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Abstract

This proposal is addressed to both the Core Working Group and the Library Working
Group, since it proposes a library-like user interface, but its implementation requires special
compiler support.

We propose the addition of new functions to the C++0x standard library that provide
floating-point operations (+, -, *, /, sqrt and fma), conversion functions (between floating-
point types, and between floating-point types and integral types), as well as and user-defined-
literals, with directed rounding. These functions correspond to the IEEE-754 specifications,
and are necessary to provide efficient support for interval arithmetic and related certified com-
putations. These functions require special compiler support due to their constexpr nature.

Changes since N2876

• Replaced decltype(t+u) in the return types by HasPlus::result type as the
FloatingPointType concept does not provide + (a concept mirroring std::common type
would probably be ideal here).

Changes since N2811

• Added constexpr user-defined-literals that extend the floating-literals with a rounding direc-
tion.

• Overflow and underflow can occur in a directed cast to an integral type : make the result
unspecified in this case (like lrint).

• Made the whole header conditionally supported, and made the implementation define the
macro STDC DIRECTED FP in this case.

• Moved all functions to the std::directed fp sub-namespace.

• Renamed rounded cast to directed cast.

• Renamed header <rounded math> to <directed fp>.

• Changed the uses of the FloatingPointLike, IntegralLike and ArithmeticLike concepts
to FloatingPointType, IntegralType and ArithmeticType.

∗Email : <Guillaume.Melquiond@inria.fr>, <Sylvain.Pion@sophia.inria.fr>.
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• Added the wording changes that reference the new section at the beginning of Chapter 26
[Numerics library].

• Added more motivations (cite Pete Becker’s book, and mention compilers default optimiza-
tion options).

Motivation and context

WG21 has chosen to postpone the consideration of the proposal to add interval arithmetic to the
standard library, N21371, after C++0x. While a new standard is being developed to provide a
language-independent base for interval arithmetic (IEEE-1788), we believe that progress can be
made to enhance low-level support for interval arithmetic in C++0x, and make it easier to build
an interval arithmetic library on top of C++0x efficiently and portably.

The current CD provides the fegetround and fesetround functions in the <cfenv> header
to access and change the current rounding mode. Those functions were imported from C99, and
they are at the root of most interval arithmetic implementations. There are however two problems
which prevent efficient support for interval arithmetic:

• the CD does not provide the accompanying FENV ACCESS pragma, which instructs the com-
piler that a block of code cares about the rounding mode. The consequence is that one must
use temporary volatile variables, or any other equivalent implementation-dependent method,
which is inefficient. This can be considered as an incomplete addition to C++0x compared
to C++03. This already leads to embarassments like the one mentioned in Pete Becker’s
book ”The C++ Standard Library Extensions” on TR1, page 242, ”If your compiler doesn’t
support this pragma, turn off optimizations”. We do not advocate for adding the pragma,
but we propose an alternate solution that will allow to turn on optimizations for many cases.
We also believe that this proposal removes one more reason why one could still advocate the
use of C99 instead of C++.

• building interval constants is very useful, but it is not possible to build constexpr interval
operations since the restricted form of bodies allowed by constexpr functions forbids calling
fesetround. Extending a general feature such as constexpr to support this, does not seem
appropriate for this particular use.

Moreover, in practice, compilers also perform optimizations by doing transformations of
floating-point expressions which are valid only when rounding is to the nearest (like (-a)*(-b)
into a*b), which is by far the most commonly used rounding mode. Using specific functions to
instruct the compilers precisely where the rounding is not the default, helps setting a more efficient
default for optimization options (like setting -fno-rounding-math by default for GCC).

A different approach

We propose to go away from fesetround and the pragma as the low-level primitives used to im-
plement interval arithmetic. Instead of a global state rounding mode, we propose to add functions
with directed rounding modes that perform floating-point addition, subtraction, multiplication,
division, square root and fma, as well as conversions between floating-point and integral types,
and between floating-point types themselves. These functions correspond to the functionality
mandated by IEEE-754-1985 (and by IEEE-754-2008 for fma).

These functions, especially as they would be constexpr, require specific compiler support.
On hardwares that support a static rounding direction in the floating-point operation instruc-

tions or that support several floating-point control registers, the new functions make it easier for
1http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2137.pdf
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the compiler to generate those instructions than currently, since using the fesetround interface
around a block of floating-point operations requires some (possibly inter-procedural) flow analysis.

Fundamentally, there is no reason why C++0x provides built-in operators +, -, *, / which allow
to build constexpr functions with the default rounding mode, while it would not be possible with
its directed rounding cousins.

Note on optimization: on hardware that needs to set a register holding the rounding mode,
using fesetround in a block of code can be more efficient. In practice however, this kind of
computation is typically needed for adding vectors of intervals, and it is our belief that, in our
approach, a quality compiler should be able to move the rounding mode change instructions outside
of the loops.

Syntax and design choices

There are 4 rounding modes specified by IEEE-754-1985: to the nearest (default), towards zero,
towards plus infinity and towards minus infinity.

We propose that the new functions use a constant rounding mode. That is, it would not be
possible to pass it as an argument, and even less be a run time entity.

Moreover, C++0x currently has 2 ways of refering to rounding modes:

• fesetround takes an argument of type int with possible values FE DOWNWARD, FE TONEAREST,
FE TOWARDZERO and FE UPWARD.

• the floating round style enum which has 4 values plus a fifth round indeterminate.

We prefer the latter alternative for type checking and consistency reasons. Moreover, we suggest
to pass the rounding mode as explicit template argument, to make sure it is a constant, while still
not hardcoding it in the function name like add up or mul down. Passing round indeterminate
is not useful, and is not allowed.

An example of use would then be:

double d = add<round_toward_infinity>(a, b);
float pi_up = directed_cast<round_toward_infinity, float>(3.14159265358979323);
int i = directed_cast<round_toward_infinity, int>(17./3.);

Side note: some languages which support more mathematical symbols for operators, like
Fortress2, provide a compact syntax like a 4+ b.

Directed rounding floating-literals

The current floating-literals do not even provide round-to-nearest. It is for example a challenge
to define an accurate constant for π in a portable way, since one needs to give the exact decimal
representation corresponding to a representable floating-point.

Moreover, in order to build interval constants, one would benefit from user-defined-literals with
directed rounding.

We suggest the addition of constexpr user-defined-literals that extend the floating-literals with
a rounding direction. These also need to be compiler-supported in order to be constexpr.

Example:

constexpr double pi_up = 3.141592653589793238462643383279_round_toward_infinity;
constexpr double pi_down = 3.141592653589793238462643383279_round_toward_neg_infinity;
constexpr long double pi =

3.14159265358979323846264338327950288419716939937510L_round_to_nearest;

2http://research.sun.com/projects/plrg/Publications/fortress1.0beta.pdf
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Promotion rules

Ideally, the add function should behave just like the built-in floating-point operator+, concerning
the types of the operands, following the promotion rules. And similarly for the other functions.
We propose to use constrained templates, auto and decltype to achieve this.

Side effects

Division by zero, or taking the square root of a negative number, can produce side effects like
raising floating-point exceptions and setting errno. Obviously, this cannot work for constexpr
functions at compile-time. We therefore propose that the evaluation of these functions follow the
IEEE-754 “default non-stop exception handling” mode (producing NaNs and Inf, but no floating-
point exception nor errno change), and with the caveat that the compile-time evaluation is done
without raising the corresponding status flags, especially not the inexact flag.

A compiler may choose to issue or not a warning in such cases, when the other status flags
would be raised.

Namespace

Such simple and common function names may have the possibility to conflict with other uses. We
have therefore put the functions under the std::directed fp namespace.

Header file

The closest related headers are <cmath> and <numeric>. However, neither seem perfectly ap-
propriate to provide these functions. Moreover, since these functions are compiler-supported, it
makes sense to put them in a separate header file, so as to ease the work of library vendors. This
header could then be provided by compiler vendors.

We therefore propose a new header file <directed fp>, and a new section to describe it.

Conditionally supported functionality

The functionality is strongly linked to IEEE-754, which is conditionally supported in C++. For
this reason, the whole header is conditionally supported, and a compiler macro helps detecting
whether the functionality is available or not.
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Proposed wording

Compared to the latest working draft, N2857, do the following changes:

Add the following line in 16.8/2 ”Predefined macro names” [cpp.predefined]:

STDC DIRECTED FP
STDC DIRECTED FP is defined iff the header <directed fp> is supported by the imple-

mentation.

Change the sentence 26.1/2 [numerics.general]:
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The following subclauses describe components for complex number types, random number gener-
ation, numeric (n-at-a-time) arrays, generalized numeric algorithms, and facilities included from
the ISO C library, and directed rounding functions, as summarized in Table 92.

Add the following line to Table 92 – Numerics library summary:

26.9 Directed rounding functions <directed fp>

Add the following section:

26.9 Directed rounding functions

1 The header <directed fp> provides constexpr functions over floating-point, as well as conversions
with integral types. These functions allow a rounding mode to be passed as template argument.

2 The header <directed fp> is conditionally supported. The implementation defines the macro
STDC DIRECTED FP iff it supports the header.

26.9.1 Header <directed fp> synopsis

namespace std {
namespace directed_fp {
template < float_round_style r, FloatingPointType T, ArithmeticType U >
requires True<(r != round_indeterminate)>
constexpr T directed_cast(U u);

template < float_round_style r, IntegralType T, FloatingPointType U >
requires True<(r != round_indeterminate)>
constexpr T directed_cast(U u);

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type add(T t, U u);

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type sub(T t, U u);

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type mul(T t, U u);

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type div(T t, U u);

template < float_round_style r, FloatingPointType T >
requires True<(r != round_indeterminate)>
constexpr T sqrt(T t);

template < float_round_style r, FloatingPointType T, FloatingPointType U,
FloatingPointType V >

requires True<(r != round_indeterminate)> && HasPlus<T, U>
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&& HasPlus<HasPlus<T, U>::result_type, V>
constexpr HasPlus<HasPlus<T, U>::result_type, V>::result_type fma(T t, U u, V v);

constexpr float operator "" f_round_to_nearest(const char* s);
constexpr float operator "" F_round_to_nearest(const char* s);
constexpr double operator "" _round_to_nearest(const char* s);
constexpr long double operator "" l_round_to_nearest(const char* s);
constexpr long double operator "" L_round_to_nearest(const char* s);

constexpr float operator "" f_round_toward_zero(const char* s);
constexpr float operator "" F_round_toward_zero(const char* s);
constexpr double operator "" _round_toward_zero(const char* s);
constexpr long double operator "" l_round_toward_zero(const char* s);
constexpr long double operator "" L_round_toward_zero(const char* s);

constexpr float operator "" f_round_toward_infinity(const char* s);
constexpr float operator "" F_round_toward_infinity(const char* s);
constexpr double operator "" _round_toward_infinity(const char* s);
constexpr long double operator "" l_round_toward_infinity(const char* s);
constexpr long double operator "" L_round_toward_infinity(const char* s);

constexpr float operator "" f_round_toward_neg_infinity(const char* s);
constexpr float operator "" F_round_toward_neg_infinity(const char* s);
constexpr double operator "" _round_toward_neg_infinity(const char* s);
constexpr long double operator "" l_round_toward_neg_infinity(const char* s);
constexpr long double operator "" L_round_toward_neg_infinity(const char* s);

}
}

1 The compile-time evaluation of these functions ignores any floating-point status flags raised, if
any.

2 The run-time evaluation of these functions shall not raise any floating-point exception, nor change
errno.

template < float_round_style r, FloatingPointType T, ArithmeticType U >
requires True<(r != round_indeterminate)>
constexpr T directed_cast(U u);

Returns: The conversion of u to the type T rounded according to r.

template < float_round_style r, IntegralType T, FloatingPointType U >
requires True<(r != round_indeterminate)>
constexpr T directed_cast(U u);

Returns: The conversion of u to the type T rounded according to r. If no such value of type T
exists, the result is unspecified.

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type add(T t, U u);

Returns: The addition of t and u rounded according to r.
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template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type sub(T t, U u);

Returns: The subtraction of t and u rounded according to r.

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type mul(T t, U u);

Returns: The multiplication of t and u rounded according to r.

template < float_round_style r, FloatingPointType T, FloatingPointType U >
requires True<(r != round_indeterminate)> && HasPlus<T, U>
constexpr HasPlus<T, U>::result_type div(T t, U u);

Returns: The division of t and u rounded according to r.

template < float_round_style r, FloatingPointType T >
requires True<(r != round_indeterminate)>
constexpr T sqrt(T t);

Returns: The square root of t rounded according to r.

template < float_round_style r, FloatingPointType T, FloatingPointType U,
FloatingPointType V >

requires True<(r != round_indeterminate)> && HasPlus<T, U>
&& HasPlus<HasPlus<T, U>::result_type, V>

constexpr HasPlus<HasPlus<T, U>::result_type, V>::result_type fma(T t, U u, V v);

Returns: The fused multiply-and-add of t, u, and v, rounded according to r.

constexpr float operator "" f_round_to_nearest(const char* s);
constexpr float operator "" F_round_to_nearest(const char* s);
constexpr double operator "" _round_to_nearest(const char* s);
constexpr long double operator "" l_round_to_nearest(const char* s);
constexpr long double operator "" L_round_to_nearest(const char* s);

constexpr float operator "" f_round_toward_zero(const char* s);
constexpr float operator "" F_round_toward_zero(const char* s);
constexpr double operator "" _round_toward_zero(const char* s);
constexpr long double operator "" l_round_toward_zero(const char* s);
constexpr long double operator "" L_round_toward_zero(const char* s);

constexpr float operator "" f_round_toward_infinity(const char* s);
constexpr float operator "" F_round_toward_infinity(const char* s);
constexpr double operator "" _round_toward_infinity(const char* s);
constexpr long double operator "" l_round_toward_infinity(const char* s);
constexpr long double operator "" L_round_toward_infinity(const char* s);

constexpr float operator "" f_round_toward_neg_infinity(const char* s);
constexpr float operator "" F_round_toward_neg_infinity(const char* s);
constexpr double operator "" _round_toward_neg_infinity(const char* s);
constexpr long double operator "" l_round_toward_neg_infinity(const char* s);
constexpr long double operator "" L_round_toward_neg_infinity(const char* s);

Returns: The floating-point value corresponding to the string s, exactly like the basic floating-
literals [2.14.4, lex.fcon], but with the ability to specify a rounding direction.
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