
N2946=09-0136: Allocators post Removal of C++ Concepts Page 1 of 22 

Doc No: N2946=09-0136 

Date: 2009-09-27 

Author: Pablo Halpern 

 Intel Corp. 

 phalpern@halpernwightsoftware.com 

Allocators post Removal of C++ Concepts 

Contents 

Motivation and Background .................................................................................................................. 1 

Issues and National Body Comments Addressed in this Paper ....................................................... 2 

Document Conventions .......................................................................................................................... 2 

Summary ................................................................................................................................................... 3 

The allocator_traits struct ....................................................................................................... 3 

Non-raw pointer types ........................................................................................................................ 4 

Simplified traits and segregation of scoped-allocator functionality ............................................ 4 

Implementation experience ................................................................................................................ 5 

Formal Wording ....................................................................................................................................... 6 

Header <memory> changes ................................................................................................................ 6 

The addressof and pointer_rebind function templates ....................................................... 7 

Allocator Requirements ...................................................................................................................... 8 

Allocator-related traits ...................................................................................................................... 13 

Scoped allocator adaptors ................................................................................................................. 16 

Changes to container and string wording ...................................................................................... 20 

Interaction with N2913 .......................................................................................................................... 22 

Acknowledgements ............................................................................................................................... 22 

References ............................................................................................................................................... 22 

Motivation and Background 

The adoption of N2554 (The Scoped Allocator Model) and N2525 (Allocator-specific Swap and 

Move Behavior) in Bellevue (February/March 2008) made allocators much more useful and 

flexible than they were in 1998.  It has been pointed out, however, that these improvements 

came at the cost of some interface complexity.  Of particular concern (expressed strongly in US 

65 and US 74.1) is the fact that the presence of scoped allocators requires the definition and 

testing of traits in numerous places in the standard library and that the pair class template 

was made too complex by the addition of allocator-related constructors. 

A couple of concepts-related papers (N2768 and N2840) attempted to simplify the use of 

allocators by moving most scoped-allocator knowledge into the scoped-allocator adaptor 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2554.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2525.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2768.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf


N2946=09-0136: Allocators post Removal of C++ Concepts Page 2 of 22 

classes, and most allocator-propagation machinery into the Allocator concept.  In addition, 

N2908 was on the verge of removing allocator interfaces from pair.  But then concepts were 

dropped from the core language in Frankfurt (July 2009), rendering these proposals moot. 

This paper attempts to recapture the simplifications from N2768 but without the use of 

concepts and even goes a step or two further towards simplifying both the use of allocators 

(within containers) and the definition of allocators.  Since the time N2554 and N2525 were 

accepted, we have benefited from concept-oriented thinking as well as additional experience 

with variadic templates.  Significantly-improved compiler support for variadic templates and 

extended SFINAE using decltype has allowed everything in this paper to be fully 

implemented and shown not only to work, but to present a reasonable and clean interface for 

container and allocator authors. 

Issues and National Body Comments Addressed in this Paper 

If accepted into the WP, this proposal should resolve the following issues and national-body 

comments: 

Issues: 431, 580, 635, 1075, 1166, 1172 

National body comments: US 65 and US 74.1 (except that the issues with pair have been split 

off into a separate paper, N2945). 

Document Conventions 

Any reference to section names and numbers are relative to the pre-concepts, August 2008 

WP, N2723 (pre-San Francisco). 

Existing and proposed working paper text is indented and shown in dark blue.  Small edits to the working 

paper are shown with red strikeouts for deleted text and green underlining for inserted text within the indented 

blue original text.  Large proposed insertions into the working paper are shown in the same dark blue indented 

format (no green underline). 

Comments and rationale mixed in with the proposed wording appears as shaded text. 

Requests for LWG opinions and guidance appear with light (yellow) shading.  It is expected 

that any changes resulting from such guidance would be minor and would not impede 

acceptance of this paper in the same meeting. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2908.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2945.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2723.pdf


N2946=09-0136: Allocators post Removal of C++ Concepts Page 3 of 22 

Summary 

The allocator_traits struct 

The keystone of this proposal is the definition of an allocator_traits template containing 

types and static member functions for using allocators, effectively replacing the Allocator 

concept that was lost in Frankfurt.  A container, C<T,Alloc> accesses all allocator 

functionality through allocator_traits<Alloc> rather than through the allocator itself.  

For example, to allocate n objects, a container would call: 

auto p = allocator_traits<Alloc>::allocate(myalloc, n); 

instead of 

auto p = myalloc.allocate(n); 

Like iterator_traits, allocator_traits provides an adaptation point for allocators.  

Although C++0x allocators have a richer interface than C++98 allocators, forward compatibility 

is maintained because allocator_traits provides default implementations for the new 

features.  In addition, allocator_traits provides default implementations even for 

features that were present in 1998.  The new allocator requirements, therefore, are smaller than 

they were in 1998, thus making allocators easier to write.  The following comprises a 

minimalist allocator interface that meets the proposed new requirements: 

template <typename Tp> 

class SimpleAllocator 

{ 

  public: 

    typedef Tp value_type; 

 

    template <typename T> 

      struct rebind { typedef SimpleAllocator<T> other; }; 

 

    SimpleAllocator(ctor args); 

 

    template <typename T> SimpleAllocator(const SimpleAllocator<T>& other); 

 

    Tp* allocate(std::size_t n); 

    void deallocate(Tp* p, std::size_t n); 

}; 

Note the absence of pointer and reference types and construct, destroy, and 

max_size methods, which are now optional because allocator_traits provides defaults 

for these members.  In addition, the allocator propagation functions 

(select_on_container_copy_construction, on_container_copy_assignment, 

on_container_move_assignment, and on_container_swap) are given default 

implementations in allocator_traits, simplifying most allocators and providing forward-

compatibility between the C++98 interface and the C++0x.  If new features are added to 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 4 of 22 

allocators in the future, allocator_traits will provide a convenient adaptor interface for 

forward compatibility.  

Non-raw pointer types 

One of changes made in N2768 was the removal of the weasel words that allowed an 

implementation to assume that an allocator’s pointer is the same as value_type*.  The 

Allocator concept in N2768 provided constraints for pointer that lifted this restriction.  

Allowing for pointer types other than value_type* (a.k.a. “fancy” pointers) is important for 

the use of shared memory, relocatable memory, and other interesting applications. 

In this proposal, we restore the ability to use fancy pointers by specifying a minimum set of 

requirements for the pointer type.  We also introduce a new void_pointer type that 

allows the construction of recursive data structures (e.g., trees and lists) without creating 

cycles in the declaration of the allocator pointer type. 

The key requirements for an allocator’s pointer type are that it has pointer-like syntax (i.e., it 

can be dereferenced using operator*), that it is convertible to the corresponding 

void_pointer, and that there exists a function template, rebind_pointer<T> for 

converting a void_pointer back into a pointer.  If an allocator does not define a pointer 

type, allocator_traits will provide default types for pointer, const_pointer, 

void_pointer, and const_void_pointer of value_type*, const value*, void*, and 

const void*, respectively.  The above pointer requirements were carefully crafted to be 

harmonious with the intent of N2913 (SCARY Iterator Assignment and Initialization). 

Simplified traits and segregation of scoped-allocator functionality 

US 65 reads: 

Scoped allocators and allocator propagation traits add a small amount of utility at the 

cost of a great deal of machinery. The machinery is user visible, and it extends to library 

components that don't have any obvious connection to allocators, including basic 

concepts and simple components like pair and tuple. 

The problem being described is that the traits that were added to support scoped allocators 

and allocator propagation are too visible and too intrusive.  Ideally, only users who want 

scoped allocators or want to create an allocator with non-default propagation semantics would 

need to pay attention to this machinery, and even then the machinery should be as simple as 

possible. 

In this proposal, we address this issue in two ways: 1) the machinery necessary to build and 

use a scoped allocator is moved into the scoped_allocator_adaptor template and is no 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2913.pdf


N2946=09-0136: Allocators post Removal of C++ Concepts Page 5 of 22 

longer mentioned in the general container section.  2)  the functions used for allocator 

propagation are simplified and given default implementations in the allocator_traits 

template.  Finally, N2945 addresses the problem with the explosion of pair constructors – 

again moving the interface out of pair and into scoped_allocator_adaptor. 

In total, the following allocator-related type traits and template function are removed: 

is_scoped_allocator, 

constructible_with_allocator_prefix, 

constructible_with_allocator_suffix, 
allocator_propagate_never, 

allocator_propagate_on_copy_construction, 

allocator_propagate_on_move_assignment, 

allocator_propagate_on_copy_assignment, 

allocator_propagation_map 

construct_element 

Implementation experience 

Everything in this proposal has been implemented with an eye towards making allocators as 

easy to use as possible.  The main clients for the allocator interface are the container templates, 

hence it was necessary to implement at least one container in order to test the usability and 

implementability of the allocator interface.  We chose to implement the std::list template 

because, being a node-based container, list best exercises the part of the interface that deals 

with fancy pointer types and rebound allocators.  In the process, we discovered which 

interfaces were easy to use and which interfaces got in the way, and made adjustments.  This 

proposal has thus been refined to reflect the most workable interface to date. 

Our experience implementing the list template is that the allocator_traits interface is 

quite straight-forward to use.  Using a few typedefs, the extra layer on top of the allocator is 

not at all cumbersome.  Although there was some complexity in the implementation of 

scoped_allocator_adaptor, none of that complexity leaked into list.  With this 

experience, we are confident that the ideas in this proposal represents a significant 

improvement over both C++98 allocators and the current working draft. 

A complete implementation of allocator_traits and scoped_allocator_adaptor, as 

well as an implementation of list using allocator_traits is available at 

http://www.halpernwightsoftware.com/WG21/allocator_traits.tgz.  (The implementation is 

tuned to the capabilities and limitations of gcc 4.4.1.) 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2945.pdf
http://www.halpernwightsoftware.com/WG21/allocator_traits.tgz


N2946=09-0136: Allocators post Removal of C++ Concepts Page 6 of 22 

Formal Wording 

This wording is far from complete.  I have included only the highlights, so far. 

Header <memory> changes 

Modify the top of section 20.7, header <memory> synopsis, as shown: 

 

// 20.7.1, allocator argument tag 
struct allocator_arg_t { }; 

const allocator_arg_t allocator_arg = allocator_arg_t(); 

 

// 20.7.2, uses_allocator 
template <class T, class Alloc> struct uses_allocator; 

 

template <class Alloc> struct is_scoped_allocator; 

template <class T> struct constructible_with_allocator_suffix; 

template <class T> struct constructible_with_allocator_prefix; 

 

// 20.7.3, allocation propagation traits 
template <class Alloc> struct allocator_propagate_never; 

template <class Alloc> struct allocator_propagate_on_copy_construction; 

template <class Alloc> struct allocator_propagate_on_move_assignment; 

template <class Alloc> struct allocator_propagate_on_copy_assignment; 

template <class Alloc> struct allocator_propagation_map; 

 

// 20.7.3 allocator traits 
template <class Alloc> struct allocator_traits; 

 

// 20.7.5, the default allocator: 
template <class T> class allocator; 

template <> class allocator<void>; 

template <class T, class U> 

  bool operator==(const allocator<T>&, const allocator<U>&) throw(); 

template <class T, class U> 

  bool operator!=(const allocator<T>&, const allocator<U>&) throw(); 

 

// 20.7.6, scoped allocator adaptor 
template <class OuterAlloc, class... InnerAllocs> = void 

  class scoped_allocator_adaptor; 

template <class Alloc> 

  class scoped_allocator_adaptor<Alloc, void>; 

template <class OuterA, class InnerA> 

  struct is_scoped_allocator<scoped_allocator_adaptor<OuterA, InnerA> > 

    : true_type { }; 

template <class OuterA, class InnerA> 

  struct allocator_propagate_never<scoped_allocator_adaptor<OuterA, InnerA> > 

    : true_type { }; 

template <class OuterA1, class OuterA2, class... InnerAllocs> 

  bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...1>& a,) 

                  const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b); 

template <class OuterA1, class OuterA2, class... InnerAllocs> 

  bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...1>& a,) 

                  const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b); 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 7 of 22 

 

// 20.7.7, raw storage iterator: 
template <class OutputIterator, class T> class raw_storage_iterator; 

 

// 20.7.8, temporary buffers: 
template <class T> 

  pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n); 

template <class T> 

  void return_temporary_buffer(T* p); 

 

// 20.7.9, construct element 
template <class Alloc, class T, class... Args> 

  void construct_element(Alloc& alloc, T& r, Args&&... args); 

 

// 20.7.10, specialized algorithms: 
template <class T> T* addressof(T& r); 

template <class T> T* addressof(T&& r); 

template <class T> T      * pointer_rebind(void *p); 

template <class T> T const* pointer_rebind(void const *p); 

template <class InputIterator, class ForwardIterator> 

  ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, 

                                     ForwardIterator result); 

template <class InputIterator, class Size, class ForwardIterator> 

  ForwardIterator uninitialized_copy_n(InputIterator first, Size n, 

                                       ForwardIterator result); 

template <class ForwardIterator, class T> 

  void uninitialized_fill(ForwardIterator first, ForwardIterator last, 

                          const T& x); 

template <class ForwardIterator, class Size, class T> 

  void uninitialized_fill_n(ForwardIterator first, Size n, const T& x); 

The addressof and pointer_rebind function templates 

In section 20.7.10 [specialized.algorithms], insert the following: 

template <class T> T* addressof(T& r); 

template <class T> T* addressof(T&& r); 

Returns: The actual address of the object referenced by r, even in the presence of an overloaded 

operator&. 

Throws: nothing. 

This function is useful in its own right but is required for describing and implementing a 

number of allocator features.  An implementation can be found in the boost library and in the 

sample implementation described in the introduction.   

Note to the editor: This function was originally added in San Francisco, but was part of a 

concepts paper and was most likely removed when concepts were removed.  This non-concept 

version removes the second overload, as per the resolution of issue 970. 

template <class T> T*       pointer_rebind(void *p); 

template <class T> T const* pointer_rebind(void const *p); 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 8 of 22 

Precondition: T is an (optionally cv-qualified) object type. 

Returns: static_cast<T*>(p). 

Throws: nothing. 

Remarks: A program may overload pointer_rebind for a user-defined pointer-like type or template, 

in the namespace of that type or template, for the purpose of converting from a generic pointer to a 

pointer specific to T, as required by the allocator requirements for pointer, const_pointer, 

void_pointer, and const_void_pointer (see allocator requirements, 20.1.2). 

[Example: 

namespace mine { 

  template <class T> MyPointer { ... }; 

  typedef MyPointer<void> MyVoidPointer; 

  typedef MyPointer<const void> MyConstVoidPointer; 

 

  template <class T> 

    MyPointer<T> pointer_rebind(MyVoidPointer p); 

  template <class T> 

    MyPointer<const T> pointer_rebind(MyConstVoidPointer p);  

} 

– end example] 

Allocator Requirements 

Modify section 20.1.2 [allocator.requirements], as follows: 

The library describes a standard set of requirements for allocators, which are class-type objects that 

encapsulate the information about an allocation model. This information includes the knowledge of pointer 

types, the type of their difference, the type of the size of objects in this allocation model, as well as the 

memory allocation and deallocation primitives for it. All of the string types (Clause 21) and containers 

(Clause 23) except array are parameterized in terms of allocators. 

Table 39 describes the requirements on types manipulated through allocators. All the operations on the 

allocators are expected to be amortized constant time. Table 40 describes the requirements on allocator types.  

The template class allocator_traits ([allocator.traits]) supplies a uniform interface to all allocator 

types.  Those expressions that have a default value in table 40 may be omitted from an allocator class and will 

be supplied by the allocator_traits instantiation for that class. 

Table 39 – Descriptive variable definitions 

Variable Definition 

T, U, C any non-const, non-reference object type 

V a type convertible to T 

X an Allocator class for type T 

Y the corresponding Allocator class for type U 

XX The type allocator_traits<X> 

YY The type allocator_traits<Y> 

t a value of type const T& 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 9 of 22 

a, a1, a2 values of type X& 

a3 rvalue of type X 

b a value of type Y 
c a dereferenceable pointer of type C* 

p a value of type XXX::pointer_type, obtained by calling 

a1.allocate, where a1 == a 

q a value of type XXX::const_pointer_type obtained by 

conversion from a value p 

w a value of type XX::void_pointer obtained by 

conversion from a value p 

z a value of type XX::const_void_pointer obtained by 

conversion from a value q or a value w 

r a value of type X::referenceT& obtained by the expression 

*p. 

s a value of type X::const_referenceconst T& obtained 

by the expression *q or by conversion from a value r. 

u a value of type YYY::const_pointer obtained by calling 

YYY::allocate, or else 0nullptr. 

v a value of type V 

n a value of type XXX::size_type 

Args a template parameter pack 
args a function parameter pack with the pattern Args&& 

 

Table 40 – Allocator requirements 

Expression Return type Assertion/note 

pre-/post-condition 

Default 

X::pointer Pointer to T  T* 

X::const_pointer Pointer to const T X::pointer is convertible to 

X::const_pointer 

T const* 

X::void_pointer 

Y::void_pointer 

generic pointer type X::pointer is convertible to 

X::void_pointer.  

X::void_pointer and 

Y::void_pointer are the same 

type. 

void* 

X::const_void_point

er 

Y::const_void_point

er 

generic const pointer 

type 
X::pointer and 

X::const_pointer are 

convertible to 

X::const_void_pointer. 

X::const_void_pointer and 

Y::const_void_pointer are 

the same type. 

void const* 

X::reference T&   

X::const_reference T const&   

X::value_type Identical to T   

X::size_type unsigned integral type a type that can represent the size of 

the largest object in the allocation 

model. 

size_t 

X::difference_type signed integral type a type that can represent the ptrdiff_t 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 10 of 22 

difference between any two pointers 

in the allocation model. 

typename 

X::template 

rebind<U>::other 

Y For all U (including T), 

Y::template 

rebind<T>::other is X. 

 

*p T&   

*q T const& *q refers to the same object as *p  

p.operator->() T* equivalent to addressof(*p)  

q.operator->() T const* equivalent to addressof(*q)  

pointer_rebind<T>(w

) 

X::pointer pointer_rebind<T>(w) == 

p 

 

pointer_rebind<cons

t T>(z) 

X::const_pointer pointer_rebind<const 

T>(z) == q 

 

pointer d(nullptr); 

const_pointer 

e(nullptr); 

 d and e are null pointers and need 

not be dereferenceable, !d != 

false, !e != false 

 

void_pointer 

d(nullptr); 

const_void_pointer 

e(nullptr); 

 d and e are null pointers need not 

be dereferenceable d and e are null 

pointers and need not be 

dereferenceable, !d != false, 
!e != false 

 

!p convertible to bool true if p is a null pointer, else 

false 

 

!q convertible to bool true if q is a null pointer, else 

false 

 

!w convertible to bool true if w is a null pointer, else 

false 

 

!z convertible to bool true if z is a null pointer, else 

false 

 

a.address(r) X::pointer  addressof(r) 

a.address(s) X::const_pointer  addressof(s) 

a.allocate(n) 

a.allocate(n,u) 

X::pointer X::pointer Memory is allocated for 

n objects of type T but objects are 

not constructed. allocate may raise 

an appropriate exception. The result 

is a random access iterator.
227 

[ 

Note: If n == 0, the return value is 

unspecified.  — end note ] 

 

a.allocate(n,u) X::pointer Same as a.allocate(n).  The 

use of u is unspecified, but 

intended as an aid to locality if 

an implementation so desires. 

a.allocate(n) 

a.deallocate(p,n) (not used) All n T objects in the area pointed to 

by p shall be destroyed prior to this 

call. n shall match the value passed 

to allocate to obtain this memory. 

Does not throw exceptions.  [Note: 

p shall not be nullsingular .— end 

note] 

 

a.max_size() X::size_type the largest value that can 

meaningfully be passed to 
X::allocate() 

numeric_limits<s

ize_type>::max() 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 11 of 22 

a1 == a2 bool returns true iff storage allocated 

from each can be deallocated via the 

other. operator== shall be 

reflexive, symmetric, and transitive. 

 

a1 != a2 bool same as !(a1 == a2)  

a1 == b bool same as a == 
Y::rebind<T>::other(b) 

 

a1 != b bool same as !(a1 == b)  

X()  creates a default instance. [Note: a 

destructor is assumed. — end note] 

 

X a1(a);  post: a1 == a  

X a(b);  post: Y(a) == b, a == X(b)  

a.construct(pc,args

) 

(not used) Effect: Constructs an object of type 

TC at pc by invoking 

T(forward<Args>(args)...) 

new ((void*)c) 

C(forward<Args>(

args)...) 

a.destroy(pc) (not used) Effect: Destroys the object at pc c->~T() 

a.select_on_contain

er_copy_constructio

n() 

X Typically returns either a or X() return a; 

a. 

on_container_copy_a

ssignment(a1) 

convertible to bool Effect: typically either does nothing 

or assigns a = a1.  Returns: true if 

a was modified, else false. 

return false; 

a.on_container_move

_assignment(a3) 

convertible to bool Effect: typically either does nothing 

or assigns a = a3.  Returns: true if 

a was modified, else false.  Must not 

throw. 

return false; 

a. 

on_container_swap(a

1) 

convertible to bool Effect: typically either does nothing 

or swaps a with a1.  Returns: true if 

a or a1 was modified, else false.  

Must not throw. 

return false; 

The X::pointer, X::const_pointer, X::void_pointer, and X::const_void_pointer 

types shall satisfy the requirements of EqualityComparable, DefaultConstructible, CopyConstructible, 

CopyAssignable, Swappable, and Destructible (20.1.1 [utility.arg.requirements]).  No constructor, 

comparison operator, copy operation, or swap operation on these types shall throw an exception.  A default 

initialized object may have a singular value. X::pointer and X::const_pointer shall also satisfy the 

requirements for a random-access iterator (24.1 [iterator.requirements]). 

The key changes from the WP are: 

1. The addition of the void_pointer and const_void_pointer types and the rules 

defining the minimal set of operations on pointer types. 

2. The addition of default values, especially for the new features. 

3. The first argument to construct and destroy is now a pointer to arbitrary type, rather 

than a pointer-to-T.  This change facilitates constructing objects in node-based containers 

where the value_type is different from the node type. 

4. The addition of the allocator propagation functions. 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 12 of 22 

Note that there is no select_on_container_move_construction() function.  After 

some consideration, we decided that a move construction operation  for containers must be 

constant-time and not throw, as per issue 1166.  However, we disagree with the proposed 

resolution of 1166 wrt move assignment.  Having move assignment silently move the allocator 

breaks C++98 compatibility.  The reason is that move assignment can be invoked with no code 

changes in code that formerly used copy-assignment.  In C++98 there was an effective 

guarantee that the allocator for a container never changes over the lifetime of the object.  Thus, 

not only must there be a choice to not propagate the allocator on move assignment, it must be 

the default.  There is no loss of efficiency, however for the typical stateless allocator and 

authors of stateful allocators can choose to make their allocators move on move assignment. 

The member class template rebind in the table above is effectively a typedef template: if the name 

Allocator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the same type 

as SomeAllocator<U>. 

An allocator may constrain the types on which it may be instantiated or on which its construct member 

may be called.  If a type cannot be used with a particular allocator, the allocator or call to construct will 

fail to instantiate. 

[Example: The following is an allocator class template supporting the minimal interface that satisfies the 

requirements in Table 40: 

template <typename Tp> 

class SimpleAllocator 

{ 

  public: 

    typedef Tp value_type; 

 

    template <typename T> 

      struct rebind { typedef SimpleAllocator<T> other; }; 

 

    SimpleAllocator(ctor args); 
 

    template <typename T> SimpleAllocator(const SimpleAllocator<T>& other); 

 

    Tp* allocate(std::size_t n); 

    void deallocate(Tp* p, std::size_t n); 

}; 

– end example] 

Implementations of containers described in this International Standard are permitted to assume that their 

Allocator template parameter meets the following requirement beyond those in Table 40. 

— The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T 

const*, std::size_t, and std::ptrdiff_t, respectively. 

Implementors are encouraged to supply libraries that can accept allocators that encapsulate more general 

memory models. In such implementations, any requirements imposed on allocators by containers beyond 

those requirements that appear in Table 40 are implementation-defined. 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 13 of 22 

The weasel words are gone.  Raise your glass and make a toast. 

If the alignment associated with a specific over-aligned type is not supported by an allocator, instantiation of 

the allocator for that type may fail. The allocator also may silently ignore the requested alignment.  [Note: 

additionally, the member function allocate for that type may fail by throwing an object of type 

std::bad_alloc.— end note] 

Allocator-related traits 

Completely replace section 20.7.2 [allocator.traits] with the following [uses.allocator] section: 

20.7.2 uses_allocator [users.allocator] Allocator-related traits [allocator.traits] 

template <class T, class Alloc> struct uses_allocator; 

Remark: Automatically detects whether T has a nested allocator_type that is convertible from 

Alloc. Meets the BinaryTypeTrait requirements (20.5.1). An instantiation will be derived from 

true_type if a type T::allocator_type exists and is_convertible<Alloc, 

T::allocator_ type>::value != false.  A program may specialize this typestruct to 

derive from true_type for a user-defined type T that does not have a nested allocator_type but 

is nonetheless constructible using the specified Alloc. Otherwise, this struct will be derived from 

false_type. 

Remark: uses_allocator<T, Alloc> shall be derived from true_type if Convertible<Alloc, T::allocator_ 

type>, otherwise derived from false_type. 

The class templates is_scoped_allocator, constructible_with_allocator_suffix, and 

constructible, ... [rest of section removed] 

Completely delete section 20.7.3 [allocator.propagation]: 

20.7.3 Allocator propagation traits [allocator.propagation] 

Etc. 

Insert a new allocator traits section: 

20.7.3 Allocator traits [allocator.traits] 

namespace std { 

  template <typename Alloc> struct allocator_traits { 

 

    typedef Alloc allocator_type; 

 

    typedef typename Alloc::value_type value_type; 

 

    typedef see below pointer; 

    typedef see below const_pointer; 

    typedef see below void_pointer; 

    typedef see below const_void_pointer; 

 

    typedef see below difference_type; 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 14 of 22 

    typedef see below size_type; 

 

    template <typename T> using rebind_alloc = 

      typename Alloc::template rebind<T>::other; 

    template <typename T> using rebind_traits = 

      allocator_traits<rebind_alloc<T> >; 

 

    static pointer allocate(Alloc& a, size_type n); 

    static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); 

 

    static void deallocate(Alloc& a, pointer p, size_type n); 

 

    template <typename T, typename... Args> 

      static void construct(Alloc& a, T* p, Args&&... args); 

 

    template <typename T> 

      static void destroy(Alloc& a, T* p); 

 

    static size_type max_size(const Alloc& a); 

 

    static pointer       address(const Alloc& a, value_type& r); 

    static const_pointer address(const Alloc& a, const value_type& r); 

 

    static Alloc select_on_container_copy_construction(const Alloc& rhs); 

    static bool on_container_copy_assignment(Alloc& lhs, const Alloc& rhs); 

    static bool on_container_move_assignment(Alloc& lhs, Alloc&& rhs); 

    static bool on_container_swap(Alloc& lhs, Alloc& rhs); 

  }; 

} 

20.7.3.1 Allocator traits type members 

typedef see below pointer; 

Type: Alloc::pointer if such a type exists, otherwise value_type*. 

typedef see below const_pointer; 

Type: Alloc::const_pointer if such a type exists, otherwise const value_type*. 

typedef see below void_pointer; 

Type: Alloc::void_pointer if such a type exists, otherwise void*. 

typedef see below const_void_pointer; 

Type: Alloc::const_void_pointer if such a type exists, otherwise void*. 

typedef see below difference_type; 

Type: Alloc::difference_type if such a type exists, otherwise ptrdiff_t. 

typedef see below size_type; 

Type: Alloc::size_type if such a type exists, otherwise size_t. 

20.7.3.2 Allocator traits static member functions 

static pointer allocate(Alloc& a, size_type n); 

Returns: a.allocate(n). 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 15 of 22 

static pointer allocate(Alloc& a, size_type n, const_void_pointer hint); 

Returns: a.allocate(n, hint) if such an expression would be well formed, otherwise 

a.allocate(n). 

static void deallocate(Alloc& a, pointer p, size_type n); 

Effects: calls a.deallocate(p, n). 

template <typename T, typename... Args> 

  static void construct(Alloc& a, T* p, Args&&... args); 

Effects: calls a.construct(p, std::forward<Args>(args)... ) if such a call would be 

well formed, otherwise invokes  

new (static_cast<void*>(p)) T(std::forward<Args>(args)...). 

template <typename T> 

  static void destroy(Alloc& a, T* p); 

Effects: calls a.destroy(p) if such a call would be well formed, otherwise invokes p->~T(). 

static size_type max_size(const Alloc& a); 

Returns: a.max_size() if such a call would be well-formed, otherwise 

numeric_limits<size_type>::max(). 

static pointer       address(const Alloc& a, value_type& r); 

static const_pointer address(const Alloc& a, const value_type& r); 

Returns: a.address(r) if such a call would be well formed, otherwise std::addressof(r). 

static Alloc select_on_container_copy_construction(const Alloc& rhs); 

Returns: rhs.select_on_container_copy_construction() if such a call would be well 

formed, otherwise rhs. 

static bool on_container_copy_assignment(Alloc& lhs, const Alloc& rhs); 

Returns: lhs.on_container_copy_assignment(rhs) if such a call would be well formed, 

otherwise false. 

static bool on_container_move_assignment(Alloc& lhs, Alloc&& rhs); 

Returns: lhs.on_container_move_assignment(std::move(rhs)) if such a call would be 

well formed, otherwise false. 

Throws: nothing 

Should the rhs argument be an rvalue-reference?  On the one hand, this is a move operation.  

On the other hand, the rhs is a member of a larger object.  In order to call this function with an 

rvalue reference, the caller would need to write 

traits::on_container_move_assignment(this->alloc, move(other.alloc)).  

static bool on_container_swap(Alloc& lhs, Alloc& rhs); 

Returns: lhs.on_container_swap(rhs) if such a call would be well formed, otherwise false. 

Throws: nothing 

Completely delete section 20.7.9 [construct.element]: 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 16 of 22 

20.7.9 construct_element [construct.element] 

Etc. 

Scoped allocator adaptors 

Completely replace section 20.7.6 [allocator.adaptor] with the following: 

20.7.6 Scoped allocator adaptor [allocator.adaptor] 

The scoped_allocator_adaptor class template is an allocator template that specifies the memory 

resource (the outer allocator) to be used by a container (as any other allocator does) and also specifies an inner 

allocator resource to be passed to the constructor of every element within the container. This adaptor is 

instantiated with one outer and zero or more inner allocator types. If instantiated with only one allocator type 

the inner allocator becomes the scoped_allocator_adaptor itself, thus using the same allocator 

resource for the container and every element in the container, and, if the elements are themselves containers, 

each of their elements recursively. If instantiated with more than one allocator, the first allocator is the outer 

allocator for use by the container, the second allocator is passed to the constructors of the container’s 

elements, and, if the elements are themselves containers, the third allocator is passed to the elements’ 

elements, etc..  If containers are nested to a depth greater than the number of allocators, then the last allocator 

is used repeatedly, as in the single-allocator case, for any remaining recursions. [ Note: The 

scoped_allocator_adaptor is derived from the outer allocator type so it can be substituted for the 

outer allocator type in most expressions. —end note ] 

namespace std { 

  template <typename OuterAlloc, typename... InnerAllocs> 

  class scoped_allocator_adaptor : public OuterAlloc 

  { 

    typedef allocator_traits<OuterAlloc>     OuterTraits; // exposition only 

    scoped_allocator_adaptor<InnerAllocs...> inner;       // exposition only 

 

  public: 

    typedef OuterAlloc                               outer_allocator_type; 

    typedef see below                                   inner_allocator_type; 

     

    typedef typename OuterTraits::size_type          size_type; 

    typedef typename OuterTraits::difference_type    difference_type; 

    typedef typename OuterTraits::pointer            pointer; 

    typedef typename OuterTraits::const_pointer      const_pointer; 

    typedef typename OuterTraits::void_pointer       void_pointer; 

    typedef typename OuterTraits::const_void_pointer const_void_pointer; 

    typedef typename OuterTraits::value_type         value_type; 

 

    template <typename Tp> 

    struct rebind { 

      typedef scoped_allocator_adaptor< 

        OuterTraits::template rebind_alloc<Tp>, InnerAllocs...> other; 

    }; 

 

    scoped_allocator_adaptor(); 

    template <typename OuterA2> 

      scoped_allocator_adaptor(OuterA2&& outerAlloc,  

                               const InnerAllocs&... innerAllocs); 

 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 17 of 22 

    scoped_allocator_adaptor(const scoped_allocator_adaptor& other); 

 

    template <typename OuterA2> 

      scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2,  

                                                      InnerAllocs...>& other); 

    template <typename OuterA2> 

      scoped_allocator_adaptor(scoped_allocator_adaptor<OuterA2,  

                                                       InnerAllocs...>&& other); 

     

    ~scoped_allocator_adaptor(); 

 

    inner_allocator_type      & inner_allocator(); 

    inner_allocator_type const& inner_allocator() const; 

    outer_allocator_type      & outer_allocator(); 

    outer_allocator_type const& outer_allocator() const; 

 

    pointer       address(value_type& x)       const; 

    const_pointer address(const value_type& x) const; 

 

    pointer allocate(size_type n); 

    pointer allocate(size_type n, const_void_pointer hint); 

    void deallocate(pointer p, size_type n); 

    size_type max_size() const; 

 

    template <typename T, typename... Args> 

      void construct(T* p, Args&&... args); 

 

If N2926 is accepted, we will add: 

    // Specializations to pass inner_allocator to pair::first and pair::second 

    template <class T1, class T2> 

      void construct(std::pair<T1,T2>* p); 

    template <class T1, class T2, class U, class V> 

      void construct(std::pair<T1,T2>* p, U&& x, V&& y); 

    template <class T1, class T2, class U, class V> 

      void construct(std::pair<T1,T2>* p, const std::pair<U, V>& pr); 

    template <class T1, class T2, class U, class V> 

      void construct(std::pair<T1,T2>* p, std::pair<U, V>&& pr); 

 

    template <typename T> 

      void destroy(T* p); 

 

    // Allocator propagation functions. 

    static scoped_allocator_adaptor 

     select_on_container_copy_construction(const scoped_allocator_adaptor& rhs); 

 

    bool on_container_copy_assignment(const scoped_allocator_adaptor& rhs); 

    bool on_container_move_assignment(scoped_allocator_adaptor& rhs); 

    bool on_container_swap(scoped_allocator_adaptor& other); 

  }; 

 

  template <typename OuterA1, typename OuterA2, typename... InnerAllocs> 

  inline 

  bool operator==(const scoped_allocator_adaptor<OuterA1,InnerAllocs...>& a, 

           const scoped_allocator_adaptor<OuterA2,InnerAllocs...>& b); 

 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 18 of 22 

  template <typename OuterA1, typename OuterA2, typename... InnerAllocs> 

  inline 

  bool operator!=(const scoped_allocator_adaptor<OuterA1,InnerAllocs...>& a, 

           const scoped_allocator_adaptor<OuterA2,InnerAllocs...>& b); 

} 

20.7.6.1 scoped_allocator_adaptor inner allocator type [allocator.adaptor.inner] 

typedef see below inner_allocator_type; 

Type: If sizeof...InnerAllocs is zero, scoped_allocator_adaptor<OuterAlloc>, 

otherwise scoped_allocator_adaptor<InnerAllocs...> 

20.7.6.2 scoped_allocator_adaptor constructors [allocator.adaptor.cntr] 

scoped_allocator_adaptor(); 

Effects: default-initializes the OuterAlloc base class and the inner allocator object 

template <typename OuterA2> 

  scoped_allocator_adaptor(OuterA2&& outerAlloc,  

                           const InnerAllocs&... innerAllocs); 

Effects: initializes the OuterAlloc base class with std::forward<OuterA2>(outerAlloc) 

and inner with innerAllocs... (hence recursively initializing each allocator within the adaptor 

with the corresponding allocator from the argument list). 

Note that we cannot forward innerAllocs because it is not in a deduced context and cannot, 

therefore, use perfect forwarding. 

scoped_allocator_adaptor(const scoped_allocator_adaptor& other); 

Effects: initializes each allocator within the adaptor with the corresponding allocator from other. 

template <typename OuterA2> 

  scoped_allocator_adaptor(const scoped_allocator_adaptor<OuterA2,  

                                                        InnerAllocs...>& other); 

Effects: initializes each allocator within the adaptor with the corresponding allocator from other. 

template <typename OuterA2> 

  scoped_allocator_adaptor(scoped_allocator_adaptor<OuterA2,  

                                                    InnerAllocs…>&& other); 

Effects: initializes each allocator within the adaptor with the corresponding allocator rvalue from other. 

20.7.6.3 scoped_allocator_adaptor members [allocator.adaptor.members] 

inner_allocator_type      & inner_allocator(); 

inner_allocator_type const& inner_allocator() const; 

Returns: if sizeof...InnerAllocs is zero, *this, else inner 

outer_allocator_type      & outer_allocator(); 

outer_allocator_type const& outer_allocator() const; 

Returns: static_cast<Outer&>(*this) or static_cast<Outer const&>(*this), 

respectively. 

pointer       address(value_type& x)       const; 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 19 of 22 

const_pointer address(const value_type& x) const; 

Returns: allocator_traits<OuterAlloc>::address(outer_allocator(),x) 

pointer allocate(size_type n); 

Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(),n) 

pointer allocate(size_type n, const_void_pointer hint); 

Returns: allocator_traits<OuterAlloc>::allocate(outer_allocator(),n,hint) 

void deallocate(pointer p, size_type n); 

Effects: allocator_traits<OuterAlloc>::deallocate(outer_allocator(),p,n) 

size_type max_size() const; 

Returns: allocator_traits<OuterAlloc>::max_size(outer_allocator()) 

template <typename T, typename... Args> 

  void construct(T* p, Args&&... args); 

Effects: let OUTERMOST(x) be x if x does not have an outer_allocator() method, and 

OUTERMOST(x.outer_allocator()) otherwise. If 

uses_allocator<T,inner_allocator_type>::value is not false and the expression 

T(allocator_arg, inner_allocator(), std::forward<Args>(args)...) is well 

formed, then calls OUTERMOST(*this).construct(p, allocator_arg, 

inner_allocator, std::forward<Args>(args)...).  Otherwise, if 

uses_allocator<T,inner_allocator_type>::value is not false and the expression 

T(std::forward<Args>(args)..., inner_allocator()) is well formed, then calls 

OUTERMOST(*this).construct(p, std::forward<Args>(args)..., 

inner_allocator()).  Otherwise, if 

uses_allocator<T,inner_allocator_type>::value is false, call 

OUTERMOST(*this).construct(p, std::forward<Args>(args)...).  Otherwise the 

instantiation is ill formed. [Note: an error will result if uses_allocator evaluates true but the specific 

constructor does not take an allocator.  This definition prevents a silent failure to pass an inner allocator to 

a contained element. – end note] 

template <typename T> 

  void destroy(T* p); 

Effects: calls outer_allocator().destroy(p) 

static scoped_allocator_adaptor 

  select_on_container_copy_construction(const scoped_allocator_adaptor& rhs); 

Returns: a new scoped_allocator_adaptor where each allocator in the adaptor is initialized from 

the result of calling select_on_container_copy_construction on the corresponding allocator 

in rhs. 

bool on_container_copy_assignment(const scoped_allocator_adaptor& rhs); 

Effects: For each allocator in the adaptor, calls on_container_copy_assignment, passing it the 

corresponding allocator in rhs. 

Returns: true if any of the calls to on_container_copy_assignment returned true 

bool on_container_move_assignment(scoped_allocator_adaptor& rhs); 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 20 of 22 

Effects: For each allocator in the adaptor, calls on_container_move_assignment, passing it the 

corresponding allocator in rhs. 

Returns: true if any of the calls to on_container_move_assignment returned true 

bool on_container_swap(scoped_allocator_adaptor& other); 

Effects: For each allocator in the adaptor, calls on_container_swap, passing it the corresponding 

allocator in rhs. 

Returns: true if any of the calls to on_container_swap returned true 

Changes to container and string wording 

Change section 23.1.1 [container.requirements.general], paragraphs 3 and 4 as follows: 

3 For the components defined in this clause that declare an allocator_type,  oObjects stored in these 

components shall be constructed using construct_element (20.7.9)the 

allocator_traits<allocator_type>::construct function and destroyed using the 

allocator_traits<allocator_type>::destroy function (20.7.3.2 [allocator.traits.funcs]).  

These construct and destroy functions are called only for the container’s element type, not for internal 

types used by the container.  [Note: This means, for example, that a node-based container might need to 

construct nodes containing aligned buffers, the call construct to place the element into the buffer. – end 

note]  For each operation that inserts an element of type T into a container (insert, push_back, push_front, 

emplace, etc.) with arguments args..., T shall be ConstructibleAsElement, as described in table 89. [ Note: If 

the component is instantiated with a scoped allocator of type A (i.e., an allocator for which is_scoped_- 

allocator<A>::value is true), then construct_element may pass an inner allocator argument to T’s constructor. 

—end note ] 

4 In table 89, T denotes an object type, A denotes an allocator, I denotes an allocator of type A::inner_- 

allocator_type (if any),and Args denotes a template parameter pack 

Delete table 89: 

Table 89 — ConstructibleAsElement<A, T, Args> requirements [constructibleaselement] 

Etc. 

Modify the notes after Table 90 as follows: 

Notes: the algorithms swap(), equal() and lexicographical_compare() are defined in Clause 

25. Those entries marked ―(Note A)‖ or ―(Note B)‖ should have constant complexity. Those entries marked 

―(Note B)‖ have constant complexity unless allocator_propagate_never<X::allocator_type>::value is true, in 

which case they have linear complexity. Those entries marked ―(Note C)‖ have constant complexity if 

allocator_traits<allocator_type>::on_container_move_assignment returns true or if 

a.get_allocator() == rv.get_allocator() or if either 

allocator_propagate_on_move_assignment<X::allocator_type>::value is true or allocator_propa- 

gate_on_copy_assignment<X::allocator_type>::value is true and linear complexity otherwise. 

Modify Section 23.1.1 [container.requirements.general], paragraph 9: 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 21 of 22 

Unless otherwise specified, all containers defined in this clause obtain memory using an allocator (See 

20.7.2).  Copy and move constructors for all these container types defined in this Clause obtain an allocator 

by calling allocator_propagation_map::select_for_copy_construction() 

allocator_traits<allocator_type>::select_on_container_copy_construction on 

their respective first parameters. Move  constructors obtain an allocator by calling get_allocator() on 

their first parameters. All other constructors for these container types take an Allocator argument (20.1.2), 

an allocator whose value type is the same as the container’s value type. A copy of this argument is used for 

any memory allocation performed, by these constructors and by all member functions, during the lifetime of 

each container object or until the allocator is replaced. The allocator may be replaced only via assignment or 

swap(). Allocator replacement is performed by calling allocator_propagation_map<allocator_- 

type>::move_assign(), allocator_propagation_map<allocator_type>::copy_assign(), or allocator_- 

propagation_map<alloc- ator_type>::swap() 

allocator_traits<allocator_type>::on_container_copy_assignment, 

allocator_traits<allocator_type>::on_container_move_assignment, or 

allocator_traits<allocator_type>::on_container_swap within the implementation of 

the corresponding container operation.  Calling the preceding allocator_traits functions may or may 

not modify the allocator, depending on the implementation of those functions for the specific allocator type. 

In all container types defined in this Clause, the member get_allocator() returns a copy of the allocator 

object used to construct the container, or most recently used to replace the allocator. 

In table 92 (Allocator-aware container requirements), modify selected rows as shown: 

Constructible_with_al

locator_suffix<X> 

derived from 

true_type 

 compile time 

…    

X(t,m) 

X u(t,m); 
 Requires: 

ConstructibleAsElement<A, T, T> 

post: u == t, 
get_allocator() == m 

linear 

X(rv,m) 

X u(rv,m); 
 Requires: 

ConstructibleAsElement<A, T, 

T&&> 

post: u shall be equal to the value 

that rv had before this 

construction, get_allocator() 
== m 

constant if m == 
rv.get_allocator()

, otherwise linear 

Remove the last sentence of paragraph 2 from Section 23.1.4 [associative.reqmnts]: 

Each associative container is parameterized on Key and an ordering relation Compare that induces a strict 

weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary type T with 

the Key. The object of type Compare is called the comparison object of a container. This comparison object 

may be a pointer to function or an object of a type with an appropriate function call operator.  If the Compare 

type uses an allocator, then it conforms to the same rules as a container item; the container will construct the 

comparison object with the allocator appropriate to the allocator-related traits of the Compare type and 

whether is_scoped_allocator is true for the container’s allocator type.  

Remove the last sentence of paragraph 3 in Section 23.1.5 [unord.req]: 



N2946=09-0136: Allocators post Removal of C++ Concepts Page 22 of 22 

Each unordered associative container is parameterized by Key, by a function object Hash that acts as a hash 

function for values of type Key, and by a binary predicate Pred that induces an equivalence relation on values 

of type Key.  Additionally, unordered_map and unordered_multimap associate an arbitrary mapped type T 

with the Key.  If the Hash and/or the Pred type use an allocator, then they conform to the same rules as 

container items; the container will construct the Hash and Pred objects with the allocator appropriate to the 

the allocator-related traits of the Hash and Pred types and whether is_scoped_allocator is true for the 

container’s allocator type. 

Rename construct_element to construct in section 23.2.7 [vector.bool], paragraph 2: 

Unless described below, all operations have the same requirements and semantics as the primary vector 

template, except that operations dealing with the bool value type map to bit values in the container storage 

and allocator_traits::construct (20.7.3.2) is not used to construct these values. 

Interaction with N2913 

Care was taken in this proposal to be compatible with N2913 (SCARY Iterator Assignment and 

Initialization).  If N2913 is accepted, the following minor changes would be needed: 

1. Add void_pointer to the list of types on which an iterator may depend. 

2. Add void_pointer and const_void_pointer to the list of types on which a 

const_iterator may depend. 

Acknowledgements 

Thanks to John Lakos, Howard Hinnant, Alisdair Merideth, Daniel Krügler, Steve Breitstein, 

and Mike Giroux for their help in crafting and reviewing this paper. 

References 

Documents referenced below can be found at 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/. 

N2768: Allocator Concepts, part 1 (revision 2) 

N2554: The scoped allocator model (Rev 2) 

N2525: Allocator-specific move and swap 

Documents referenced below can be found at 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/. 

N2840: Defects and Proposed Resolutions for Allocator Concepts (Rev 2) 

N2913: SCARY Iterator Assignment and Initialization 

N2945: Proposal to Simplify pair (Rev 2) 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2913.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2768.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2525.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2840.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2913.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2945.pdf

