
Doc no: N2887=09-0077
Date: 2009-06-21
Project: ISO/IEC JTC1/SC22/WG21
Reply-To: Gabriel Dos Reis

gdr@cs.tamu.edu

Axioms: Semantics Aspects of C++ Concepts

Gabriel Dos Reis Bjarne Stroustrup Alisdair Meredith

Abstract

This paper clarifies the semantics of “axioms” in the C++ concept
proposal and provides standard wording, following the C++ commit-
tee vote and resolution at the Spring 2009 meeting at Summit, NJ.

1 Motivations

What are axioms for and what good can they do if used well? The primary
motivations for axioms as language constructs are:

• making assumptions about program fragments explicit and clear. Such
assumptions are typically made anyway; and in the absence of lan-
guage support, they are free style English text comment, which are
more likely to be misunderstood than the predicate logic forms

• provide support for tool builders: Many forms of analysis and trans-
formation is beyond the scope of a compiler (for reasons of complex-
ity, commonality, and cost.) However, many such uses (e.g. for pro-
gram transformation or analysis for concurrency) are quite feasible
(e.g. done today in special-purpose languages) with no more syntac-
tic and semantic support than we are proposing.

Note that “helping the optimizer” and especially not “directing the opti-
mizer” are not among the primary motivations. Even though optimization
benefits might be had for some axioms and some compilers, a general at-
tempt to blindly perform transformations based on axioms in a compiler is
doomed to fail. We consider a compiler that does nothing beyond syntax

1

N2887=09-0077

checking the ideal general implementation. Every transformation benefit
will occur from special cases taken advantages of by specially written tools
(including optimizers) which are selective about axioms in which they are
interested.

Such tools traditionally assume that the right hand side of an axiom is
“simpler” or “better” than the left hand side. Such an assumption is suf-
ficient for quite powerful tools. We deliberately do not propose a “richer
transformation language” because doing so would be far beyond the scope
of the C++ standards and at best premature. What we propose is conven-
tional, understood, and very powerful for expressing semantics assump-
tions.

2 What are “axioms”?

An axiom states what an implementation may assume of values, but also
what properties a user should and should not assume about values. Those
properties are logical statements about runtime semantics we assume to
hold for a proper execution of an algorithm. Axioms have all been part of
both C and C++: Traditionally, we write *p = 0 and know that the imple-
mentation may assume that p points to a valid object of the appropriate
type, and blindly dereferences p. As users, it is our obligation to ensure
that the assumption is not violated and we should not complain too much
if it was. It is not the obligation of the obligation of the implementation to
“verify” or “implement” the assumption (whatever that might mean.) Ob-
viously, an implementation may try to check the validity of the assumption
and give us a suitable error message if it is violated. The “assumption” in
the previous example is just an axiom that has been in C from its inception.
Having axioms in the language itself formalizes that without placing new
obligations on implementations or users. As for the “assumptions” that
we have had for decades, an implementation may (optionally as a quality
of implementation issue) check some of our uses that can be considered
constrained by axiom.

For libraries (especially generic libraries) we have missed language con-
structs to express assumptions about user-defined abstractions. For exam-
ple, C++ programmers have no way (other than in form of comments or
implementation details) to express — at an abstract level — the notion that
their overloaded operators == and != are consistent; i.e. the expression x !=
y is functionally equivalent to !(x == y). This is one of the places where
we have failed our long standing C++ design rule to strive for equal sup-

Dos Reis, Stroustrup, Meredith 2

N2887=09-0077

port for builtin abstractions and user-defined abstractions.
Axioms are essential components of C++ concepts as envisioned since

their inception. In fact, axioms constitute a fundamental component of the
STL in particular, and of generic programming in general. Axioms cannot
meaningfully be decoupled from the syntactic requirements of algorithms.
For instance, paragraph 24.1.1/2 from the C++03 specification of the itera-
tor library component reads

In Table 72, the term the domain of == is used in the ordinary math-
ematical sense to denote the set of values over which == is (required
to be) defined. This set can change over time. Each algorithm places
additional requirements on the domain of == for the iterator values it
uses. These requirements can be inferred from the uses that algo-
rithm makes of == and !=. [Example: the call find(a,b,x) is defined
only if the value of a has the property p defined as follows: b has prop-
erty p and a value i has property p if (*i==x) or if (*i!=x and ++i has
property p).]

There are various observations to make here. Perhaps the most impor-
tant aspect is that the assumptions on find are expressed in terms of the
actual values used to invoke find, as opposed to a blanket statement about
an iterator type that satisfies the syntactic requirements in table 72. We
cannot stress this point enough. The second point, which in some sense is a
continuation of the first, is that the domain of an operation can change over
time, i.e. is dependent on call instances. For example, the above description
says that the equality operator is an equivalence relation over the domain of
iterators involved in the call to a particular algorithms. Third, the property
p is in fact a termination assumption on the function call find(a,b,x). A
C++ implementation is not required to prove1 that the assumption p holds
for each call to find. In fact, since it is a well-formed condition, the im-
plementation may as well assume that the assumption holds2 and use that
knowledge for internal implementation or any code generation purposes.

Abundant examples are available throughout the entire iterator, algo-
rithms, and container libraries of C++98 and C++03.

Axioms are expressions of semantics assumptions that used to be kept
in informal comments (because of lack of language support), just like syn-
tactic requirements for generic algorithms used to be kept in informal com-
ments.

1Of course, under the as-if rule, an implementation may elect to conduct such proof, as
long as the observable behaviour of the program is retained.

2which is what most implementations do.

Dos Reis, Stroustrup, Meredith 3

N2887=09-0077

3 How do we express axioms?

We think of axioms as logical statements, and the question is which logic
to use and which meta logical language to use to express axioms. The pro-
posal suggests the usual first order predicate logic, based on the practical
observation that for most practical cases, it is sufficient. In fact, the logic
language we are about to propose would let us express only a restricted
subset of first order predicate logic.

We suggest to use the usual C++ builtin logical connectives

• ! (not) for logical negation;

• && (and) for logical conjunction;

• || (or) for logical disjunction;

• if-statement for logical implication;

• a new primitive <=> for expressing equivalence of behaviour of the
C++ abstract machine.

For example, the statement that if the iterator p and q are dereference-able
and such that p compares equal to q, then the expression *p is equivalent
to the expression *q can be expressed as

if (p == q)
*p <=> *q;

Similarly the traditional description of the expression *p++, where p is
a dereference-able input iterator can be expressed as

*p++ <=> { T tmp = *p; ++p; return tmp }

The return-statement in the block on the right hand side says that the ex-
ecution of the whole block yields a value which is that of the expression in
the return-statement.

It is imperative to note that the above is not saying that every time the
expression *p++ occurs then the compiler should go out of its way and
forcefully replace that expression by the longer block-statement. Rather,
the above logical statement is establishing an equivalence of behaviour that
the C++ abstract machine can assume. Note also that under the as-if rule,
a compiler may use that information — which is part of the semantics of *
for input iterators — for various purposes.

In addition to the usual propositional connectives, we also need to quan-
tify propositions or expressions. Where it is customary to use the symbol

Dos Reis, Stroustrup, Meredith 4

N2887=09-0077

∀ to signify universal quantification, we use the usual formal parameter
binding in C++ function definitions. For example, we write

axiom symmetry(T x, T y) {
x + y <=> y + x

to say:

for all expressions x and y of type T, the expression x + y is
equivalent (from the as-if rule point of view) to the expression
y + x.

4 Formal wording

4.1 A new token

This proposal, following a NB comment unanimously agreed on by the
committee, introduces a new preprocessing token <=> for expressing equiv-
alence of computations.

In paragraph 2.13/1, augment the rule preprocessing-op-or-
punc with <=>.

4.2 Axiom syntax

Replace the grammar rule axiom in paragraph 14.10.1.4/1 with

atomic-proposition:
expression
compound-statement

proposition:
atomic-proposition
atomic-proposition <=> proposition

axiom:
proposition ;opt
if (logical-or-expression) axiom

The example in that paragraph should read

concept Semigroup<typename Op, typename T> : CopyConstructible<T> {
T operator()(Op, T, T);
axiom Associativity(Op op, T x, T y, T z) {
op(x, op(y, z)) <=> op(op(x, y), z);

Dos Reis, Stroustrup, Meredith 5

N2887=09-0077

}
}

concept Monoid<typename Op, typename T> : Semigroup<Op, T> {
T identity_element(Op);
axiom Identity(Op op, T x) {
op(x, identity_element(op)) <=> x;
op(identity_element(op), x) <=> x;

}
}

4.3 Axiom semantics

We do not require that C++ implementations are turned into automatic the-
orem provers. In particular, we suggest to edit the second sentence of para-
graph 14.6.8/7 as follows

The specialization is considered to have an incompatible definition
if the specialization’s definition causes a different definition of any
associated type or associated class template in the concept map, if
its definition causes any of the associated function definitions to be
ill-formed, or if the resulting concept map fails to satisfy the axioms
of the corresponding concept.

We also propose

to remove the paragraph 14.10.2.4/14.

Since this proposal is a rewrite of the existing section for axioms, we
propose to place all paragraphs starting from 14.10.1.4/2 onwards with the
following:

2 A semicolon (;) is required to terminate an axiom when the last token
is not a closing brace (}). An atomic-proposition of the form of a block-
declaration shall contain at most one return-statement.

3 Within the body of an axiom-definition, name lookup is performed as if
in the body of constrained function template definition. A parame-
ter of an axiom-definition is a placeholder for expressions of the corre-
sponding type. Consequently, in an axiom-body an expression (resp.
block-statement) containing axiom parameters is an expression pat-
tern (resp. block-statement patterns).

4 If an axiom has the form expression-statement, then the expression shall
be a logical-or-expression contextually convertible to bool. The seman-
tics is that whenever a function constrained by the enclosing concept
is executed, any contained expression matching (both in type and in

Dos Reis, Stroustrup, Meredith 6

N2887=09-0077

structure) the form designated by the axiom holds as true during the
execution of that function. If an axiom is of the form proposition <=>
proposition, then during the execution of any function constrained by
the enclosing concept, any contained expression or block statement
matching (both in type and structure) the form designated by the left
side of the axiom is equivalent (under the as-if rule) to the correspond-
ing expression or block statement on the right hand side of the axiom.
Finally, if an axiom is of the conditional form then, during the execu-
tion of any function constrained by the enclosing concept, if condition
holds then the body of the conditional axiom also holds.

Replace the entire paragraph 14.10.1.4/5 with the following example

5 [Example:

concept TotalOrdering<typename Op, typename T> {
bool operator()(Op, T, T);

axiom Antisymmetry(Op op, T x, T y) {
if (op(x, y) && op(y, x))
x <=> y;

}

axiom Transitivity(Op op, T x, T y, T z) {
if (op(x, y) && op(y, z))
op(x, z);

}

axiom Totality(Op op, T x, T y) {
op(x, y) || op(y, x);

}
}

—end of example]

5 An auxiliary proposal

This section describes an auxiliary proposal, i.e. it is independent from the
main proposal. On the one hand it is a concise, simple, and conventional
notation for an existing feature, i.e. it suggests to introduce a new token =>
for expressing implications instead of using one-armed if-statement. For
instance, the axiom

axiom antisymmetry(T a, T b) {
if (a < b)
!(b < a);

would be written as

Dos Reis, Stroustrup, Meredith 7

N2887=09-0077

axiom antisymmetry(T a, T b) {
a < b => !(b < a);

On the other hand, most programmers don’t remember that => is con-
ventional for implication — it was defined and almost universally unused
for Algol60. Some may argue that it would make axioms and C++ look
more elitist. Secondly, there is the danger that that it would almost cer-
tainly be read directionally as “transforms into”.

1. In paragraph 2.13/1, augment the rule preprocessing-op-
or-punc with =>.

2. Replace the grammar rule axiom in paragraph 14.10.1.4/1

with
axiom:

proposition ;opt
if (logical-or-expression) axiom
logical-or-expression => axiom

3. Change all the other places where an implication is expressed as an
if-statement.

Dos Reis, Stroustrup, Meredith 8

