
N2814 – Fixing Freestanding

Fixing freestanding
document id: N2814=09-0004

date: 2009-01-22

author: Martin Tasker (martin.tasker@symbian.com)

contributor: Jan van Bergen (jan.vanbergen@symbian.com)

context: baselined on C++0x CD, N2800 (WG21) / N4411 (SC22), October 2008

Acknowledgements: thanks to reviewers for comments and shepherding advice – BSI C++ panel, Alisdair 
Meredith, Roger Orr, Clark Nelson.

1. Introduction
This paper proposes several small, targetted, fixes to the C++0x CD which:

 enable the intent of the freestanding specification (17.6.2.4) to be preserved, by adding only a single 
header to it relative to its C++98/C++03 contents (containing the declaration of 
std::initializer_list)

 maintain the historically low dependency of the C++ language, and of C++ compilers, on a 
corresponding library

The benefits of this proposal are:

 it enables current users of the freestanding specification to continue using that specification

 it enables compiler implementers to work fairly independently of library supply

 it enables library implementers to work fairly independently of compiler supply

As a side benefit, which was not originally a motivator, this proposal makes range-based for more usable 
and teachable for new C++ users.

1.1. Why?
The need for this paper arises because the C++0x CD specifies new C++0x features which impact the 
freestanding specification and increase the dependency of the language on the library.  Such features 
include:

 array new expressions (5.3.4), which as proposed bring in std::string as a language dependency

 usability of typeinfo in containers (18.6), which as proposed brings STL containers into 
<typeinfo> and thus into freestanding use of type information

 implementation of lambda (5.1.1), which as proposed requires <functional> unnecessarily

 range-based for (6.5.4), which as proposed requires <iterator_concepts> even when iterating 
over C arrays and initializer lists

 initializer list (18.8), which as proposed requires the Range concept even though an initializer list is 
just an array with a length

The C++0x CD is inconsistent in that, while these new features are proposed with the impacts stated above, 
the headers required by the freestanding definition in 17.6.2.4 are unchanged since C++98 (sic).

1.2. How?
This paper proposes small changes, which preserve the intent on the one hand of the new features listed 
above, and on the other hand of the freestanding definition and its corollary, a low dependency of language 
on library.

This is a middle course between two obvious alternatives:

 amend the freestanding specification, and the language/library dependencies, to fit the new C++0x 
features as specified.  This would add very significantly to language/library dependencies, and would 
severely dilute the value of the freestanding specification for any party currently interested in it.

Page 1



N2814 – Fixing Freestanding
 delete those new features in C++0x which create the increased dependency of the language on the 

library.  This would rob C++0x of useful and competitive features, in particular lambda, range-based 
for and initializer-lists.  Such an approach is really a non-starter.

1.3. What?
In summary the changes proposed are:

 array new (5.3.4 para 7): change the proposed std::length_error (an exception type requiring a 
std::string) to std::bad_alloc (an exception type requiring only a char*)

 <typeinfo> (18.6): take the type_index and hash<type_index> definitions, which require 
<functional>, out of <typeinfo> and put them into another header <typeindex>, so that 
<typeinfo> (and therefore use of RTTI) doesn’t depend on <functional>

 lambda (5.1.1): in para 2, clarify that the requirement to “behave as a function object” as defined in 
<functional> doesn’t actually mean a lambda must be implemented as a function object, so that 
lambdas can be used without a need for <functional>; in para 12, tweak the text referring to 
std::reference_closure<R(P)> to require an ABI dependency but not a header file 
dependency

 range-based for (6.5.4): make it explicit that, where the range is a C array whose length is known at 
compile time, and therefore the iterator is a C pointer, there is no need for the user to include 
<iterator_concepts>, and no need for the compiler to depend on the library

 initializer lists (18.8): add <initializer_list> to required freestanding headers, but have it 
define std::initializer_list only – reflecting the fact that std::initializer_list is 
fundamental in C++0x; accordingly, move the concept_map of std::initializer_list to 
Range into <iterator_concepts>; and have range-based for handle initializer_lists as 
a special case which doesn’t require <iterator_concepts>

1.4. So what?
These changes remove no features of C++0x, and yet they:

 enable the current small set of headers required for the freestanding library to be preserved, with the 
addition only of a lightweight <initializer_list>

 enable lambdas, range-based for and initializer lists to be used in freestanding implementations

 enable lambdas and range-based for to be used without special header files (unless such special 
header files are needed for other reasons)

 reduce the dependency of language on library, in that lambda and range-based for can be used 
without library support

Even with these changes, it remains that the C++0x language places an increased dependency on the library 
compared with C++03.  Lambdas, range-based for and list initialization all have special relationships with 
the library, which have to be supported in compiler front-ends, even if they are not exploited/supported in any 
library delivered along with the compiler.

Range-based for now has two special cases: one for C arrays, one for initializer_lists.  These 
special cases are due to the special place of C arrays and initializer_lists in C++: they are effectively 
built-in types, unlike the generalized containers over which the more general range-based for iterates.

2. Value of maintaining the freestanding definition
The freestanding definition, dating from C++98, originally enabled the C++ language to be used in:

 small systems, with a space-motivated reason to eliminate libraries as far as possible

 realtime systems, with functionally-motivated reasons to replace the standard (non-real-time) libraries

 proprietary systems, with other motivations (sometimes as prosaic as pre-1998 legacy) for doing their 
own thing in libraries rather than using the standard library

Things have changed since 1998, in particular the product categories which would count as “small systems”, 
given more than a decade of exponentially plummeting memory costs.  Nonetheless, the freestanding 
definition remains valuable.  All the above reasons still apply in one segment or another of the software 
industry addressed by C++.

Page 2



N2814 – Fixing Freestanding
The freestanding definition is closely related to the question of dependency of language (and compiler) on 
library.  A key architectural principle of C++ (inherited from C) has been to minimize this dependency.  This 
principle was key to the approachability and portability of C and C++, and also to the adoption of C and C++ 
in non-mainstream systems.  These considerations – though changed in detail – still hold: minimizing the 
dependency of the C++ language on its library remains valuable.

3. Feature by feature
The following outlines the impact of the N4411 changes, feature by feature, on the freestanding definition in 
17.6.2.4, which in the C++0x CD is still the same as it was in C++98 (sic).

For each feature, there is

 background on the new feature as defined in the CD

 an impact assessment on the freestanding definition

 a proposal to change to the current specification of the feature

 a statement of the resulting impact of the changed feature on the freestanding definition

 a statement of the impact of the change on the intent of the C++0x feature

The intent is to make changes which preserve the intent and usefulness of the C++0x feature, while also 
preserving the intent and usefulness of the freestanding definition – or, looked at another way, continuing to 
provide for minimal dependency of language on library.

3.1. Array new
Background
operator new[] is required – as before – only to throw std::bad_alloc.

However, a new-expression (5.3.4) may throw a std::length_error (para 7), if the length is too long.

Strangely, a new-expression is not required to throw std::length_error if the given length is negative! – 
the behaviour then is simply undefined.

Current impact on freestanding definition
While std::bad_alloc uses only char* for its diagnostic, std::length_error brings in 
std::string: this implies a material extension to the freestanding library.

Proposal
Replace the std::length_error required in 5.3.4 para 7 with std::bad_alloc.

Resulting Impact on freestanding implementation
The net effect of this proposal is no change in the dependencies of array new expressions, so that there is 
no impact on the requirements of the freestanding library compared with C++98.

Impact on C++0x
This proposal maintains the intent of the new C++0x feature – namely to provide a diagnostic for over-long 
array new requests.

3.2. <typeinfo>
Background
Paper N2530 contains a simple proposal to make it possible to use type_info as an index to an 
associative container.

This impacts <typeinfo>, defined in 18.6, by

 bringing in a function hash_code() into struct type_info

 introducing type_index and hash<type_index>, which together depend on the header 
<functional>

Page 3



N2814 – Fixing Freestanding
Current impact on freestanding definition
This brings in <functional> to the set of required freestanding headers.  Transitive closure on 
<functional> would introduce significant library bloat and/or implementation complexity.

Proposal
Split the implementation so that the functionality required by N2530 is delivered, but the freestanding 
definition isn’t compromised:

 maintain the hash_code() function in type_info – its obvious implementation is so simple (use 
the type_info’s address) that there’s no strong reason not to do this

 split the type_index and hash<type_index> definitions out of <typeinfo> and put them in 
another header, <typeindex>

Resulting impact on freestanding implementation
A single extra function to implement, compared with C++03.

Impact on C++0x
The functionality required by N2530 is still delivered.  An additional header, <typeindex> is needed.

3.3. Lambda
Background
5.1.1 lambda expressions, para 2, states that a lambda evaluates to a closure object, which “behaves as a 
function object”, which is defined in 20.6.

20.6 defines <functional>, which (a) makes a simple statement that function objects have an 
operator()() which returns a result, and (b) include a lot of C++ template-speak to define such objects 
(most of which dates from C++98, though there are additions from 0x eg in the domain of variadic templates 
and conceptization).

Furthermore, 5.1.1 para 12 requires non-mutable lambdas whose capture-list consists exclusively of 
references, to be implemented in terms of – in fact, to be publicly derived from – a 
std::reference_closure<R(P)>, defined in 20.6.18, where R is the return type of the lambda 
expression, and P the parameter type list.

Current impact on freestanding definition
Both 5.1.1 para 2 and para 12 appear to require <functional> to use lambda.  This header, if required in 
freestanding implementations, would introduce significant bloat.

Proposal
5.1.1 para 2 doesn’t actually require <functional>: it’s just referring to it for clarity of exposition. 
Therefore change the wording of 5.1.1 para 2 to state explicitly that “behaves as” doesn’t require “must be 
implemented as”, and in fact that lambdas can be used without placing any dependency on <functional>.

The requirement in 5.1.1 para 12 to map onto reference closures can be seen as a straightforward ABI 
requirement on both lambda and reference_closure.  Therefore take this approach, and change the 
“publicly derived from” wording to “indistinguishable from”.

Resulting impact on freestanding implementation
Lambda syntax can be used without needing <functional>, and without needing a radical expansion of 
the library.

Impact on C++0x
Lambda syntax can be used in a translation unit without needing to include <functional>.

3.4. Range-based for
Background
In 6.5.4, the syntax

for ( for-range-declaration : expression ) statement ;

Page 4



N2814 – Fixing Freestanding
is defined as being equivalent to

{
auto && __range = ( expression ); // a range, of type RangeT
for ( auto __begin = std::Range<RangeT>::begin(__range), 

__end = std::Range<RangeT>::end(__range);
__begin != __end;
++__begin) {

for-range-declaration = *__begin;
statement;
}

}

where __range, __begin and __end are defined for exposition only.

The specification requires any program using range-based for to include <iterator_concepts> (the 
header in which the Range concept is defined, along with a concept_map of Range to arrays), or be ill-
formed.

Current impact on freestanding definition
As currently specified, range-based for can’t be used unless <iterator_concepts> is also available, 
which makes <iterator_concepts> a necessary part of the freestanding definition.

Furthermore, even the trivial example given in 6.5.4, namely
int array[5]={1, 2, 3, 4, 5};
for (int& x : array)

x *= 2;

apparently requires <iterator_concepts>, even though the only thing being iterated through is a classic 
C array.  This will appear silly to ordinary users and learners of the language.

Proposal
Amend the specification to permit range-based for on arrays whose length is known at compile time, to be 
implemented in terms of classic C pointers rather than iterators, and without <iterator_concepts>.

Resulting impact on freestanding implementation
The required headers for a frestanding implementation are not affected by range-based for itself – only by 
uses of range-based for which actually require the C++ Range concept.

Impact on C++0x
This does not compromise the expressive power of range-based for.

In fact it makes range-based for easier to use, in that when no C++ Range is required, no special header 
file needs to be included in order to use the language feature.

3.5. List initialization
Background
In list initialization, objects have a constructor with a sequence initializer, ie a final initializer_list<E> 
parameter.  Their constructor can then iterate through the initializer list and construct algorithmically.

The type initializer_list<E> is defined in <initializer_list>, along with concept_maps to 
define Range on initializer_lists.

The type initializer_list, and the correspondingly indicated notion of a sequence constructor, have a 
special role in list initialization, which is a major convenience feature of the C++0x specification, bringing 
initialization in C++ onto a par with initialization in other languages.

Current impact on freestanding definition
std::initializer_list is fundamental to list initialization, and yet is a very simple type.  To include list 
initialization in C++ requires <initializer_list>, containing the std::initializer_list type, to be 
added to the headers listed in 17.6.2.4.

The concept_maps to Range, if implemented as currently specified in <initializer_list>, would bring 
in <iterator_concepts> and corresponding baggage, which would adversely affect the definition of 
freestanding.

Page 5



N2814 – Fixing Freestanding
Proposal
Clearly the ability to use list initialization, and therefore sequence constructors, are fundamental to C++0x. 
Therefore, std::initializer_list, defined in <initializer_list>, is a fundamental part of C++0x: 
therefore, add <initializer_list> to the list of headers specified in the freestanding definition in 
17.6.2.4.

Remove the concept_maps from initializer_list to Range from <initializer_list>, and place 
them in <iterator_concepts>, since this is where Range is defined.  In the Standard, move the text 
specifying this concept map from 18.8 (initializer lists) to 24.1.8 (ranges).

Add another special case to range-based for syntax, to make it possible to use this syntax on 
std::initializer_lists without language bloat.

This would enable such syntax as:
for (int x : { 1, 2, 3, 4, 5 } ) { runTestCase(x); }

to work in freestanding C++, or in hosted C++ without including any header files (other than any required for 
runTestCase).

Resulting impact on freestanding implementation
Clause 17.6.2.4 must be amended to include <initializer_list>.

Impact on C++0x
There’s no impact at all to the proposed list-based initialziation functionality which is a major syntactic 
enhancement to C++ -- and, yet, for many users, also a major simplification.

This proposal recognizes that std::initializer_list is all but a fundamental type, in the same sense 
that C arrays are.  It’s for that reason that – along with C arrays – initializer lists have a special case in 
“range-based” for syntax.

4. Proposed changes to the text
In this section changes are proposed to the text of the C++0x CD which would implement the proposals 
made above.

The changes are grouped into

 language changes, affecting clauses 5 and 6, addressing array new, lambda, and range-based for

 library changes, affecting clauses 17, 18, 20 and 24, addressing <typeinfo>, lambda and list 
initialization

Changes are grouped into language changes and library changes, but are not otherwise presented in the 
sequence with which they impact the standard (which might make them fractionally easier to apply), but 
rather in a natural order of exposition (which should make them much easier to review).

4.1. Language changes
Array new
Amend 5.3.4 para 7 as follows:

When the value of the expression in a noptr-new-declarator is zero, the allocation function is called to 
allocate an array with no elements. If the value of that expression is such that the size of the allocated 
object would exceed the implementation-defined limit, no storage is obtained and the new-expression 
terminates by throwing an exception of a type that would match a handler (15.3) of type 
std::length_errorbad_alloc (19.1.418.5.2.1).

Lambda
Amend 5.1.1 para 2 as follows:

The evaluation of a lambda-expression results in a closure object, which is an rvalue. Invoking the 
closure object executes the statements specified in the lambda-expression’s compound-statement. 
Each lambda expression has a unique type. Except as specified below, the type of the closure object 
is unspecified. [ Note: A closure object behaves as if it were a function object (20.6) whose function 
call operator, constructors, and data members are defined by the lambda-expression and its context. 

Page 6



N2814 – Fixing Freestanding
However, lambdas may be used without inclusion of <functional> or any other library definition. 
—end note ]

Amend 5.1.1 para 12 as follows:

If every name in the effective capture set is preceded by & and the lambda expression is not 
mutable, F shall be implemented in a manner indistinguishable is publicly derived from 
std::reference_closure<R(P)> (20.6.18), where R is the return type and P is the parameter-
type-list of the lambda expression. Converting an object of type F to type 
std::reference_closure<R(P)> and invoking its function call operator shall have the same 
effect as invoking the function call operator of F. [ Note: This requirement effectively means that such 
F’s must be implemented using a pair of a function pointer and a static scope pointer. —end note ][ 
Note: This requirement avoids a dependency of the compiler’s support for lambda on the library, but 
it does place an ABI constraint on the library implementation of 
std::reference_closure<R(P)>. —end note ]

Range-based for
Amend 6.5.4, the range-based for statement, as follows:

The range-base for statement

for ( for-range-declaration : expression ) statement

is equivalent, if expression is an array of N elements, N known at compile time, to
{
      for ( auto __begin = ( expression ),
                  __end = __begin + N;
                  __begin != __end;
                  ++__begin ) {
            for-range-declaration = *__begin;
            statement
      }
}

That is, iteration ranges over the array.

If expression is of type std::initializer_list, then the statement is equivalent to:
{
      for ( auto __begin = ( expression ).begin(),
                  __end = ( expression ).end();
                  __begin != __end;
                  ++__begin ) {
            for-range-declaration = *__begin;
            statement
      }
}

That is, iteration ranges over the initializer list.

If expression is a range of type _RangeT, then the statement is equivalent to:
{

auto && __range = ( expression );
for ( auto __begin = std::Range<_RangeT>::begin(__range),

__end = std::Range<_RangeT>::end(__range);
__begin != __end;
++__begin ) {

for-range-declaration = *__begin;
statement

}
}

In the above, where __range, __begin, and __end are variables defined for exposition only, and 
_RangeT is the type of the expression.

[ Example:
int array[5] = { 1, 2, 3, 4, 5 };
for (int& x : array)

x *= 2;

Page 7



N2814 – Fixing Freestanding
int total=0;
for (int x : { 1, 2, 3, 4, 5 })
      total += x;

vector<int> v = { 1, 2, 3, 4, 5 };
for (int& i : v)
      i *= 2;

—end example ]

If the header <iterator_concepts> (24.1) is not included prior to a use of the range-based for 
statement, and the range-based for is not iterating over an array of known length or an initializer list, 
the program is ill-formed.

{ Note: The special-case treatment of arrays and initializer lists reflects the fact that they are 
fundamental in C++. – end note ]

4.2. Library changes
<typeinfo>
In 18.6, amend the <typeinfo> synopsis as follows:

namespace std {
class type_info;

      class type_index;
      template <class T> struct hash;
      template<>
      struct hash<type_index> : public 
      std::unary_function<type_index, size_t> {
            size_t operator()(type_index index) const;
      }

class bad_cast;
class bad_typeid;

}

Delete entire section 18.6.2 class type_index, including its subordinate headings and their content.  This 
text should instead be moved to a new section 20.10.

Create a new section 20.10 Type Indexes.  Begin the section with

Header <typeindex> synopsis:
namespace std {
      class type_index;
      template <class T> struct hash;
      template<>
      struct hash<type_index> : public 
      std::unary_function<type_index, size_t> {
            size_t operator()(type_index index) const;
      }
}

then include all headings and content previously in 18.6.2.

In 17.6.2.3 headers, table 13, add <typeindex> to the list.

In 20 general utilities library, table 20, add

            20.10   type indexes     <typeindex>

to the end of the table.

Lambda
In 20.6.18 class template reference_closure, amend the first body paragraph as follows:

The reference_closure class template represents reference-only closures (5.1.1).  The 
implementation of reference_closure in any given library is constrained by the compiler’s ABI 
requirements on reference closures.

List initialization
To the list of required headers in 17.6.2.4, table 15, add

18.8     Initializer Lists   <initializer_list>

Page 8



N2814 – Fixing Freestanding
In 18.8, initializer lists, in the class definition of initializer_list, delete

template<typename T>
concept_map Range<initializer_list<T> > see below;
template<typename T>
concept_map Range<const initializer_list<T> > see below;

Delete section 18.8.3, initializer_list concept maps, and insert its text instead into 24.1.8.1, ie a subsection of 
24.1.8, Ranges.

Insert new section 24.1.8.1 initializer_list concept maps, with text taken from current 18.8.3.

Page 9


	1. Introduction
	1.1. Why?
	1.2. How?
	1.3. What?
	1.4. So what?

	2. Value of maintaining the freestanding definition
	3. Feature by feature
	3.1. Array new
	3.2. <typeinfo>
	3.3. Lambda
	3.4. Range-based for
	3.5. List initialization

	4. Proposed changes to the text
	4.1. Language changes
	4.2. Library changes


