go to the next t u p l e
row_iterator& operator++() ;
// Access
row operator ∗ () ;

} ;
// Access the t u p l e s
row_iterator begin () ;
row_iterator end () ;

// Bind columns and t r a n s f e r r e s u l t i n t o o ther o b j e c t
template <typename . . . column_types> query_result<column_types . . . >

in to (column_types & . . . hos t_var iab l e s) ;
} ;

The generic query result allows for iterating over the result (via Input-iterator, i.e.,
only once!), and each tuple can be inspected using access methods. Again, the more
interesting case is the conversion into a strongly typed query result, that is done by
invoking the into method. The method arguments both provide the target variables
where the column values should be stored, and imply the data types of the underlying
column. The strongly typed class is defined as
template <typename . . . column_types> class query_resu l t
{

public :
// Constructor

7 N3458=12-0148

query_resu l t () ;
query_resu l t (query_resu l t&& other) ;
// Des truc tor
~ query_resu l t () ;

// Assignment
query_resu l t& operator=(query_resu l t&& other) ;

// No cop i e s
query_resu l t (const query_resu l t&) = delete ;
query_resu l t& operator=(const query_resu l t& other) = delete ;

// A row . Note t h a t the r e a l r e s u l t i s passed as a s i d e e f f e c t !
class row {
} ;
// Row access , Input−i t e r a t o r
class row_iterator {

public :
/// Constructor
row_iterator () ;
row_iterator (const row_iterator& other) ;
row_iterator (row_iterator&& other) ;

// Assignment
row_iterator& operator=(const row_iterator& other) ;
row_iterator& operator=(row_iterator&& other) ;

// Comparison
bool operator==(const row_iterator& other) const ;
bool operator !=(const row_iterator& other) const ;

// Increment
row_iterator& operator++() ;
/// Access the row
row operator ∗ () ;

} ;
// Access the r e s u l t
row_iterator begin () ;
row_iterator end () ;

} ;

Again, the class allows for iterating over the result using an Input-iterator. That is,
it is designed to be used in a range based for loop, which allows for a very convenient
syntax. What is a bit surprising is that dereferencing the row iterator does not give the
result tuple. Or rather, it does, but it appears as a side effect in the host variables. When
looking at the individual operations that seems to be a surprising behavior, but when
using the query result with a range-based for loop, as it was intended, this behavior is
invisible to the user. On the plus side, the query result is directly available to the user
without fiddling around with tuple objects, which is very convenient.
All queries and statements are by default executed in an ”auto-commit” mode, i.e.,

each is considered as a separate transaction. Multiple queries and statements can be
aggregated into a larger transaction by instantiating a transaction object

8 N3458=12-0148

class t r a n s a c t i o n
{

public :
// Constructor
expl ic it t r a n s a c t i o n (connect ion& conn) ;
t r a n s a c t i o n (t r a n s a c t i o n&& other) ;
// Des truc tor
~ t r a n s a c t i o n () ;

// Assignment
t r a n s a c t i o n& operator=(t r a n s a c t i o n&& other) ;

// No cop i e s
t r a n s a c t i o n (const t r a n s a c t i o n &) = delete ;
t r a n s a c t i o n& operator=(const t r a n s a c t i o n& other) = delete ;

// Commit the t r a n s a c t i o n
void commit () ;
// Ro l l back the t r a n s a c t i o n e x p l i c i t l y . This opera t ion always succeeds .
void r o l l b a c k () noexcept ;

} ;

The constructor of the transaction begins a database transaction, and the destructor
implicitly triggers a rollback unless commit (or an explicit rollback) was invoked before.
It is an error to invoke queries or statements between invoking commit/rollback and
executing the destructor (i.e., a commit/rollback must be the last operation of a trans-
action). Note that rollbacks by definition always succeed, therefore a rollback in the
destructor is safe regarding exceptions.
Some more classes are required for a full database interface, in particular for state-

ments, but as they are quite similar to the query case we disregard them in this first
proposal. They can be defined analogously.

4 Syntax Variations
The foremost goal of this proposal is to allow for a simple, easy to use integration of
database access into C++ code. The integration is not perfect because C++ and SQL
are quite different, and furthermore the SQL schema is only known at runtime. Therefore
we have to accept some compromises. As shown above, the currently proposed syntax
for a query is:
double a , b ;
for (auto row : query (" foo " ,1234) . i n to (a , b))

cout << a << " " << b << endl ;

This syntax is compact and readable, but has two slight oddities: First, the row
variable is never used. It exists only due to syntax requirements of C++11. Arguably
one could extend auto to allow for unnamed variables, similar to unnamed function
parameters, which would then lead to the syntax
double a , b ;

9 N3458=12-0148

for (auto : query (" foo " ,1234) . i n to (a , b))
cout << a << " " << b << endl ;

This avoids the unnecessary variable, and is quite readable. The second oddity that
exists in both variants is that the result variables (a and b) are filled as a side effect
of the iteration. This is not bad per se, and in fact for database users the into syntax
is well known from embedded SQL, so this syntax is fine, but it is different from other
standard classes. The ”traditional” C++11 syntax would be
for (auto row : query<double , double>(" foo " ,1234))

cout << get <0>(row) << " " << get <1>(row) << endl ;

Here, the query returns a regular C++11 tuple which can then be examined. But
while this fits most naturally with the existing practice, it is actually a poor choice for
query integration: First the get<N>(row) is quite verbose, much longer then a simple
a. Note that the for loop might be much larger than our simple example, and it might
reference columns multiple times. Second, the column numbers are hard to remember,
and, even worse, they change if the select part of the query is modified. This makes
updating queries quite painful.
A variant that would be possible with some limited compile-time reflection (see N3403)

would be
struct Row { double a , b ; } ;
for (auto row : query<Row>(" foo " ,1234))

cout << row . a << " " << row . b << endl ;

but that would require language changes. In general it would be useful to be able to
assign names to regular C++11 tuple entries, for example like this
for (auto [a , b] : query<double , double>(" foo " ,1234))

cout << a << " " << b << endl ;

but as this would require more drastical language changes we are not proposing this.
Given the current language restrictions, we think that the syntax proposed first is prob-
ably the best choice, and it would become even more pleasant to use if unnamed auto
variables were allowed.

5 Type System
A problem we have side-stepped so far is the problem of SQL data types. SQL defines
several data types that are not directly available inside standard C++. First, all data
types exist in NULL-able variants, which are not available in C++. NULL-able types
can be handled reasonably well using a template wrapper. In particular the optional
proposal from N3406 can be used to model NULL-able types in C++. From a database
perspective it might be nicer to call the wrapper nullable instead of optional, but that
can be achieved easily by using
template <typename T> using n u l l a b l e = opt iona l <T>;

We will therefore ignore the problem of NULLs and concentrate on non-NULL types.
But even there, many types do not exist in C++. For example fixed point numbers

10 N3458=12-0148

are quite essential to SQL, but not available to C++. Floating point values like double
are a poor approximation here, as the conversion introduces errors, which might not
be acceptable in some application domains. It would therefore seem to be prudent
to explicitly define a corresponding data type in C++ for every SQL 92 data type.
There are not too many of these, and most of the definitions are simple. Even fix-point
numbers are simple if we only want to store them (and optionally convert/print them)
and disregard arithmetic.
Another issue that warrants some thoughts are BLOB values, i.e., very large strings

or byte arrays. Databases usually handle them separately for implementation reasons,
and ODBC for example has specific methods to retrieve and insert them. This could be
solved by adding a BLOB-container type that lazily handles BLOB access. On the other
hand C++11 with move semantics allows for efficient passing of large values, so even a
std::string might be good enough for BLOBs. And using std::string would definitively
improve usability, as then BLOBs were an implementation detail that does not affect
the user.
This first draft disregards the typing problems for now, but this will have to be ad-

dressed in further revisions.

6 Conclusion
Database bindings should offer a simple and elegant interface to the database. Here, we
propose a database interface that is both easy to use and flexible. Internally, the binding
has to differentiate several different scenarios, as type information might or might not be
available statically. But to the user this complexity is largely opaque, as generic types
can be transparently converted into strongly typed variants, which offer a much simpler
interface.

Acknowledgements: Thanks to Jens Maurer for his help in preparing this document
and many insightful comments.

11 N3458=12-0148

	Motivation
	Scope
	The Main Interface
	Syntax Variations
	Type System
	Conclusion

