
N2568=08-0078

Doc. no.: N2568=08-0078
Date: 2008-03-06
Project: Programming Language C++
Reply to: Alberto Ganesh Barbati

<ganesh@barbati.net>

�

Forward declaration of enumerations (rev. 1)

This is a revision of paper N2499. It incorporates comments from the EWG that lead to minor changes
in the proposed wording of [basic.def]/2 and [dcl.type.elab]/3. Moreover, a new informative section has
been added to provide more context and rationale about the proposed changes to [dcl.enum]/7.

1 Introduction

In C++03 every declaration of an enumeration is also a de�nition and must include the full list of
enumerators. The list is always needed to determine the underlying type of the enumeration, which is
necessary to generate code that manipulates values of the enumerations. However, there are use cases
where it would be desirable to declare an enumeration without providing the enumerators. The compiler
could still generate meaningful code, if at least the underlying type is known. The syntax introduced
by paper N23471), which allow the programmer to explicitly specify the underlying type, can easily be
extended to cover this scenario.

2 Motivation

2.1 Reduce coupling

Consider the header �le of a component providing support for localized strings:

// file locstring.h

#include <string>

enum localized_string_id

{

/* very long list of ids */

};

std::istream& operator>>(std::istream& is, localized_string_id& id);

std::string get_localized_string(localized_string_id id);

The enumeration localized_string_id may have several hundreds entries and be generated automati-
cally by a tool, rather than manually maintained; changes can therefore be very frequent. Every compo-
nent that needs a localized string will eventually need to include locstring.h and therefore will have to
be recompiled every time the enumeration changes.

Now, consider the following piece of code:

localized_string_id id;

std::cin >> id;

std::cout << get_localized_string(id);

1)paper N2347 has been integrated in the draft for C++0X, that is paper N2641 at the time of writing.

1

N2568=08-0078

Does this code depend on the list of enumerators? According to C++03 the answer is yes, because
C++03 requires the presence of the entire list of enumerators to determine the underlying type of
localized_string_id. Of course, if we didn't know the underlying type, we couldn't instantiate the
variable id nor we pass it by value to function get_localized_string(). However, neither the names
nor the values of the enumerators are actually used by the code! If we could just tell the compiler the
underlying type, there would be no technical obstacle for it to produce the correct code even in absence
of the list of enumerators.

2.2 Type-safe data hiding

Consider this class:

class C

{

public:

/* public interface */

private:

enum E { /* enumerators */ };

E e;

};

According to C++03, the list of enumerators is required in order to determine the underlying type of the
data member e, an essential information needed to determine the layout of class C. If the public interface
of class C does not make any use of E, the list of enumerators of E would be merely an implementation
detail, yet any change to the list requires re-compilation of all clients of class C.

Moreover, if class C is part of the interface of a closed-source library which is distributed in binary form,
the names of the enumerator may need to be obfuscated in order to avoid disclosing internal details.

The obvious work-around is to de�ne the member variable e with a basic integral type and then declare
the enumeration in another �le. This approach is inferior, because we lose the type safety provided by
the enumeration.

3 Proposal

This proposal introduces a syntax that allows declaring an enumeration without providing a list of enu-
merators. Such declaration would not be de�nition in order to avoid problems with ODR and can be
provided only for enumerations with �xed underlying type. An enumeration can be then be redeclared,
possibly providing the missing list of enumerators, but the redeclaration shall match the previous decla-
ration:

enum E : short; // OK: unscoped, underlying type is short

enum F; // illegal: enum-base is required

enum class G : short; // OK: scoped, underlying type is short

enum class H; // OK: scoped, underlying type is int

enum E : short; // OK: redeclaration of E

enum class G : short; // OK: redeclaration of G

enum class H; // OK: redeclaration of H

enum class H : int; // OK: redeclaration of H

enum class E : short; // illegal: previously declared as unscoped

enum G : short; // illegal: previously declared as scoped

enum E; // illegal: enum-base is required

enum E : int; // illegal: different underlying type

enum class G; // illegal: different underlying type

2

N2568=08-0078

enum class H : short; // illegal: different underlying type

enum class H { /* */ }; // OK: this redeclaration is a definition

The underlying type must be speci�ed each time as a mean to avoid possibile interpretation ambiguities
that could depend on the order of the declarations.

Moreover, enumerations declared at class or namespace scope can be de�ned in an enclosing scope:

struct S

{

enum E : int; // unscoped enumeration, underlying type is int

E e; // e is an implemented as-if it was declared int

};

enum S::E : int // definition of the nested enumeration

{

/* ... */

};

4 Interaction with N2347

N2347 changed the de�nition of elaborated-type-speci�er by allowing enum-keys where only the enum

keyword was previously allowed. Moreover, "the enum-key used in an elaborated-type-speci�er need not
match the one in the enumeration's de�nition." The author of this proposal believes this change was both
unnecessary and a mistake. Moreover, it is an impediment for this proposal so a return to the previous
de�nition is deemed necessary.

Paper N2347 makes this code legal:

enum class E { a, b };

enum E x = E::a; // OK

however, it also makes this code legal:

enum E { a, b };

enum class E x = a; // OK ???

which doesn't look as good as in the previous case: the extra class keyword in the second line is
confusing to say the least. The objections to the change in the de�nition of elaborated-type-speci�er can
be summarized as follows:

a) elaborated-type-speci�ers are used mainly for compatibility with legacy C code, they are not needed
in practice in C++, where E is just as good as enum E, but it's shorter. Legacy C code won't need
to support scoped enumerations explicitly

b) if enum E can be used in place of enum class E, the programmers will probably prefer the former,
especially since adding class is not a reliable source of additional information about E

c) allowing enum class E to refer to an unscoped enumeration can be a source of confusion

d) the change was inessential to the other important changes introduced by paper N2347

The con�ict with this proposal arises when parsing this declaration:

enum class E; // (1)

With N2347 wording, such code is ill-formed because an elaborated-type-speci�er is the "sole constituent"

3

N2568=08-0078

of the declaration and the form is not explicitly listed as legal in [dcl.type.elab]/1. We can't just add (1)
to the list of legal forms, because E may still refer to either a scoped or unscoped enumeration and this
makes a lot of di�erence, because scoped enumerations always have �xed underlying type while unscoped
enumerations don't.

According to this proposal, line (1) would unambigously declare E as a scoped enumeration with un-
derlying type of int. The enum keyword would still be allowed to refer to scoped enumerations, while
enum class and enum struct would be banned from elaborated-type-speci�ers, for example:

enum class E { a, b };

enum E x1 = E::a; // OK in N2347, OK in this proposal

enum class E x2 = E::a; // OK in N2347, illegal in this proposal

enum F { a, b };

enum F y1 = a; // OK in N2347, OK in this proposal

enum class F y2 = a; // OK in N2347, illegal in this proposal

Notice that the following:

enum E; // illegal

would remain illegal (as it is in both C++03 and N2347), because an elaborated-type-speci�er is the "sole
constituent" of a declaration and this form is not among the allowed forms in [dcl.type.elab]/1. Instead,
none of the following

enum E : int; // OK: E is unscoped, underlying type is int

enum class F; // OK: F is scoped, underlying type is int

would trigger [dcl.type.elab]/1, because in the �rst case the elaborated-type-speci�er is no longer the "sole
constituent" of the declaration, while in the second case there is no elaborated-type-speci�er.

5 Impact on the standard and implementability

This proposal provides a semantic to a syntax that was previously illegal and does not change the semantic
of code that was legal in C++03. The new syntax does not introduce new keywords. Code that was legal
according to N2347, however, can become illegal.

There are no known or anticipated di�culties in implementing these features.

6 Proposed text

In this section, changes are presented as modi�cations to existing wording in current draft, paper N2461,
where strikethrough text refers to existing text that is to be deleted, and underscored text refers to new
text that is to be added.

6.1 Changes to [basic.def]

Changes to paragraph 2:

A declaration is a de�nition unless it declares a function without specifying the function's body
(8.4), it contains the extern speci�er (7.1.1) or a linkage-speci�cation (7.5) and neither an
initializer nor a function-body, it declares a static data member in a class de�nition (9.4), it is
a class name declaration (9.1), or it declares an enumeration without specifying an enum-body

(7.2), or it is a typedef declaration (7.1.3), a using-directive (7.3.3), or a using-declaration (7.3.4).

4

N2568=08-0078

6.2 Changes to [dcl.type.elab]

elaborated-type-specifier :
class-key ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt simple-template-id
enum-key ::opt nested-name-specifieropt identifier
enum ::opt nested-name-specifieropt identifier

Changes to paragraph 3:

The class-key or enum-keyenum keyword present in the elaborated-type-speci�er shall agree in
kind with the declaration to which the name in the elaborated-type-speci�er refers. This rule also
applies to the form of elaborated-type-speci�er that declares a class-name or friend class since it
can be construed as referring to the de�nition of the class. Thus, in any elaborated-type-speci�er,
the enum-keyenum keyword shall be used to refer to an enumeration (7.2), the union class-key

shall be used to refer to a union (clause 9), and either the class or struct class-key shall be
used to refer to a class (clause 9) declared using the class or struct class-key. The enum-key

used in an elaborated-type-speci�er need not match the one in the enumeration's de�nition. [
Example:

enum class E { a, b };

enum E x = E::a; // OK

�� end example]

6.3 Changes to [dcl.enum]

Changes to paragraph 1:

enum-name :
identifier

enum-specifier :
enum-key identifieropt enum-baseopt { enumerator-listopt }
enum-key identifieropt enum-baseopt { enumerator-list , }
enum-key identifieropt enum-baseopt enum-bodyopt

enum-key nested-name-specifier enum-baseopt enum-body
enum-body :

{ enumerator-listopt }
{ enumerator-list , }

enum-key :
enum
enum class
enum struct

enum-base :
: type-specifier-seq

enumerator-list :
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition :
enumerator
enumerator = constant-expression

enumerator :
identifier

Add as new paragraph 7:

If the enum-body is absent in an enumeration declaration, the declaration is ill-formed unless it
has one of the following forms:

5

N2568=08-0078

enum identifier enum-base ;
enum class identifier enum-baseopt ;
enum struct identifier enum-baseopt ;

[Note: a well-formed declaration without enum-body is not a de�nition and the declared
enumeration has �xed underlying type. � end note] A scoped enumeration shall not be later
redeclared as unscoped or with a di�erent underlying type. An unscoped enumeration shall not
be later redeclared as scoped and a redeclaration shall have an enum-base specifying the same
underlying type.

Add as new paragraph 8:

If the enum-key is followed by a nested-name-speci�er, the enum-speci�er shall refer to an
enumeration that was previously declared directly in the class or namespace to which the
nested-name-speci�er refers (i.e., neither inherited nor introduced by a using-declaration), and
the enum-speci�er shall appear in a namespace enclosing the previous declaration.

7 About the redeclaration syntax

The proposed wording in [dcl.enum]/7 requires the programmer to specify the underlying type on each
redeclaration including the de�nition, as in:

enum E : int;

enum E : int { a, b, c };

This redundant syntax may seem verbose and error prone. Two alternatives were considered in a discus-
sion on comp.std.c++, namely:

a) a redeclaration of a previously declared enumeration shall not specify an enum-base, the underlying
type is the one determined by the �rst declaration.

b) a redeclaration of a previously declared enumeration shall either have no enum-base or have an
enum-base specifying the same type as the underlying type of the �rst declaration. In any case, the
underlying type is the one determined by the �rst declaration.

The problem with these approaches is that they allow the presence or absence of a previous declaration
to change the meaning of an otherwise perfectly valid de�nition:

// E.h

enum E { ea, eb }; // underlying type of E is implementation-defined

enum class F { fa, fb }; // underlying type of F is int

// A.cpp

enum E : short;

enum class F : short;

#include "E.h" // defines both E and F with underlying type short

This can be more disorientating than requiring the programmer to be verbose. In a certain sense, the
proposed wording is actually less error prone than the alternatives, as mistakes can be easily detected
and correctly diagnosed by compiler.

8 Acknowledgments

The author is grateful to Lawrence Crawl and Jens Maurer for their feedback.

6

