
N3419: Vector Loops and Parallel Loops 1

Doc No: N3419=12-0109

Date: 2012-09-21

Author: Robert Geva

 Intel Corp. robert.geva@intel.com

Vector loops and Parallel Loops

Contents
1 Introduction .. 3

1.1 Motivation ... 3

1.2 Document structure .. 3

2 Countable loops .. 4

2.1 Grammar .. 4

2.2 Syntactic constraints .. 4

2.2.1 Dynamic constraints ... 6

3 Parallel Loops .. 7

3.1 Background .. 7

3.2 A language based construct .. 7

3.3 Grammar .. 8

3.3.1 Dynamic constraints ... 8

3.3.2 Semantics ... 9

4 Vector loops ... 10

4.1 Introduction .. 10

4.2 Problem statement .. 10

4.3 Vector execution ... 11

4.4 Syntax: ... 11

4.5 Language Rules ... 12

4.6 Semantics ... 12

4.6.1 Notation .. 12

4.6.2 Evaluation order to allow reordering ... 12

4.6.3 Restrictions on Variables: ... 13

4.7 Ordered blocks .. 13

4.8 Elemental functions .. 13

N3419: Vector Loops and Parallel Loops 2

5 Appendix 1: Alternative to guarantee / enforce reordering: 13

6 Apendix 2: Alternatives to the Proposed Keywords ... 14

7 Distinctions between the two loop constructs .. 14

7.1 Commonality ... 15

7.2 Recap: the difference in the specifications ... 15

7.3 Semantic differences ... 15

7.4 Difference in performance model ... 15

8 Summary .. 16

N3419: Vector Loops and Parallel Loops 3

1 Introduction
This document presents proposals for two language constructs: vector loops and

parallel loops. It provides their motivations and semantics. Although this paper offers

many specifics describing the capabilities and semantics of the proposed constructs, it

does not yet attempt to present formal wording for WP changes. Those details will be

forthcoming if and when the committee agrees with the direction of this proposal. The

syntax used in the examples is intended as a straw-man proposal; actual keyword

names, attributes, and/or operators can be determined later, when discussion has

progressed to the point that a bicycle-shed discussion is in order.

1.1 Motivation
The need for adding language support for parallel programming to C++ was presented

in February 2012, in Kona. The presentation described the growth of multicore and

vector hardware and the need to support programming this new hardware cleanly,

portably, and efficiently in C++. The Evolution Working Group (EWG) in Kona agreed

that parallelism is an important thing to support and created a study group to

research it further. The study group met in Bellevue, WA in May, 2012. There

appeared to be enthusiasm for targeting some level of both multicore and vector

parallelism support for the next standard (also known as C++1y, tentatively targeted

for 2017). The two proposals in this document provide more specifics to what was

presented in Kona and Redmond, in addition to the proposal in N3409, which also

provides additional motivation. Also, specific background and motivation for parallel

loops and vector loops are presented below, as part of their respective sections.

1.2 Document structure
Both parallel loops and vector loops are countable loops. The document therefore

provides a language specification for countable loops, which is a part of both

proposals. (There is no proposal to introduce countable loops per se as a language

construct). Then, the proposal describes parallel loops and vector loops separately,

and concludes with some alternatives and a discussion on the semantic differences

between parallel and vector loops.

N3419: Vector Loops and Parallel Loops 4

2 Countable loops
A countable loop is a loop whose trip count can be determined before its execution

begins. The advantage of that knowledge is efficient implementation, especially for

parallel loops.

Every countable loop has a single loop control variable (LCV). The LCV is initialized

before the execution of the loop. It is used to determine the termination of the loop, by

comparing its value to another expression, and it is incremented as part of the

increment clause of the loop. The amount of increment, or stride, is loop invariant. The

LCV is the only variable that is used both in the condition clause and incremented in

the increment clause of the loop.

2.1 Grammar
Iteration-statement:

 modified_for (for-init-declopt ; condition ; incr-expression-list) statement

Here, “modified_for” is a placeholder for an actual keyword to be used in a proposal

that relies on countable loops. Below, this document will use cilk_for for the

proposed parallel loops and simd_for for the proposed vector loops.

2.2 Syntactic constraints
A program that contains a return, a break or a goto statement that would transfer

control into or out of a countable loop is ill-formed.

The initialization portion of the countable loop has the same rules as a for loop in the

current C++ language specification.

The condition and the incr-expression-list shall not be empty. The condition shall have

one of the following two forms:

identifier OP expression

expression OP identifier

where OP is one of: == != < > <= >=.

The loop increment can have a comma separated list of expressions, where exactly one

of them involves the same identifier that appears in the condition section. That

identifier is called the loop control variable (LCV). Any other variables modified by

these expressions are additional induction variables. Each expression within the incr-

expression-list shall have one of the following forms:

++ identifier

identifier ++

-- identifier

N3419: Vector Loops and Parallel Loops 5

identifier --

identifier += incr

identifier -= incr

identifier = identifier + incr

identifier = incr + identifier

identifier = identifier - incr

For ++ operators, the stride is defined to have the value of 1; for -- operators, the

stride is defined to have the value of -1; for the += operator, the stride is incr; and for -

= the stride is –incr.

Each induction variable, including the LCV, shall have integral, pointer or class type.

No storage class may be specified within the declaration of an induction variable. It

may not be declared as const or volatile. Because modification of an induction

variable in a parallel or vector loop causes undefined behavior (see dynamic

constraints, below), each induction variable is treated as if it were const within the

loop body, including for the purposes of overload resolution.

Condition

syntax
Requirements Loop count

identifier < limit

limit > identifier

(limit) - (first) shall be well-formed and shall yield an

integral difference_type;

stride shall be > 0

((limit) - (first)) /

stride

identifier > limit

limit < identifier

(first) - (limit) shall be well-formed and shall yield an

integral difference_type;

stride shall be < 0

((first) - (limit)) /

-stride

identifier <=

limit

limit >=

identifier

(limit) - (first) shall be well-formed and shall yield an

integral difference_type;

stride shall be > 0

((limit) - (first) +

1) / stride

identifier >=

limit

limit <=

identifier

(first) - (limit) shall be well-formed and shall yield an

integral difference_type;

stride shall be < 0

((first) - (limit) +

1) / -stride

identifier !=

limit

limit !=

identifier

(limit) - (first) and (first) - (limit) shall be well-formed

and yield the same integral difference_type;

stride shall be != 0

if stride is positive

then ((limit) - (first))

/ stride

else ((first) - (limit))

/ -stride

The incr expression shall have integral or enumeration type. If the loop increment uses operator

++ or +=, the expression:

identifier += (difference_type)(incr)

N3419: Vector Loops and Parallel Loops 6

shall be well-formed. If the loop increment uses operator -- or -=, the expression

identifier -= (difference_type)(incr)

shall be well-formed. The loop is a use of the required operator function.

2.2.1 Dynamic constraints

If the stride does not meet the requirements in the table above, the behavior is

undefined. If this condition can be determined statically, the compiler is encouraged

(but not required) to issue a warning. Note that the incorrect loop might occur in an

unexecuted branch, e.g., of a function template, and thus should not cause a

compilation failure in all cases.

If any induction variable is modified other than as a side effect of evaluating the loop

increment expression, the behavior of the program is undefined.

If X and Y are values of the LCV that occur in consecutive evaluations of the loop

condition in the serialization, then

((limit) - X) - ((limit) - Y)

evaluated in infinite integer precision, shall equal stride. If the condition expression is

true on entry to the loop, then the loop count shall be non-negative.

[Note: Unsigned wraparound is not allowed – end note].

The increment and limit expressions may be evaluated fewer times than in the

serialization. If different evaluations of the same expression yield different values, the

behavior of the program is undefined.

In either parallel or vector execution of a countable loop, the copy constructor for an

induction variable may be executed more times than in the serialization.

If evaluation of the increment or limit expression, or a required operator+= or

operator-= throws an exception, the behavior of the program is undefined.

N3419: Vector Loops and Parallel Loops 7

3 Parallel Loops

3.1 Background
This portion presents the proposal to add a language construct to the C++ language to

express parallel loops. Obviously, parallel loops are loops where the iterations are

unordered and can execute in parallel with one another. The specifics of this proposal,

cilk_for parallel loops, include additional capabilities:

 cilk_for parallel loops are composable with the tasking model elaborated in a

separate document (N3409);

 cilk_for parallel loops support hyperobjects, which are briefly introduced in

N3409 and will be more fully described in a future proposal, as a vehicle for

reductions; and

 the serialization of cilk_for parallel loops, which is obtained by replacing the

cilk_for with serial for, is syntactically well defined and semantically

equivalent to serial execution.

A parallel loop in which the amount of parallelism is not mandated by the language

construct enables the runtime scheduler to realize significant efficiencies, including

automatic load balancing among iterations of the loop. Please refer to the background

provided in Intel’s related proposal, N3409; it introduces some of the concepts and

terminology used within this paper. The strict fork-join parallelism documentis a pre-

requisite to this proposal. That document provides overall motivation for adding

language constructs for structured fork-join parallelism. In the current document we

describe the parallel loop construct specifically in relation to strict fork-join

parallelism.

3.2 A language based construct
The language-based cilk_for allows for a more efficient implementation than, for

example, the following cilk_spawn-based alternative. This alternative uses a sequence

of cilk_spawn invocations to parallelize the iterations of a serial for loop:

for (k = 0; k < K; ++k) { cilk_spawn body(k); }

While this loop and many other possible parallel loop constructs share the obvious

semantics that the iterations can execute in in parallel, there are a few specific and

important additional properties held by the proposed cilk_for construct:

1. The cilk_for construct is synchronous with respect to the statement following the

cilk_for loop, whereas in a program with a serial for loop with a cilk_spawn in

each iteration, as above, the spawns continue in parallel execution until they

encounter a cilk_sync.

2. In the cilk_for construct, the loop is countable, i.e. the trip count is known at run

time before the execution starts. The compiler can enforce that the loop is

countable via static analysis.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3409.pdf

N3419: Vector Loops and Parallel Loops 8

3. The cilk_for construct allows for composable implementation by not providing

semantics that enforce parallel execution and / or tying execution to any

resources.

4. The countable loop allows an efficient implementation in which the compiler and

the scheduler use a divide and conquer algorithm where the loop iterations are

divided into varying batches of trip count, allowing maximal parallelism with

minimal movement of work between cores, while still providing composability

across the whole program.

5. The loop interoperates with the same hyperobjects as the structured fork join

parallelism proposal. The same serial equivalence guarantees are provided.

The syntactic advantage of cilk_for being a language construct is the similarity to

serial for loops. This, combined with the fact that most candidates for parallelization

in existing serial programs are for loops, makes it a productive way to parallelize

existing programs. Use of a syntactically similar construct also makes it possible to

toggle parallelism on / off for development tasks such as debugging and performance

engineering.

3.3 Grammar
iteration-statement:

 cilk_for (for-init-declopt ; condition ; incr-expression-list) statement

The serialization of “cilk_for” is “for”

A cilk_for loop shall be a countable loop.

The loop control variable shall be declared either in the loop statement or in the

innermost task block (see N3409) containing the loop.

The syntax above describes the construct available in the current Intel compiler and

the Cilk Plus branch of the gcc compiler. A future construct may be proposed for

parallel loops that look more like the current range-based for loops introduced in

C++11.

3.3.1 Dynamic constraints

If the loop body throws an exception that is not caught within the same iteration of the

loop, it is unspecified which other loop iterations execute. However, once any loop

iteration begins, it is executed either until it terminates normally or throws an

exception, even if another iteration has thrown an exception. If multiple loop

iterations throw exceptions that are not caught in the loop body, the cilk_for

statement re-throws the exception that would have occurred first in the serialization of

the program once all pending iterations have completed.

It should be noted that if an exception occurs, some code may be executed that would

not have been executed in the serialization of the parallel loop. However, all objects

N3419: Vector Loops and Parallel Loops 9

constructed within the loop will be destructed either by the normal termination of that

iteration or by the handling of an exception.

3.3.2 Semantics

The iterations of a cilk_for loop can execute in any order.

The body of a cilk_for loop is a task block (See N3409).

N3419: Vector Loops and Parallel Loops 10

4 Vector loops

4.1 Introduction
This portion of the document presents a proposal to add a language construct to the

C++ language to express vector execution of loops. The fundamental capabilities of this

construct are:

 the designation of a loop as a vector loop,

 the designation of a portion of the loop as an ordered block that is sequenced as

if it appeared in a sequential loop,

 the ability to call elemental (vectorized) functions from the loop, which execute

as if they were part of the loop body,

 the ability to use multiple linear induction variables and

 the ability to perform efficient vectorized reductions.

While the language proposal is new, execution of vector loops, e.g. via compiler auto

vectorization, has been in practice for some time. Therefore, the goal of this proposal is

not to invent new semantics but rather to capture the expectations of programmers

who have been using vector execution without the benefit of being able to express

them explicitly via language constructs.

4.2 Problem statement
Processors have been providing single-instruction-multiple-data (SIMD) level

parallelism at least since the early 1990’s. The hardware trend has been to grow such

SIMD capabilities steadily, both by providing wider vector registers and by improving

the capabilities of the instruction sets that operate on the vectors. While the core

counts vary at a given point in time between various product configurations, such as

processors in servers vs. phone form factors, the vectors are typically part of the

instruction set architecture (ISA) and are fixed across all form factors. Therefore, the

performance improvement from SIMD level parallelism is more predictable than the

performance improvement gained with core / thread level parallelism. In smaller form

factors, the performance potential from vector level parallelism is larger than the

performance potential from core and thread level parallelism.

Vector / SIMD execution has been in practice for many years, in fact predating the

availability of SIMD in microprocessors, and is well understood. SIMD execution on

microprocessors is currently achieved mostly by one of two ways: writing scalar loops

and relying on compiler optimizations (auto vectorization) to convert the code within

such scalar loops into vector code, or by writing intrinsics, which are very low level

programming constructs that map onto a particular SIMD ISA.

This proposal intends to allow a developer to directly express the intent that

operations can execute in an order consistent with a single-instruction-multiple-data

N3419: Vector Loops and Parallel Loops 11

order of execution, allowing the compiler to use vector level parallelism. The

expectation is that the language does not have to add new data types, and therefore

expressions can be written using operations that operate on existing, scalar data

items. The problem of vectorizing a scalar loop then becomes a problem of order of

evaluation, and this proposal is focused on loops with semantics that allow an order of

evaluation which facilitates vector execution, while maintaining consistency with

existing serial loop constructs.

4.3 Vector execution
The iterations of a vector loop execute on a single thread, and in chunks, where

informally, the size of the chunk should ideally correspond to as many iterations of a

scalar loop as can fit within the vector resources of the target machine. Vector

execution requires reordering expressions from different iterations so that multiple

evaluation of the same expression from different iterations can be grouped together.

The semantics of vector loops are expressed in terms of these allowed reorderings,

rather than in terms of vector instructions.

Vector loops are unlike parallel loops. The semantics of parallel loops are that the

iterations are un-sequenced. The sequencing rules of vector loops in contrast allow

interleaving of operations from multiple iterations but provide more strict guarantees

on ordering. Another interesting distinction is chunked execution. Loop iterations that

execute together cannot make progress independent of each other, i.e. a subset of the

vector lanes cannot block while others make progress. Therefore, using existing

constructs for critical sections will not work – they will likely deadlock (in the case of

locks and mutexes) or livelock (in the case of spin locks). Seen from the other

direction, since parallel loops are expected to have well-defined behavior when critical

sections are used within them, the implication is that a parallel loop cannot also be

used as a vector loop. Other programming constructs have well-defined behavior in

parallel loops but not in vector loops.

4.4 Syntax:
This section does not yet constitute formal wording. Formal wording for inclusion in a

future working paper will be submitted as a proposal to the CWG if and when the

EWG agrees to the concept and general principles of vector loops.

iteration-statement:

 simd_for chunk-clauseopt (for-init-decl; condition ; expression) statement

chunk-clause:

 < chunk = constant-expression >

inorder-statement:

 inorder statement

N3419: Vector Loops and Parallel Loops 12

The scalar elision of a vector loop is a C++11 loop obtained from the simd_for loop by

replacing the keyword simd_for by the keyword for, and deleting the optional chunk-

clause. The scalar elision of inorder-statement is statement.

The scalar elision of a vector loop is defined syntactically and is a well formed loop in

C++11, and produces a result equivalent to the vector loop.

4.5 Language Rules
A vector loop shall be a countable loop.

The loop control variable shall be declared in the same function that contains the loop

and:

 If the vector loop is nested either within a vector loop or within a parallel loop,

then the LCV shall be declared within the enclosing vector loop.

 If the vector loop is nested within a task block then the LCV shall be declared

within the task block.

The expression <chunk=N> is optional. N shall be a positive integral compile-time

constant.

The following constructs shall not appear within the body of a vector loop:

1. Any parallelism construct, such as creation of a thread, the locking of a mutex,

or a parallel loop;

2. Throwing or catching an exception.

4.6 Semantics
A vector loop executes in chunks, where the chunk size is determined by the

implementation. If the optional chunk expression is present, then the actual chunk

size used by the implementation can be the same or smaller but not greater than the

specified size. However, note that reducing the chunk size does not change the

dependencies allowed by a larger chunk size, according to the following definitions.

4.6.1 Notation

For an expression X, Xі is the evaluation of the expression X in the ith iteration of the

loop.

4.6.2 Evaluation order to allow reordering

0. If expression Xi is sequenced before Yi in the scalar elision of the loop, then Xi is

also sequenced before Yi in the vector loop.

1. For every Xi and Xi+c evaluated as part of a vector loop with chunk size c, Xi is

sequenced before Xi+c

2. For any X and Y evaluated as part of a vector loop, if Xi is sequenced before Yi

and i < j, then Xi is sequenced before Yj.

N3419: Vector Loops and Parallel Loops 13

4.6.3 Restrictions on Variables:

1. Variables declared in the loop are private per iteration of the loop. The
implication is that each chunk of the vector loops sees a vector of size ‘chunk’ of
these variables.

2. Variables declared outside of the loop are uniform; they are shared across all
iterations of the loop. Assignment to these variables in more than one
unsequenced expression will produce undefined behavior.

4.7 Ordered blocks
The keyword inorder applies to a statement block. The expressions in the ordered

block are evaluated in a more strict order, unlike those in the rest of the vector loop:

for any two sub-expressions X and Y within an ordered block of a loop, Xi is sequenced

before Yi+1.

This allows certain constructs to be used in the body of a vector loop that would not

otherwise be legal. In particular, it allows the use of scoped locks.

4.8 Elemental functions
Elemental functions add modularity to vector loops, and allow separate compilation of

functions to be called from vector loops. When an elemental function is called from a

vector loop, multiple consecutive instances of the elemental functions execute in a

chunk, as if they were compiled as a part of the body of the vector loop. The ability to

write vector code outside of the scope of the vector loops allows modular programming

and independent deployment, such as in libraries.

The details of the elemental functions construct are not presented at this time for

brevity. A more detailed description is expected towards the next meeting.

5 Appendix 1: Alternative to guarantee / enforce reordering:
The proposed semantics allow the compiler to reorder expressions in an order that

facilitates vectorization, but do not require it. They also allow implementations to use

the same order as executing the scalar elision of the loop. The following alternative

describes semantics that would require an execution order that is achievable with

vector execution but is inconsistent with serial execution, so it would not be possible

to support scalar elision.

In this alternative, for any expressions X and Y evaluated as part of a vector loop, if Xi

is sequenced before Yi and iterations i and j are evaluated in the same chunk, then Xi

is sequenced Yj, regardless of whether i < j.

Example:

Consider the following code illustration:

N3419: Vector Loops and Parallel Loops 14

Without the alternative rule, the vector loop in this code illustration has unsequenced

value computations and side effects of non-atomic objects, and thus its behavior is

undefined. With the alternative rule, the behavior is well-defined and should result in

a reversal of the values in the array a. However, the alternative rule does not give the

implementation latitude to choose an optimal chunk size that matches the hardware

capabilities, possibly resulting in performance degradation. This alternative is not

being proposed at this time.

6 Alternatives
The focus of this document is on the capabilities and on the semantics of the parallel

and vector loop constructs. Syntaxes for these constructs are presented to make the

proposal concrete but they are not an inherent part of the proposal. The language

constructs proposed here can be as powerful and as useful with alternative syntaxes.

One example of an alternative syntax would be to replace the proposed reserved

words, cilk_for and simd_for, by contextual keywords that would appear between

the existing keyword for and the open parenthesis, such as

for simd (init ; compare ; expression)

Another potential alternative is to use the attribute syntax, for example

[[simd]] for (init ; compare ; expression)

7 Distinctions between the two loop constructs
This document proposes two constructs, one for parallel loops and one for vector

loops. While both would be new language constructs in C++, they are not new for

practitioners. Programmers have significant amount of experience with parallel loops

and with vector loops, accomplished with alternative means such as OpenMP and

void foo(int *a, int n)

{

 int itmp[4] = {3,2,1,0};

 for (int i = 0; i < n; i += 4) {

 simd_for <chunk=4> (int j = 0; j < 4; j++) {

 int t = a[i + itmp[j]];

 a[i + j] = t;

 }

 }

 }

N3419: Vector Loops and Parallel Loops 15

automatic vectorization. The goal of describing the semantics therefore is not an

invention of a new execution of a loop, but rather, an attempt to capture existing

practices.

7.1 Commonality
Parallel loops and vector loops have a few common characteristics. They both require

the loop to be a countable loop, as defined in this document. They both relax the

ordering constraints that would be required if the loop was a serial loop.

7.2 Recap: the difference in the specifications
The root of the difference between parallel loops and vector loops is that they relax

ordering constraints differently from each other. The parallel loop can execute all

iterations in any order. The order of execution of a vector loop is more constrained, as

specified here. There are two sets of implications. One is semantic, and one is

performance.

7.3 Semantic differences
The semantic specification provided here for parallel loops is consistent with existing

practices and expectations of programmers, in particular, that these loops allow use of

critical sections. A potential implementation of a critical section is to lock an object,

enter the critical section, evaluate it and release the lock.

The semantics specification provided here for vector loops allows the compiler to

implement the loop using vector instructions, with the implication that iterations of

the loop that are executing in a concurrent but lockstep fashion, and cannot make

forward progress independent of each other. The result is that while critical sections

have well defined and expected behavior in a parallel loop, they would cause a

deadlock in a vector loop.

Conversely, the specification provided here for vector loops captures existing practices

and expectations of forward data dependence across the iterations of a vector loop.

Namely, a value created in an iteration j of the loop can be used in any iteration k

where k > j.

Parallelizing a vector loop will break code that relies on these dependences and will

produce different results.

7.4 Difference in performance model
Performance requirements to keep a parallel loop scalar and avoid vectorizing it are

unlikely. Existing practices do welcome automatic compiler vectorization of parallel

loops on a best effort basis. The converse is often not the case.

Consider for example divide and conquer algorithms, a well-known design pattern. A

divide and conquer algorithm can be used to break a large problem size to smaller

problem sizes and operate on the small problems concurrently. The divide can be

N3419: Vector Loops and Parallel Loops 16

applied recursively, and the resulting tasks can execute in parallel, by parallelizing the

recursion. Once the problem size is small, the algorithm executes a base case. By

design, the considerations for parallel execution were expressed by parallelizing the

recursion, and therefore programmer’s expectation is that the base case is not parallel.

On the other hand, whenever the base case is implemented as a loop that can be

vectorized, using a vector loop would be appropriate and productive, while using a

parallel loop would be counter-productive.

8 Summary
All current platforms provide hardware resources for parallel execution, and many of

them have multiple levels of parallelism, including cores and vectors. The two

proposals in this document, alongside additional proposals and in particular N3409,

intend to add parallelism to the C++ language and allow C++ to be used for parallel

programming and not fall behind other languages.

The proposals are based on well understood programming practices done both in other

languages and within C++ via auxiliary constructs such as OpenMP. The integration

into the C++ language is expected to provide a safer solution for the programmer as

well as make C++ a leading choice for parallel programming.

