
N2834: Several Proposals to Simplify pair Page 1 of 6

Doc No: N2834=09-0024

Date: 2009-02-09

Author: Pablo Halpern

 Cilk Arts, Inc.

 phalpern@halpernwightsoftware.com

Several Proposals to Simplify pair

Contents

Background ... 1

Document Conventions .. 2

Proposal 0: Do nothing .. 2

Proposal 1: Allow separate construction of first and second ... 2

Proposal 2: Move variadic Construction into map .. 3

Proposal 3: Move Allocator-extended construction into scoped_allocator_adaptor 4

Proposal 4: arg_tuple constructors .. 5

References ... 6

Background

In the C++98 standard, the pair class template had only three constructors, excluding the

compiler-generated copy-constructor. It was a very simple class template that could be easily

understood. A number of language and library features were introduced since then.

Constructors were added to take advantage of new language features as well as to implement

new features in the map, multimap, unordered_map and unordered_multimap

containers, for which pair plays a central role. Basically, these new constructors were added

to support:

 Conversion-construction of the first and second members

 Move-construction of the pair as a whole, and of its individual members

 emplace functions in the map containers

 Passing an allocator to the first and second members for support of scoped

allocators.

Unfortunately, most of these new features were orthogonal, nearly causing a doubling of the

number of constructors to support each one. At one point, pair had 14 constructors

(excluding the compiler-generated copy constructor)! That number has since been reduced to

N2834: Several Proposals to Simplify pair Page 2 of 6

9 by identifying redundant constructors. This paper proposes a number of approaches that

could be used to reduce the number of constructors, if not back to the 1998 set, at least to a

manageable number.

Document Conventions

All section names and numbers are relative to the October 2008 working draft, N2798.

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the working

paper are shown with red strikeouts for deleted text and green underlining for inserted text within the indented

blue original text. Large proposed insertions into the working paper are shown in the same dark blue indented

format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected

that changes resulting from such guidance will be minor and will not delay acceptance of this

proposal in the same meeting at which it is presented.

Proposal 0: Do nothing

Because of the conversion and move constructors, it is unlikely that we will reduce the set of

pair constructors below 5. The current number stands at 9, so it is not unreasonable to

consider leaving it at that.

Proposal 1: Allow separate construction of first and second

Discussion

Part of the problem with containers that use pair is the need to pass constructor arguments to

both the first and second data members. This need results in a number of constructors that

mirror the individual constructors of the data members and have nothing to do with pair

itself. For example, the emplace functions on map containers requires constructing the

second part of the pair with a variadic constructor, even though a variadic constructor is not

natural for pair. This mechanism can be combined with other proposals (below) for a further

reduction in the number of constructors. This proposal by itself does not reduce the number of

constructors in pair, but it enables several other proposals, below.

Proposed Wording

Modify the introduction to pair in section 20.3.3 [pairs] as follows:

The library provides a template for heterogeneous pairs of values. The library also provides a matching

function template to simplify their construction and several templates that provide access to pair objects as if

N2834: Several Proposals to Simplify pair Page 3 of 6

they were tuple objects (see 20.5.2.4 and 20.5.2.5). In addition to the constructors provided, an object of a

pair instantiation may be constructed in uninitialized memory of the correct size and alignment to hold that

instantiation by separately constructing the first and second members of the pair.

Proposal 2: Move variadic Construction into map

Discussion

If Proposal 1 is adopted, emplace could separately construct first and second. We could

then eliminate two variadic constructors from pair but this would require adding back one

non-variadic constructor (for move-construction of first and second). This approach was

implemented by Bloomberg in the first embodiment of the scoped allocator model.

Disadvantages

 Marginal benefit (but more possible in combination with other proposals)

 Does not allow variadic construction of local, static, or member pair variables.

Proposed Wording

(Adoption of Proposal 1 is assumed) In section 20.3.3 [pairs], remove two constructors from

pair and add one back:

template<class U, class V>

 requires Constructible<T1, U&&> && Constructible<T2, V&&>

 pair(U&& x, V&& y);

template<class U, class... Args>

 requires Constructible<T1, U&&> && Constructible<T2, Args&&...>

 pair(U&& x, Args&&... args);

…

template<class U, class... Args, classAllocator Alloc>

 requires ConstructibleWithAllocator<T1, Alloc, U&&>

 && ConstructibleWithAllocator<T2, Alloc, Args&&...>

 pair(allocator_arg_t, const Alloc& a, U&& x, Args&&... args);

Add language to container requirements in section 23.1.1 [container.rquirements.general], at

the end of paragraph 3:

Ordered and unordered associative containers described in this section which compose a value_type as a

pair<const Key, T> construct each pair element by separately calling construct on the first (Key)

and second (T) parts.

N2834: Several Proposals to Simplify pair Page 4 of 6

Proposal 3: Move Allocator-extended construction into
scoped_allocator_adaptor

Discussion

The pair constructors that take an allocator argument exist to support scoped allocators. If

Proposal 1 is adopted, we could consider moving those constructors into specialized

construct methods within the scoped_allocator_adaptor templates. This would save

4 constructors in pair, at the cost of 8 new construct overloads in each adaptor.

Combining this proposal with Proposal 2 would reduce the number of concept map templates

to 6 for each adaptor.

Disadvantages

 Does not allow allocator-extended construction of local, static, or member pair

variables.

 Does not scale well to other scoped-allocator-like ideas or other pair-like templates.

Proposed Wording

(This wording assumes passage of N2829. Minor tweaks could make it valid if N2829 doesn’t

pass. Assume adoption of Proposal 1.)

In Section 20.3.3 [pairs], remove the allocator-extended constructors from pair:

// allocator-extended constructors
template<classAllocator Alloc>

 requires ConstructibleWithAllocator<T1, Alloc>

 && ConstructibleWithAllocator<T2, Alloc>

 pair(allocator_arg_t, const Alloc& a);

template<class U, class V, classAllocator Alloc>

 requires ConstructibleWithAllocator<T1, Alloc, const U&>

 && ConstructibleWithAllocator<T2, Alloc, const V&>

 pair(allocator_arg_t, const Alloc& a, const pair<U, V>& p);

template<class U, class V, classAllocator Alloc>

 requires ConstructibleWithAllocator<T1, Alloc, RvalueOf<U>::type>

 && ConstructibleWithAllocator<T2, Alloc, RvalueOf<V>::type>

 pair(allocator_arg_t, const Alloc& a, pair<U, V>&& p);

template<class U, class... Args, classAllocator Alloc>

 requires ConstructibleWithAllocator<T1, Alloc, U&&>

 && ConstructibleWithAllocator<T2, Alloc, Args&&...>

 pair(allocator_arg_t, const Alloc& a, U&& x, Args&&... args);

In section 20.8.7 [allocator.adaptor], add the following construct members for each

scoped_allocator_adapator and scoped_allocator_adapator2:

 template <class T1, class T2>

N2834: Several Proposals to Simplify pair Page 5 of 6

 requires ConstructibleWithAllocator<T1,inner_allocator_type>

 && ConstructibleWithAllocator<T2,inner_allocator_type>

 void construct(pair<T1,T2>* p);

 template <class T1, class T2, class U, class V>

 requires ConstructibleWithAllocator<T1,inner_allocator_type,const U&>

 && ConstructibleWithAllocator<T2,inner_allocator_type,const V&>

 void construct(pair<T1,T2>* p, const pair<U,V>& x);

 template <class T1, class T2, class U, class V>

 requires ConstructibleWithAllocator<T1,inner_allocator_type,

 RvalueOf<U>::type>

 && ConstructibleWithAllocator<T2,inner_allocator_type,

 RvalueOf<V>::type>

 void construct(pair<T1,T2>* p, pair<U,V>&& x);

 template <class T1, class T2, class U, class... Args>

 requires ConstructibleWithAllocator<T1,inner_allocator_type,U&&>

 && ConstructibleWithAllocator<T2,inner_allocator_type,Args&&...>

 void construct(pair<T1,T2>* p, U&& x, Args&&... args);

 // stop recursion

 template <class T1, class T2, Allocator Alloc2>

 requires ConstructibleWithAllocator<T1,Alloc2>

 && ConstructibleWithAllocator<T2,Alloc2>

 void construct(pair<T1,T2>* p, allocator_arg_t, const Alloc2&);

 template <class T1, class T2, class U, class V, Allocator Alloc2>

 requires ConstructibleWithAllocator<T1,Alloc2,const U&>

 && ConstructibleWithAllocator<T2,Alloc2,const V&>

 void construct(pair<T1,T2>* p, allocator_arg_t, const Alloc2&,

 const pair<U,V>& x);

 template <class T1, class T2, class U, class V, Allocator Alloc2>

 requires ConstructibleWithAllocator<T1,Alloc2,

 RvalueOf<U>::type>

 && ConstructibleWithAllocator<T2,Alloc2,

 RvalueOf<V>::type>

 void construct(pair<T1,T2>* p, allocator_arg_t, const Alloc2&,

 pair<U,V>&& x);

 template <class T1, class T2, class U, class... Args, Allocator Alloc2>

 requires ConstructibleWithAllocator<T1,Alloc2,U&&>

 && ConstructibleWithAllocator<T2,Alloc2,Args&&...>

 void construct(pair<T1,T2>* p, allocator_arg_t, const Alloc2&,

 U&& x, Args&&... args);

Proposal 4: arg_tuple constructors

Discussion

This is an alternative to Proposal 1 for allowing arbitrary constructor arguments to be passed

to the first and second members of pair. It should be possible to create a concept for

constructing any type from a tuple-like object containing the type’s constructor arguments.

I’ll call that type arg_tuple. A pair constructor could be added that accepts two such

“packaged” constructor arguments and passes each one to the constructors of first and

N2834: Several Proposals to Simplify pair Page 6 of 6

second accordingly. The advantage of this system is that it is general-purpose (can be used

outside of pair) and allows local, global, and member variables of pair type to be

constructed with allocators or other constructor arguments.

Disadvantages

 Inventive – late for this stage of the standard

 No current implementation – requires full concept support from the compiler.

Proposed wording

This wording is incomplete. If there is interest, I can flesh it out.

Add a new arg_tuple template that holds references to arguments:

template <class... Args>

 class arg_tuple : public tuple<Args&...> { ... }

Add a new constructor to pair:

template <class... A1, class... A2>

 pair(arg_tuple<A1...>, arg_tuple<A2...>);

References

N2810: Defects and Proposed Resolutions for Allocator Concepts (http://www.open-

std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf)

N2829: : Defects and Proposed Resolutions for Allocator Concepts (rev 1) (http://www.open-

std.org/JTC1/SC22/WG21/docs/papers/2009/n2829.pdf)

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2810.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2829.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/

