
N2436: Small Allocator Fix-ups Page 1 of 4

Doc No: N2436=07-0306

Date: 2007-10-05

Author: Pablo Halpern

Bloomberg, L.P.

phalpern@halpernwightsoftware.com

Small Allocator Fix-ups

Contents

Introduction .. 1

Document Conventions .. 1

1. Modifications to construct and destroy ... 2

2. Clarification of address for the Default Allocator.. 2

3. Consistent Copy and Equality Semantics for Allocators ... 3

Introduction

This document comprises the small subset of n2387, Omnibus Allocator Fix-up Proposals,

that was approved by the Library Working Group during the morning session of

October 3, 2007 in Kona. The rest of n2387 is still on the table, neither approved nor

rejected by the LWG.

The following issues are resolved by this proposal:

• LWG 401: incorrect type casts in table 32 in lib.allocator.requirements

• LWG 634: turn address into boost::addressof

• Variadic construct member function (per n2268).

• LWG 258: Missing allocator requirement (transitive ==)

Document Conventions

All section names and numbers are relative to the August 2007 working draft, N2369.

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the

working paper are shown with green strikeouts for deleted text and green underlining for inserted text

within the indented blue original text. Large proposed insertions into the working paper are shown in

the same dark blue indented format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

N2436: Small Allocator Fix-ups Page 2 of 4

Requests for LWG opinions and guidance appears with light (yellow) shading.

1. Modifications to construct and destroy

Motivation

Unless and until we decide otherwise, pointer is not required to be a raw pointer and

is not to be a reasonable argument to placement new. Thus, as LWG 401 points out, it is

inappropriate to define the meaning of the construct member function in terms of

placement new.

Separately, N2268, Placement Insert for Containers, which was accepted into the WP in

Toronto in July 2007, creates the requirement for a construct function that takes a

variadic argument list.

Proposed Wording

In [allocator.requirements] (20.1.2), add the following row to Table 39:

Args a template parameter pack

args a function parameter pack with the pattern Args&&

In section [allocator.requirements] (20.1.2), table 40, change the rows that describe

construct and destroy as follows.

a.construct(p,t) (not used) Effect: ::new((void*)p) T(t)

a.construct(p,v) (not used) Effect: ::new((void*)p)

T(std::forward<V>(v))

a.construct(p,args) (not used) Effect: Constructs an object of type T

at p by invoking
T(forward<Args>(args)…)

a.destroy(p) (not used) Effect: ((T*)p)->~T()Destroys the

object at p.

2. Clarification of address for the Default Allocator

Motivation

LWG 634 points out that the definition of allocator<T>::address() is broken if T

has an overloaded operator&().

Proposed Wording

In section [allocator.members] (20.6.1.1), modify the first two paragraphs as follows:

20.6.1.1 allocator members [allocator.members]

N2436: Small Allocator Fix-ups Page 3 of 4

pointer address(reference x) const;

Returns: &x The actual address of object referenced by x, even in the presence of an overloaded

operator&.

const_pointer address(const_reference x) const;

Returns: &x The actual address of object referenced by x, even in the presence of an overloaded

operator&.

The above change addresses LWG 634 using nearly the exact wording in the proposed

resolution. It ensures that std::allocator<T>::address() does the right thing if

operator& is overloaded for T. Note that this definition of address applies only to

the default allocator (though it makes sense for any allocator for which pointer is the

same as value_type*).

3. Consistent Copy and Equality Semantics for Allocators

Motivation

As per LWG 258 [allocator.requirements] 20.1.2, table 40 requires that two allocators of

the same type compare equal if memory allocated through one allocator can be

deallocated through the other. It also states that if X and Y are corresponding allocators

for different types, T and U, and if a is of type X and b is of type Y, then X a(b) will yield

the post-condition that Y(a) == b. In other words, conversion is reversible. This comes

close to, but does not fully state, that operator== for allocators must be transitive,

symmetric, and reflexive, and that Y(a) == Y(a).

As intuitive as these relationships may seem to some, there are reasoned opinions that

these requirements are not needed and that there are useful allocators that could be

built if these requirements were not present. For example, a small arena allocator that

contains an array of bytes right within its footprint would not be equal even to a copy of

itself. Never the less, I propose that operator== be transitive, symmetric, and reflexive

(i.e., a proper equivalence relationship) and that copy-construction and conversion-

construction imply that the copy compares equal to the original. The reasons are as

follows:

1. It violates a principle of operator overloading that an operator have semantics vastly

different from the standard meaning. For example, operator+ should not mean

multiplication.

2. Similarly, it is not reasonable to assume that copy-constructing an object will yield

an object that does not compare equal to the original.

N2436: Small Allocator Fix-ups Page 4 of 4

3. Many containers have already been written that make the standard assumptions

about copy construction and operator==.

4. Some uses of allocators, such as type erasure or footprint optimizations require that

an allocator be able to allocate a copy of itself. At least one implementation of

vector that I’ve seen puts the allocator on the heap.

A stateful allocator in this proposal would be required to share state with all of its

copies (including copy-conversions). However, the benefits of having an allocator with

truly unique state can be obtained by using an allocator with shared state and bundling

the state object with the container that uses the allocator.

Proposed Wording

In section [allocator.requirements] (20.1.2), add the following to Table 40:

a1 == a2 bool returns true iff storage allocated from

each can be deallocated via the other.

operator== is reflexive, symmetric

and transitive.

a1 != a2 bool same as !(a1 == a2)

X() creates a default instance [Note:

destructor s assumed. – end note]

X a1(a); post: a1 == a

X a(b); post: Y(a) == b

post: a == X(b)

These changes make copy-construction, comparison, and equality consistent with one

another and with the common understanding of how they work.

