
Revisiting std::shared_ptr comparison

Document number: N2637=08-0147
Document title: Revisiting std::shared_ptr comparisons
Author: Hervé Brönnimann
Contact: hbronnimann@bloomberg.net
Organization: Polytechnic University and Bloomberg L.P.
Date: 2008-5-16
Number: WG21/N2637
Working Group: Library

Abstract

We propose an alternate value-based specification for shared pointer com-
parisons that restores the consistency between operator== and operator<
and addresses all the points raised in the rationale for the current (ownership-
based) specification [2].

I Motivation and Scope

The definition of operator< for std::shared_ptr and its inconsistency with
operator== is extremely surprising and counter-intuitive, especially for novices.
As discussed in [2], there are two possible definitions for this operator: one is
value-based (p.get() < q.get()) and the other ownership-based. The one cur-
rently chosen for the Working Draft [1] is the ownership-based, for reasons ex-
plained in [2]. Our proposal is to restore the value-based and solve the difficulties
which prevented its selection in the Working Draft. Besides the desire to retain in-
tuition and the benefits of a straightforward definition, an additional motivation is
that the intuitive definition of operator< is consistent for almost all smart pointer
types we can imagine, now and in the future, whereas the other definition is spe-
cific to std::shared_ptr. Writing generic code for pointer-like classes is easier
if the definition is consistent. One more motivating factor is that aliasing allows

N2637 — Revisiting shared pointer comparisons — Page 1

two shared pointers to point into the same array. Such pointers should have an op-
erator< that is consistent with their position in the array. The current definition
would make such pointers equivalent to one another. If we ever add shared_-
ptr<T[]> to the standard (e.g., in TR2 or TR3), this discrepancy would become
even more problematic.

The main point of this proposal is to change the return clause of operator<.
Specifically, we propose to:

• make operator< for std::shared_ptr consistent with operator==, and spec-
ify std::less accordingly (see below);

• remove operator< for std::weak_ptr altogether (and therefore std::less),
as is done for operator== in std::function;

• provide ownership-based comparisons as p.before(q), for both std::shared_-
ptr and std::weak_ptr;

• provide a polymorphic functor std::owner_less returning bool, comparing
an instance of std::shared_ptr and std::weak_ptr with another in-
stance of std::shared_ptr and std::weak_ptr.

This alternate solution to the problem of designing comparisons for shared point-
ers has the only drawback that the functor std::owner_less must be provided
explicitly to associative containers and algorithms (with the currently proposed
specifications, none is required). This, however, may more appropriately convey
the intent (where the key to the associative container is in effect the pointer owned,
and not stored, by the shared pointer).

A minor issue is that the standard declares operator<, but not operator>, or
operator<=, or operator>=. They must be declared in the synopsis of header
<memory> (pages 530) and in that of class std::shared_ptr (page 548). By
20.2.1 [operators], it is not necessary to provide definitions for them in section
20.6.6.2.7 [util.smartptr.shared.cmp].

Note that the specializations of std::less<T*> must not use operator<, since
the former defines a total order (paragraph 20.5.7[comparisons], clause 8) while the
latter is only required to compute a partial order (paragraph 5.9 [expr.rel], clause
2). Correspondingly, specializations of std:less<shared_ptr<T> > must be
declared and defined as follows:
template <class T>

std::less <shared_ptr <T>>
: public binary_function <shared_ptr <T>,shared_ptr <T>, bool >
{

bool operator ()(shared_ptr <T> const& x,

N2637 — Revisiting shared pointer comparisons — Page 2

shared_ptr <T> const& y) const
{

return std::less <T*>()(x.get(), y.get ());
}

};

Failure to do so would imply that std::less<shared_ptr<T> > would use op-
erator<(shared_ptr<T> const&, shared_ptr<T> const&), and would fail
to define a total order on shared_ptr<T>.

II Impact On the Standard

This proposal modifies the existing clauses ofoperator< and removes this opera-
tor for weak_ptr. The behavior of std::map<shared_ptr<T>, U> is changed,
and (the perhaps more common) std::map<weak_ptr<T>, U> no longer com-
piles; occurrences need to be replaced by std::map<shared_ptr<T>, U, std::owner_-
less<std::shared_ptr<T> > > and std::map<weak_ptr<T>, U, std::owner_-
less<std:weak_ptr<T> > >.

The definitions of >, <=, >=, the partial specializations of templates greater,
less, greater_equal, and less_equal for shared_ptr, and std::owner_-
less are pure library additions and should not affect existing code.

III Design Decisions

The design basically aims at satisfying three constraints:

• compatibility between operator== (necessarily value-based) and operator<
for std::shared_ptr;

• impossibility to order weak pointers based on their value (so that operator< for
std::weak_ptr must be ownership-based);

• consistency between std::map<shared_pointer<T>, U> and std::map<weak_-
ptr<T>, U> (where the only difference is that the former keeps the elements
alive).

It clearly is not possible to satisfy all three constraints at once. We simply choose to
satisfy a different set of constraints, which we deem more intuitive, than were cho-
sen in the current Working Draft [1]. In addition, we feel that it is easier to explain

N2637 — Revisiting shared pointer comparisons — Page 3

why operator< isn’t defined for std::weak_ptr than to explain the current de-
sign of operator< for std::shared_ptr (although [2] is probably good reading
no matter what). Finally, we feel that requiring the explicit usage of the compari-
son functor std::owner_less in sets and maps better conveys the intended usage.
Note that users for whom it does not matter what the ordering std::shared_ptr
is, just so long as one is defined, can retain their code unchanged.

Regarding the owner_before() member templates, the name (suggested as be-
fore() by P. Dimov as consistent with type_info::before) has been prefixed
by owner_, because the comparison is based only on ownership. Unlike owner_-
less, they provide mixed comparisons of shared and weak pointers of different
types.

Regarding the owner_less class template, we have chosen to leave it undefined
except for the two specializations. This gives owner_less a more consistent syn-
tax: owner_less<shared_ptr<T> > is then similar to less<shared_ptr<T>
>. Also, specializing for owner_less<shared_ptr<T> > doesn’t prohibit addi-
tional specializations for other smart pointer types in the future.

Regarding the polymorphism of the std::owner_less functor, we made that
choice somewhat arbitrarily and out of a desire for simplicity and allowing mixed
comparisons. If mixed comparisons are not deemed important, it is equally possi-
ble to only define a single operator() in each specialization.

IV Proposed Text for the Standard

All references are taken against the most recent version of the Working Draft [1].

IV.1 Operators

In the header <memory> synopsis, paragraph // 20.6.6.2.7, shared_ptr comparisons:,
add after operator<:

template <class T, class U>
bool operator >(shared_ptr <T> const& a, shared_ptr <U> const& b);

template <class T, class U>
bool operator <=(shared_ptr <T> const& a, shared_ptr <U> const& b);

template <class T, class U>
bool operator >=(shared_ptr <T> const& a, shared_ptr <U> const& b);

N2637 — Revisiting shared pointer comparisons — Page 4

In section 20.6.6.2.7 [util.smartptr.shared.cmp], remove operator!= and clauses 3,4 (by 20.2.1
[operators], it is not necessary to provide a definition), and change paragraph 5 to:

template <class T, class U>
bool operator <(shared_ptr <T> const& a, shared_ptr <U> const& b);

5 Returns: x.get() < y.get()

Also append at the end of this section:

6 For templates greater, less, greater_equal, and less_equal, the partial spe-
cializations for shared_ptr yield a total order, even if the built-in operators <, >,
<=, >= do not. Moreover, less<shared_ptr<T> >::operator()(a, b) shall
return std::less<T*>::operator()(a.get(), b.get()).

In section 20.6.6.3 [util.smartptr.weak], add to the class body in the synopsis:

/ / comparison
template <class Y> bool operator <(weak_ptr <Y> const&) const = delete;
template <class Y> bool operator <=(weak_ptr <Y> const&) const = delete;
template <class Y> bool operator >(weak_ptr <Y> const&) const = delete;
template <class Y> bool operator >=(weak_ptr <Y> const&) const = delete;

and remove // comparison... from synopsis (in the std namespace) in both 20.6 (<memory>)
and 20.6.6.3, as well as the whole section 20.6.6.3.6 [util.smartptr.weak.cmp].

IV.2 Member template owner_before

In section 20.6.6.2 [util.smartptr.shared], add to the class body in the synopsis:

/ / observers
...
template <class U> bool owner_before(shared_ptr <U> const& b) const;
template <class U> bool owner_before(weak_ptr <U> const& b) const;

and in section 20.6.6.2.5 [util.smartptr.shared.obs], add:

template <class U> bool owner_before(shared_ptr <U> const& b) const;
template <class U> bool owner_before(weak_ptr <U> const& b) const;

19 Returns: an unspecified value such that

— x.owner_before(y) defines a strict weak ordering as described in 25.3;

N2637 — Revisiting shared pointer comparisons — Page 5

— under the equivalence relation defined by owner_before, !a.owner_before(b)
&& !b.owner_before(a), two shared_ptr or weak_ptr instances are
equivalent if and only if they share ownership or are both empty.

In section 20.6.6.3 [util.smartptr.weak], add to the class body in the synopsis:

/ / observers
...
template <class U> bool owner_before(shared_ptr <U> const& b);
template <class U> bool owner_before(weak_ptr <U> const& b);

and in section 20.6.6.3.5 [util.smartptr.weak.obs], add:

template <class U> bool owner_before(shared_ptr <U> const& b);
template <class U> bool owner_before(weak_ptr <U> const& b);

9 Returns: an unspecified value such that

— x.owner_before(y) defines a strict weak ordering as described in 25.3;

— under the equivalence relation defined by owner_before, !a.owner_before(b)
&& !b.owner_before(a), two shared_ptr or weak_ptr instances are
equivalent if and only if they share ownership or are both empty.

IV.3 Class template owner_less

Finally, in the <memory> synopsis in 20.6, after // 20.6.6.3.7, weak_ptr specialized algorithms, add:

/ / 20.6.6.4 Class template owner_less:
template <class T> class owner_less;

and insert a new section between 20.6.6.3 and 20.6.6.4:

20.6.6.4 Class template owner_less [util.smartptr.ownerless]

1 The owner_less class template allows ownership-based mixed comparisons of
shared and weak pointers.
namespace std {

template <class T> struct owner_less;

template <class T> struct owner_less <shared_ptr <T> >
: binary_function <shared_ptr <T>, shared_ptr <T>, bool >

{

N2637 — Revisiting shared pointer comparisons — Page 6

typedef bool result_type;
bool operator ()(shared_ptr <T> const&, shared_ptr <T> const&) const;
bool operator ()(shared_ptr <T> const&, weak_ptr <T> const&) const;
bool operator ()(weak_ptr <T> const&, shared_ptr <T> const&) const;

};

template <class T> struct owner_less <weak_ptr <T> >
: binary_function <weak_ptr <T>, weak_ptr <T>, bool >

{
typedef bool result_type;
bool operator ()(weak_ptr <T> const&, weak_ptr <T> const &) const;
bool operator ()(shared_ptr <T> const&, weak_ptr <T> const&) const;
bool operator ()(weak_ptr <T> const&, shared_ptr <T> const&) const;

};

2 operator()(x,y) returns x.before(y). [Note:Note that

— operator() is a strict weak ordering as described in 25.3;

— under the equivalence relation defined by operator(), !operator()(a,b)
&& !operator()(a,b), two shared_ptr or weak_ptr instances are equiv-
alent if and only if they share ownership or are both empty.

— end note]

V Acknowledgements

Thanks to Peter Dimov for pointing out [2], and Peter Dimov and Pablo Halpern for
providing feedback on earlier versions of this proposal. Thanks to my co-workers
Pablo Halpern, Vladimir Kliatchko and John Lakos for guidance and support.

References

[1] Working Draft, Standard for Programming Language C++. Document num-
ber: N2521=08-0031, 2008-02-04. (http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2008/n2521.pdf)

[2] Smart Pointer Comparison Operators Peter Dimov <pdimov@mmltd.net>
Document number: N1590=04-0030, 2004-02-11. (http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1590.html)

N2637 — Revisiting shared pointer comparisons — Page 7

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2521.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1590.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1590.html

	Motivation and Scope
	Impact On the Standard
	Design Decisions
	Proposed Text for the Standard
	Operators
	Member template owner_before
	Class template owner_less

	Acknowledgements
	References

