
Improving the wording of std::shared_ptr

Document number: NN2638=08-0148
Document title: Improving the wording of std::shared_ptr
Author: Hervé Brönnimann
Contact: hbronnimann@bloomberg.net
Organization: Polytechnic University and Bloomberg L.P.
Date: 2008-1-5
Number: WG21/N2638=08-0148
Working Group: Library

Abstract

The class template std::shared_ptr wording could be improved by
referencing more clearly the three entities making up a shared pointer: the
pointer stored, the pointer owned (under shared ownership), and the deleter.
We propose such a wording.

I Motivation and Scope

The wording of the current Working Draft [1] of the C++ Standard does not clearly
separate between the pointer stored by shared_ptr, and the pointer owned.

Owned pointer vs. stored pointer.

Section 20.6.6.2 [util.smartptr.shared], paragraph 1, talks about the class template
shared_ptr storing a pointer, but does not introduce explicit the pointer owned
by the shared pointer (with the corresponding object of some type Y that is being
owned). This makes it hard for the reader to realize that this is different from the
pointer stored by this same shared pointer (the address of the object of type T that
is being pointed to). This difference exists because of pointer conversions, but is

N2638 — Improving the wording of shared pointers — Page 1

made quite explicit by the introduction of aliasing [2, 3]. It also does not define
what an "empty" pointer is.

The proposed resolution of this problem is to explicitly introduce all three distinct
entities used by a shared pointer (owned object, owned deleter, and stored pointer)
in the introduction of 20.6.6.2 and to systematically use those entities in the re-
maining documentation.

The template weak_ptr suffers from the same drawbacks. In addition, the no-
tion of "weak reference" is *nowhere* defined in this standard, nor used anywhere
else than 20.6.6.3, paragraph 1, and it is far from self-explanatory. The suggested
wording below makes the definition hopefully clear(er).

In LWG 711, it is mentioned: "The LWG is getting more uncomfortable with the
aliasing proposal (N2351) now that we realize some of its implications, and we
need to keep an eye on it, but there isn’t support for removing this feature at this
time." We hope that this proposal will restore some measure of comfort and help
provide support for keeping aliasing.

Another proposal (mentioned in LWG 710, not submitted to my knowledge) by
Alberto Ganesh Barbati [6] proposes to use wording such as “has no ownership”.
This is essentially what this proposal does. We do not, however, propose to add
non-null pointers with no ownership.

Other missing functionality.

A related issue that could easily be corrected is that there is (for no apparent reason)
no member function for creating an alias from a normally-constructed shared_-
ptr, mirroring the "aliasing" constructor:

template <class Y> reset(shared_ptr <Y> const& r, T *p);

In an earlier draft, I proposed a function template std::get_shared<Y>(p), very
similar to get_deleter, to retrieve the pointer owned by p. I do not have a strong
use case for it, though, and so it is not in the current proposal. I will be happy to
submit an additional (separate) proposal if requested.

Specific examples.

This section provides additional motivation. If such is not needed, or the reader
already understands the issue, this section can be skipped.

N2638 — Improving the wording of shared pointers — Page 2

Problems come in the formulations of several members Returns/Effects: clauses.
For instance, read LWG Issues 710 [4] and 711 [5]. The latter issue also mentions
the question of what "empty" means. The term is introduced in [util.smartptr.shared.const]
paragraph 1, but is never defined since, in the absence of aliasing, "empty" simply
refers to "not storing a pointer". We suggest clarifiying the definition by making
empty mean "owning no pointer", which is equivalent to use_count() == 0 (the
meaning I believed is used in the current draft).

Note that in clause 14, the difference between storage and ownership is clearly
mentioned. Compare this with ([util.smartptr.shared.const]):

template <class Y> explicit shared_ptr(Y* p);

. . .
5 Effects: Constructs a shared_ptr object that owns the pointer p.
6 Postcondition: use_count() == 1 && get() == p.

Here, we are told nothing abouth the stored pointer of the newly constructed shared_-
ptr, until the precondition mentions get() == p. It would have been better (as is
done in e.g., [util.smartptr.shared.const] paragraph 20) to say

5 Effects: Constructs a shared_ptr object that both owns and stores the pointer p.

Consider the auto_ptr constructor ([util.smartptr.shared.const]):

template <class Y> shared_ptr(auto_ptr <Y>& r);

. . .
32 Requires: r.release() shall be convertible to T*. Y shall be a complete type.

The expression delete r.release() shall be well-formed, shall have well defined
behavior, and shall not throw exceptions.

33 Effects: Constructs a shared_ptr object that stores and owns r.release().

The problem with the formulation of paragraph 33 is that the stored pointer is
always of type T*, thus r.release() must be cast to T*. But the owned pointer
should remain of type Y* or else undefined behavior results. This is not at all
apparent from the formulation which seems to imply that the pointers stored and
owned are the same (both in type and value).

For another (crucial) example, consider ([util.smartptr.shared.mod]):

void swap(shared_ptr& r);

1 Effects: Exchanges the contents of *this and r.
2 Throws: nothing.

N2638 — Improving the wording of shared pointers — Page 3

Paragraph 1 is hopelessly vague, and to top it off there are no postconditions to dis-
ambiguate. Are both the owned object and the pointer value swapped (the intended
meaning)? Just ownership? or just the pointer value? Under the formulation of
[util.smartptr.shared] paragraph 1, we might conclude that the stored pointer (the
only pointer mentioned) reflects ownership, thus only ownership is swapped, which
of course is not what the standard means.

II Impact On the Standard

This proposal is purely editorial: it clarifies the wording of many members of
shared_ptr class template. It addresses points which were raised in LWG Issues
710 and 711.

III Design Decisions

1 The design is purely driven by a desire for precision and consistency. There are
no changes to the syntax or to the contracts. I used 0 instead of std::nullptr
because of lack of familiarity, but the proposed text could be updated further to use
std::nullptr.

IV Proposed Text for the Standard

All references are to the current Working Draft [1].

In section 26.6.6.2 [util.smartptr.shared], change the text of paragraph 1 to:

1 The shared_ptr class template owns a pointer to an object and (optionally) a
deleter, and stores a pointer to its template parameter T. The owned pointer, usu-
ally obtained via new, is usually (but not necessarily) of some type Y* convertible
to T* and usually equal to the stored pointer. shared_ptr implements semantics
of shared ownership; the last remaining owner of the pointer is responsible for de-
stroying the object, or otherwise releasing the resources associated with the owned
pointer, using the owned deleter if any.

In section 26.6.6.2.1 [util.smartptr.shared.const], change the paragraphs of the same number to:

N2638 — Improving the wording of shared pointers — Page 4

1 Effects: Constructs an empty shared_ptr object (i.e., that owns no pointer) and
that stores 0.

5 Effects: Constructs a shared_ptr object that owns the pointer p and stores a copy
of p.

10 Effects: Constructs a shared_ptr object that owns the pointer p and the deleter
d, and stores a copy of p. The second constructor shall use a copy of a to allocate
memory for internal use.

20 Effects: If r is empty, constructs an empty shared_ptr object; otherwise, con-
structs a shared_ptr object that shares ownership with r and stores a copy of the
pointer stored in r.

28 Effects: Constructs a shared_ptr object that shares ownership with r and stores
a copy of the pointer stored in r.

33 Effects: Constructs a shared_ptr object that owns r.release() and stores a
copy of that pointer.

In section 26.6.6.2.4 [util.smartptr.shared.mod], change paragraph 1 to:

1 Effects: Exchanges ownership of pointer and deleter (if any) owned by *this, and
value of pointer stored by *this, with those of r.

In section 26.6.6.3 [util.smartptr.weak], change the text of paragraph 1 to:

1 The weak_ptr class template tracks (but does not share) ownership of a pointer
that is already owned by a shared_ptr, and stores a pointer to its template param-
eter T, usually (but not necessarily) equal to the tracked pointer (after conversion
to T*). To access the object, a weak_ptr can be converted to a shared_ptr using
the member function lock.

and append to this paragraph (before the class synopsis):

[Note: Since the pointer tracked by a weak_ptr instance is not counted in the
use_count of the shared_ptr instances that share ownership of the tracked pointer,
the weak_ptr can be used to prevent leakage of resources owned by instances own-
ing shared_ptr to each other in a cycle, by making one of these shared_ptr a
weak_ptr instead. — end note]

In section 20.6.6.3.1 [util.smartptr.weak.const], change paragraph 1 to:

N2638 — Improving the wording of shared pointers — Page 5

1 Effects: Constructs an empty weak_ptr object (i.e., that tracks ownership of no
pointer) and that stores 0.

Split the clause of the three constructors in 4–7 into:

template <class Y> weak_ptr(shared_ptr <Y> const& r);

4 Requires: Y* shall be convertible to T*.
5 Effects: If r is empty, constructs an empty weak_ptr object that stores 0; other-

wise, constructs a weak_ptr object that tracks ownership of the pointer owned by
r and stores a copy of the pointer stored in r.

6 Postconditions: use_count() == r.use_count().
7 Throws: nothing.

weak_ptr(weak_ptr const& r);
template <class Y> weak_ptr(weak_ptr <Y> const& r);

8 Requires: Y* shall be convertible to T*.
9 Effects: If r is empty, constructs an empty weak_ptr object that stores 0; other-

wise, constructs a weak_ptr object that tracks the same ownership as r and stores
a copy of the pointer stored in r.

10 Postconditions: use_count() == r.use_count().
11 Throws: nothing.

In section 20.6.6.3.1 [util.smartptr.weak.dest], change paragraph 1 to:

1 Effects: Destroys this weak_ptr object but has no effect on the object it tracks
ownership of.

In section 20.6.6.3.1 [util.smartptr.weak.mod], change paragraph 1 to:

1 Effects: Exchanges pointers tracked and stored by *this with those of r.

In section 20.6.6.3.1 [util.smartptr.weak.obs], change paragraph 1 to:

1 Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that
share ownership of the pointer tracked by *this.

In section 26.6.6.4 [util.smartptr.enab], change paragraphs 1 and 11 to:

N2638 — Improving the wording of shared pointers — Page 6

1 A class T can inherit from enable_shared_from_this<T> to inherit the shared_-
from_this member functions that obtain a shared_ptr instance both owning and
storing the pointer this.

11 Returns: A shared_ptr<T> object r that shares ownership with p and stores p.

IV.1 Adding reset

At the end of // 20.6.6.2.4, modifiers, in the synopsis, add:

template <class Y> void reset(shared_ptr <Y> const& r, T *p);

In section 20.6.6.2.4 [util.smartptr.shared.mod], append the following paragraph:

template <class Y> void reset(shared_ptr <Y> const& r, T *p);

7 Effects: Equivalent to shared_ptr(r, p).swap(*this).

V Acknowledgements

Thanks to Peter Dimov for pointing out [4] and [5] and providing feedback on an
earlier version of this proposal. Thanks to my co-workers Pablo Halpern, Vladimir
Kliatchko and John Lakos for guidance and support.

References

[1] Working Draft, Standard for Programming Language C++. Document num-
ber: N2521=08-0031, 2008-02-04. (http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2008/n2521.pdf)

[2] Improving Usability and Performance of TR1 Smart Pointers. Vladimir
Kliatchko and Ilougino Rocha. (www.open-std.org/jtc1/sc22/wg21/
docs/papers/2007/n2351.htm)

[3] Improving shared_ptr for C++0x, Revision 2. Peter Dimov
(<pdimov@pdimov.com>), Beman Dawes, <bdawes@acm.org>). Document
number: N2351=07-0211.

N2638 — Improving the wording of shared pointers — Page 7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
www.open-std.org/jtc1/sc22/ wg21/docs/papers/2007/n2351.htm
www.open-std.org/jtc1/sc22/ wg21/docs/papers/2007/n2351.htm

[4] LWG Issue 710. Peter Dimov. (http://www.open-std.org/jtc1/sc22/
wg21/docs/lwg-active.html#710)

[5] LWG Issue 711. Peter Dimov. (http://www.open-std.org/jtc1/sc22/
wg21/docs/lwg-active.html#711)

[6] Alberto Ganesh Barbati. (http://barbati.net/c++/shared_ptr.pdf).

N2638 — Improving the wording of shared pointers — Page 8

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#710
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#710
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#711
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#711
http://barbati.net/c++/shared_ptr.pdf

	Motivation and Scope
	Impact On the Standard
	Design Decisions
	Proposed Text for the Standard
	Adding reset

	Acknowledgements
	References

