
 Doc No: SC22/WG21/N3210

 PL22.16/10-0200

 Date: 2010-11-12

 Project: JTC1.22.32

 Reply to: Stefanus Du Toit

 Intel Corporation

 stefanus.du.toit@intel.com

Background
This paper presents new wording for section 20.6.2 [ratio.arithmetic]. It is a response to NB Comment

GB 89 (see N3102) and based on the same basic principles as N3131, but replaces the wording in

question completely to make it clearer and better achieve the objectives of the response.

The intention of this wording is to allow two types of implementations of ratio arithmetic:

 a simple implementation where the program will be ill-formed if the intermediate computations

overflow, and,

 a more complex implementation that guarantees the correct result if it is representable, even if the

intermediate computations may not be representable in their simplest forms.

We furthermore improve the wording of the section overall, for example, by avoiding referring to

ratios as types when they are in fact template aliases.

Proposed Wording
Replace 20.6.2 [ratio.arithmetic] “Arithmetic on ratio types” completely with the following section:

20.6.2 Arithmetic on ratios [ratio.arithmetic]

1. Each of the template aliases ratio_add, ratio_subtract, ratio_multiply, and

ratio_divide denotes the result of an arithmetic computation on two ratios R1 and R2. With X

and Y computed (in the absence of arithmetic overflow) as specified by [table below], each alias denotes a

ratio<U, V> such that U is the same as ratio<X, Y>::num and V is the same as ratio<X,

Y>::den.

2. If it is not possible to represent U or V with intmax_t, the program is ill-formed. Otherwise, an

implementation should yield correct values of U and V. If it is not possible to represent X or Y with

intmax_t, the program is ill-formed unless the implementation yields correct values of U and V.

Table NN - Expressions used to perform ratio arithmetic

Type Value of X Value of Y

ratio_add<R1, R2> R1::num * R2::den +

R2::num * R1::den

R1::den * R2::den

ratio_subtract<R1, R2> R1::num * R2::den –

R2::num * R1::den

R1::den * R2::den

ratio_multiply<R1, R2> R1::num * R2::num R1::den * R2::den

ratio_divide<R1, R2> R1::num * R2::den R1::den * R2::num

3. [Example:

static_assert(ratio_add<ratio<1,3>, ratio<1,6>>::num == 1, "1/3+1/6 == 1/2");

static_assert(ratio_add<ratio<1,3>, ratio<1,6>>::den == 2, "1/3+1/6 == 1/2");

static_assert(ratio_multiply<ratio<1,3>, ratio<3,2>>::num == 1, "1/3*3/2 == 1/2");

static_assert(ratio_multiply<ratio<1,3>, ratio<3,2>>::den == 2, "1/3*3/2 == 1/2");

// The following cases may cause the program to be ill-formed under

// some implementations

static_assert(ratio_add<ratio<1,INTMAX_MAX>, ratio<1,INTMAX_MAX>>::num == 2,

 "1/MAX+1/MAX == 2/MAX");

static_assert(ratio_add<ratio<1,INTMAX_MAX>, ratio<1,INTMAX_MAX>>::den == INTMAX_MAX,

 "1/MAX+1/MAX == 2/MAX");

static_assert(ratio_multiply<ratio<1,INTMAX_MAX>, ratio<INTMAX_MAX,2>>::num == 1,

 "1/MAX * MAX/2 == 1/2");

static_assert(ratio_multiply<ratio<1,INTMAX_MAX>, ratio<INTMAX_MAX,2>>::den == 2,

 "1/MAX * MAX/2 == 1/2");

-- end example]

Replace the title of 20.6.3 [ratio.comparison] as follows:

Comparison of ratio types

Acknowledgements
A great deal of thanks goes out to Anthony Williams for his initial proposed wording in N3131.

I would also like to thank Walter Brown, Pablo Halpern, and Howard Hinnant for their careful review of

and very helpful comments on initial versions of this paper.

