
Why duration Should Be a Type in C++0X

Document #: WG21/N2526 = J16/08-0036
Date: 2008-01-30
Revises: None
Project: Programming Language C++
Reference: ISO/IEC IS 14882:2003(E)
Reply to: Walter E. Brown<wb@fnal.gov>

Marc Paterno <paterno@fnal.gov>
Computing Division
Fermi National Accelerator Laboratory
Batavia, IL 60510-0500

Contents

1 Introduction 1

2 Desiderata 2

3 Overview of proposed date-time facility 4

4 Discussion and critique of proposed date-time facility 4

5 Alternatives 6

6 Summary and conclusion 7

7 Acknowledgments 7

A Appendix: Nomenclature and basics of the SI 7

Numbers are the product of counting. Quantities are the product
of measurement.

— GREGORY BATESON

1 Introduction

1.1 Motivation

This paper is motivated by recent drafts of proposals for the threads portion of the C++0X standard
library. In particular, interfaces to certain threads control functions (e.g., sleep()) are designed
so as to make use of a duration metric. Because duration is classified in the SI Brochure1 as one

1The International Bureau of Weights and Measures (BIPM), established by international treaty in 1875, has as its
mission “to ensure worldwide unification of measurements.” Among its other tasks, the BIPM “establish[es] fundamental
standards [. . .] for the measurement of the principal physical quantities.” Its publication, the Système International
d’Unités, the SI (known in English as the International System of Units), is the worldwide standard for all matters related
to “current best measurement practice.” The complete text of the reference document, “commonly called the SI Brochure,”
can be freely downloaded from http://www.bipm.org/en/si/si_brochure/general.html. It, in turn, is based on the
International System of Quantities, ISQ, published in Quantities and Units, International Standard ISO 31:1992(E), ISBN
92-67-10185-4.

1

mailto:wb@fnal.gov
mailto:paterno@fnal.gov
http://www.bipm.org/en/si/si_brochure/general.html

2 N2526: Why duration Should Be a Type in C++0X

of the seven “base quantities” of the SI, we believe it is important that, as a nascent International
Standard, C++0X be consistent with other International Standards, and in particular with the SI’s
long-established codified practices regarding durations and similar quantities. Unfortunately, the
current threads proposal seems inconsistent with such practices, and so we are very concerned
about the direction taken.

We previously made our concerns known via email to the Editorial Committee appointed as
part of Kona’s LWG Motion 14. This was done as part of our commitment (pursuant to that same
Motion) to review the work of the Editorial Committee. However, that Committee concluded that it
was not within their charge to consider the issues thus raised and so took no action regarding
these concerns. After reviewing the Editorial Committee’s second draft, we wrote on 2008-01-23:

It seems that the Editorial Committee has made no adjustments to the text of the draft
in response to the comments and the subsequent clarifications that we had offered
regarding the first draft of the paper. Because we consider the underlying issues to be
so serious as to constitute a fatal defect in the proposal, and because [. . .] time grows
short, we respectfully recommend that the paper be not forwarded to the Project Editor
in its current form and that it instead be remanded to the full Committee for further
discussion and direction.

We believe that the Editorial Committee does have the authority to take the above
recommended actions, and further believe that such actions would be both responsible
and not inconsistent with the charge to the Editorial Committee. We look forward to a
full and fair airing of the issues, so that the threads library proposal can be perfected
and then become part of C++0X.

A second member of the Review Committee wrote later that day to share in our concerns. However,
the Editorial Committee chair responded on the same date that he was “not sufficiently concerned
about the risk that results from putting this [draft] into the WP that [. . .] it outweighs the benefit
of having a threads API in the working paper so that we have more time to think about and fix
secondary threads issues.”

1.2 Overview

Because we strongly disagree with the above outcome, we are formalizing and expanding our
concerns in this paper. Section 2 will identify what we believe to be the important requirements
that must be satisfied by any library that provides or makes use of durations and related
quantities. Section 3 will give a brief overview of the proposed date-time facility within the threads
library proposal, while Section 4 will present a discussion and critique of that facility’s design.
Section 5 will describe a few alternative designs that we consider preferable. We summarize in our
concluding Section 6. For reference purposes, Appendix A presents some basic information about
the SI, and defines the nomenclature used throughout the body of this paper.

2 Desiderata

2.1 Additive properties

In both commercial and scientific applications, values of quantities can come about as the result
of an observation (a measurement), or as the result of a calculation involving other quantity values.
Sums and differences of such quantities are meaningful if and only if the operands’ quantities are
of the same kind (i.e., are commensurate, have the same dimension).

We consider this commensuration property to be an important requirement. For example, the
sum or difference of two length quantities must always produce a length (or a commensurate
equivalent such as a perimeter, a height, an altitude, or a distance). In contrast, two quantities

N2526: Why duration Should Be a Type in C++0X 3

that are not commensurate can produce no meaningful sum or difference; any expression calling
for same should be diagnosed as ill-formed.

2.2 Multiplicative properties

Products and ratios (quotients) are also important and sensible results of operations on quantity
values. Unlike additive operators, these operations do not require that their operands’ quantities
be commensurate. For example, a length quantity can be divided by a duration quantity, and
yields a speed quantity. Similarly, the reciprocal of a duration (e.g., ticks per second) is a
frequency quantity, and the ratio of two durations is a unitless quantity.

Indeed, the kind of the resulting quantity for multiplicative operations is in each case de-
termined by the kinds of the operand quantities. As additional examples, the product of two
length quantities yields an area quantity, the product of three lengths (or of a length and an
area) yields a volume, and an acceleration is the quotient of a length and the square of a duration.
Such behaviors are more easily represented by inspecting the dimensions of each quantity: an
area’s dimension is L2, a volume’s dimension is L3, an acceleration’s dimension is L/T2, and a
frequency’s dimension is 1/T.

Finally, as an important specific case of the product of two quantities, recall that the SI speaks
of a quantity’s value “as the product of a number and a unit.” As a number is considered a
dimensionless quantity, and a unit is by definition a quantity, this is a sensible product, and one
that we believe important to preserve.

2.3 Constancy of units

The SI establishes that a quantity’s value is always expressed in terms of some unit that is used
as a reference. The SI further demands (although it can be easily deduced) that all such units
need themselves be values of the same quantity as that for which it serves as a reference.

Historically, among the major problems that lead to the formation of the BIPM was that units
by the same name, but in different jurisdictions, often denoted distinct quantity values.2 Indeed,
one of the SI’s greatest contributions to moderm mensuration and related technology has been
the standardization of what has been termed a “scientific system of units” (in contrast to older
so-called “customary units”).

Therefore, it has become axiomatic that each unit shall denote a constant quantity. We believe
this to be an important and useful property.

2.4 Library coherence and interoperability

We firmly believe that any library providing quantity services should interoperate with and be
conveniently usable by all libraries requiring such services. This opinion seems shared by the
LWG, as it was the motivation for incorporating a date-time facility to serve the needs of the
threads library. Indeed, it is our understanding that other libraries will be proposed (e.g., for TR2)
that will make use of duration or similar services.

2“In antiquity, systems of measurement were defined locally, the different units were defined independently according
to the length of a king’s thumb or the size of his foot . . . ” [Wikipedia, Systems of measurement, 2007-01-08]. Even today,
we have units that are in common use, yet that are overloaded with multiple definitions: gallon, for example, could
denote the U.S. liquid gallon, the U.S. dry gallon, or the Imperial (UK) gallon.

4 N2526: Why duration Should Be a Type in C++0X

It is for this reason that we believe it important to consider more general use cases beyond the
needs of the threading library.

3 Overview of proposed date-time facility

The current threads proposal incorporates N2328: “Proposal for Date-Time Types in C++0x To
Support Threading APIs,” a minimalist version of the date-time library that had been proposed in
N1900: “Proposal to Add Date-Time to the C++ Standard Library 0.75” and N2058: “Proposed Text
for Proposal to add Date-Time to the Standard Library 1.0.” All these proposals are based on the
Boost Date-Time library, self-described as “an open source C++ library developed by CrystalClear
Software.”

This date-time part of the threads proposal defines the following terms:

A time point represents a dimensionless [sic!] instant in the time continuum. A time
duration represents a length of time unattached to any time point. Time points and
time durations have a resolution which is their smallest representable time duration.
Time points have an epoch or start of a given time scale.

Duration requirements are, in turn, principally defined via a requirements table (i.e., by
a concept), and can be realized by any type that meets those requirements (i.e., by any type
that models that concept). In particular, the threads proposal includes text to standardize
six such types: std::nanoseconds, std::microseconds, std::milliseconds, std::seconds,
std::minutes, and std::hours. In addition, there are function templates to provide the usual
comparisons between values of two such types, sums and differences of such values, products of
one such value with a long value, and the quotient of a duration value with a long value.

There are no general requirements specified on types that correspond to a time point, but one
such type (system_time) is mandated by the proposal.

4 Discussion and critique of proposed date-time facility

4.1 Unnecessary proliferation of templates due to units as types

Most importantly, the facility’s design makes it inconvenient for both authors and users of this
library facility and of any library seeking to extend this facility by representing, via concepts
rather than via types, quantities of other dimensionalities. Among our greatest concerns is that
the underlying design makes it unnecessarily difficult to deal with units. The multiplicity of types
strongly suggests that any function taking a duration parameter must be expressed as a template
in order to accept arguments that may be expressed via any of the duration types.

Any function of, say, n parameters, each of a quantity type, would require n template parame-
ters, even if all the types were commensurate. It is the equivalent of wishing to write a function to
calculate the perimeter of a triangle whose sides a, b, c may have types A, B, and C, where each
may be a distinct unit (e.g., meters, millimeters, and centimeters); this conceptual function would
need to be implemented as a template in order to deal with the distinct units. It seems to us
that a more convenient approach, for both authors and users, would be to have a single length
type, to have each unit be a quantity of that type, and to express each of the triangle’s sides as
appropriate multiples of such a unit. Then a single function taking three length arguments and
returning a length would suffice.

For the record, several generations of software in (at least) the physics community have
successfully treated units as constant values, and have expressed quantities as products that
involve these units. Geant4, “a toolkit for the simulation of the passage of particles through
matter,” is one current example of such software; see http://www.geant4.org for details.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2328.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1900.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2058.html
http://www.geant4.org

N2526: Why duration Should Be a Type in C++0X 5

4.2 Combinatorial explosion of types due to units as types

Another consequence of the current approach is, upon extension, the combinatorial explosion of
types. To write a function calculating, say, a speed as the quotient of any of n lengths and any of
m durations, would lead to the possibility of n×m result types. We thus believe that this approach
fails to scale when used in multiplicative conjunction with other quantity types. Since SI specifies
seven base quantities, and since common use will routinely involve several quantities, each raised
to some small exponent (e.g., energy is mass times length squared divided by duration squared),
the number of types needed to represent quantities in even simple programs can quickly become
huge.

4.3 Lack of user control over precision versus range

As described above, in this library facility’s design, units are realized as types that model its
duration concept. There is thus a multiplicity of types that are commensurate; the commensura-
tion of values of these types is achieved via template technology. This design requires a choice
between preserving range or preserving precision: For example, if we declare ns to be of type
std::nanoseconds and hr to be of type std::hours, what type should result from their sum hr
+ ns? The proposal opts for the type that has “the finest [sic] duration,” but we believe that there
are valid use cases for either decision.

For most measurement purposes, it seems to us preferable to retain precision rather than
dynamic range. In the absence of sufficient precision, a very large quantity added to a very small
quantity should, we believe, usually yield the very large quantity. A more suitable library design
would leave the choice of range versus precision to the client. It seems to us that it is the lack of
such user control that has lead to the design decision to prefer precision over range.

4.4 Unintuitive results due to choice of integral representations

We are also concerned that minutes(2.5) == minutes(2) and that minutes(2.5) != seconds(150).
There seems, in the current specification, neither useful semantics nor diagnostics in the presence
of floating point values.

Further, the defaults seem misleading in practice. The expression 3 * minutes() appears to
denote a three-minute duration, yet evaluates to the equivalent of minutes(0), a zero-minute
duration.

Incidentally (apropos of these examples), we note that the only requirement regarding the
construction of a duration type is that the type be DefaultConstructible and CopyConstructible,
with no specified semantics. It is clear from earlier documents that such expressions as hours(1)
are generally intended to be valid and meaningful, and the individual specifications of the
mandated types do provide this capability, yet the general duration requirements seem silent
regarding this.

4.5 Superfluous distinction between time point and duration

Paraphrasing the definitions quoted above, this library facility treats a time point as a position in
time relative to a designated origin, and a time duration as a displacement from one time point to
another time point. We note that the facility provides types that correspond to one or to the other
of these notions, thus treating time point and time duration as substantively different from each
other. We disagree that these notions should be viewed in such dramatically differently manners.

It would certainly make sense to differentiate between a displacement and a position (whether
speaking of time, space, or temperature) if different positions can denote displacements relative
to different origins. This distinction is necessarily lost, and therefore moot, when there is only a
single type that represents all positions. In other words, since this library facility standardizes

6 N2526: Why duration Should Be a Type in C++0X

only a single type (system_time) to correspond to a time point, and thus provides but a single
time origin (namely, the traditional UNIX epoch), we believe there is no need for distinct types to
distinguish either:

• between distinct origins, or
• between a time point and a duration (distance in time).

While the need for such distinctions may be revisited in the context of TR2, we believe it is today
unnecessary (especially given our current time pressures), and hence that it is premature to
standardize a level of generality for which no need has been demonstrated in C++0X.

5 Alternatives

As we had previously written to the Editorial Committee, “We have thought of at least three
alternatives, each of which we like better (for purposes of today’s threads library) than what is
now proposed.” Parts of these alternatives are inspired by POSIX precedents that would have
us use units implied by functions’ names (e.g., sleep() [implying seconds] and nanosleep()
[implying nanoseconds]).

1. If there is a type std::threads::duration, then we can have and use constants of that
type.

namespace std::threads {
constexpr duration minute = ...;
constexpr duration second = ...;

}

And if the sleep() function can take a duration as its argument (which seems to be the
intent), then [. . .] users can write:

std::this_thread::sleep(3 * std::threads::minute
+ 30 * std::threads::second);

std::this_thread::sleep(3.5 * std::threads::minute);

We emphasize that this needs only a single duration type, plus a few convenience constants
of that type together with appropriate operators involving that type.

2. We can use an integral type instead (e.g., int64_t), noting (perhaps via a naming convention
or just via documentation) that all values are in, say, nanoseconds.

namespace std::threads {
constexpr int64_t second = 1_000_000_000; // using Lawrence’s notation
constexpr int64_t minute = 60 * second;

}

And if the sleep() function takes an int64_t as its argument, then users can still write:

std::this_thread::sleep(3 * std::threads::minute
+ 30 * std::threads::second);

3. We can use an integral type (again, e.g., int64_t), and (instead of any named constants)
rename the function to indicate the implied units:

And if each sleep() function takes an int64_t as its argument, then users can write:

N2526: Why duration Should Be a Type in C++0X 7

std::this_thread::nanosleep(30_000_000_000);
std::this_thread::microsleep(30_000_000);
std::this_thread::millisleep(30_000);
std::this_thread::sleep(30); // in seconds

All the above are equivalent in intent.

6 Summary and conclusion

The Library Working Group has taken the position that there should be a single facility to provide
a general date-time duration, and that this facility should serve the duration needs of the threads
library and of other libraries. We agree with this direction.

We disagree, however, that the present design is adequate to serve the needs of such other
libraries. In particular, we have shown that the “little bit” of the date-time library used by the
threads library exposes a design that precludes using this date-time duration notion from being
reusable in a units library. Further, without breaking future backward compatibility, the design
seems to usurp important names and thus precludes any extension or replacement in a more
suitable direction.

In particular, we believe in, and recommend adherence to, the following basic principles:

1. Quantities (such as duration) are candidates for abstraction as C++ types.

2. Units (such as seconds) are treated as constants of their respective quantity types.

We respectfully urge that the underlying issues be considered on a time scale consistent with
C++0X.

7 Acknowledgments

We thank the Fermi National Accelerator Laboratory’s Computing Division, sponsor of our partici-
pation in the C++ standards effort, for its past and continuing support of our efforts to improve
C++ for all our user communities.

* * * * *

A Appendix: Nomenclature and basics of the SI

Note: Because the following definitions are compiled from several sources (as indicated), we have
in some cases adjusted the typography (e.g., by italizicing) for consistency and clarity.

A.1 QUANTITY, VALUE OF A QUANTITY

The International Vocabulary of Basic and General Terms in Metrology (VIM) defines a quantity as
a “property of a phenomenon, body, or substance, to which a magnitude can be assigned.”

The SI Brochure states in its opening paragraph, “The value of a quantity is generally expressed
as the product of a number and a unit. The unit is simply a particular example of the quantity
concerned which is used as a reference, and the number is the ratio of the value of the quantity
to the unit.”

8 N2526: Why duration Should Be a Type in C++0X

A.2 BASE QUANTITY, DERIVED QUANTITY, DIMENSION

VIM defines a base quantity as a “quantity, chosen by convention, used in a system of quantities
to define other quantities.” It further defines a derived quantity as a “quantity, in a system of
quantities, defined as a function of base quantities.”

The SI uses seven base quantities. “Each of the seven base quantities used in the SI is regarded
as having its own dimension . . . All other quantities are derived quantities, which may be written in
terms of the base quantities by the equations of physics. The dimensions of the derived quantities
are written as products of powers of the dimensions of the base quantities . . . ”

For example, length and duration (also known as time) are two of the SI’s base quantities,
and speed is a derived quantity. Using L and T, respectively, as the symbols for the length and
duration dimensions, the dimension for speed is given by L1T−1, typically algebraically simplified
to LT−1 or L/T. (Technically, all seven dimensions should be represented, but we have elided for
simplicity the remaining five whose dimensional exponents are zero.)

A.3 BASE UNIT, DERIVED UNIT

Corresponding to its seven base quantities, the SI defines seven base units. For example, the base
unit corresponding to length is the metre (m), and the base unit corresponding to duration is the
second (s). Further, “Derived units are products of powers of base units.” Thus, the derived unit
corresponding to speed is m1s−1 (equivalently, m/s or metre per second).

A.4 DIMENSIONLESS QUANTITY, UNITLESS QUANTITY

As a special case, the SI refers to a quantity as dimensionless if each of its dimensional exponents
is zero. Such quantities are considered to have “the unit one, 1”; however, this unit “is generally
omitted in specifying the values of dimensionless quantities” and so these quantities are often
informally described as unitless. Examples of such quantities include those that “have the nature
of a count.”

A.5 COMMENSURABLE QUANTITIES, QUANTITIES OF THE SAME KIND

Finally, in accepted scientific parlance, two quantities are commensurable (or commensurate)
if values of one can be expressed in the same units as values of the other, i.e., if they are
measurable by a common standard. Equivalently, VIM defines the phrase quantities of the same
kind, requiring that “Quantities of the same kind within a given system of quantities have the
same dimension.”

	1 Introduction
	2 Desiderata
	3 Overview of proposed date-time facility
	4 Discussion and critique of proposed date-time facility
	5 Alternatives
	6 Summary and conclusion
	7 Acknowledgments
	A Appendix: Nomenclature and basics of the SI

