
Doc No: SC22/WG21/N2431 = J16/07-0301

Date: 2007-10-02

Project: JTC1.22.32

References: Revision of SC22/WG21/N2214 = J16/07-0074

Reply to: Herb Sutter Bjarne Stroustrup

 Microsoft Corp. Computer Science Dept.

 1 Microsoft Way Texas A&M University, TAMU 3112

 Redmond WA USA 98052 College Station TX USA 77843-3112

 Email: hsutter@microsoft.com Email: bs@cs.tamu.edu

A name for the null pointer: nullptr (revision 4)

1. The Problem, and Current Workarounds

The current C++ standard provides the special rule that 0 is both an integer constant and a
null pointer constant. From [C++03] clause 4.10:

A null pointer constant is an integral constant expression (expr.const) rvalue of integer type
that evaluates to zero. A null pointer constant can be converted to a pointer type; the result is
the null pointer value of that type and is distinguishable from every other value of pointer to
object or pointer to function type. Two null pointer values of the same type shall compare equal.
The conversion of a null pointer constant to a pointer to cv-qualified type is a single conver-
sion, and not the sequence of a pointer conversion followed by a qualification conversion
(conv.qual).

This formulation is based on the original K&R C definition and differs from the definition in
C89 and C99. The C standard [C99] says (clause 6.3.2.3):

An integer constant expression with the value 0, or such an expression cast to type void *, is
called a null pointer constant.[55] If a null pointer constant is converted to a pointer type, the
resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any
object or function.

This use of the value 0 to mean different things (a pointer constant and an int) in C++ has
caused problems since at least 1985 in teaching, learning, and using C++. In particular:

 Distinguishing between null and zero. The null pointer and an integer 0 cannot be distin-
guished well for overload resolution. For example, given two overloaded functions

WG21/N2431 = J16/07-0301 page 2

A name for the null pointer: nullptr (revision 4)

f(int) and f(char*), the call f(0) unambiguously resolves to f(int).1 There is no way to
write a call to f(char*) with a null pointer value without writing an explicit cast (i.e.,
f((char*)0)) or using a named variable. For another example, consider the following
oddity in Standard C++:

std::string s1(false); // compiles, calls char* constructor with null

std::string s2(true); // error

 Naming null. Further, programmers have often requested that the null pointer constant
have a name (rather than just 0). This is one reason why the macro NULL exists, al-
though that macro is insufficient. (If the null pointer constant had a type-safe name,
this would also solve the previous problem as it could be distinguished from the in-
teger 0 for overload resolution and some error detection.)

To avoid these problems, 0 must mean only one thing (an integer value), and we need to
have a different name to express the other (a null pointer).

This problem falls into the following categories:

 Improve support for library building, by providing a way for users to write less ambi-
guous code, so that over time library writers will not need to worry about overloading
on integral and pointer types.

 Improve support for generic programming, by making it easier to express both integer
0 and nullptr unambiguously.

 Make C++ easier to teach and learn.

 Remove embarrassments.

We propose that a desirable solution should be able to fulfill the following design goals:

1. The name for the null pointer should be a reserved word.

2. The null pointer cannot be used in an arithmetic expression, assigned to an integral
value, or compared to an integral value; a diagnostic is required.

3. The null pointer can be converted to any pointer type, and cannot be converted to any
other type including any integral type.

4. The integer 0 does not implicitly convert to any pointer type.

Obviously, (4) is infeasible because it would break spectacular amounts of code, so we don‟t
propose that.

1
 An alternative description of this effect might be: “0 is always both an integer constant and a null pointer con-

stant, except when it‟s not.”

WG21/N2431 = J16/07-0301 page 3

A name for the null pointer: nullptr (revision 4)

1.1 Alternative #1: A Library Implementation of nullptr

Perhaps the closest current workaround is to provide a library implementation of nullptr.
This alternative is based on [Meyers96] Item 25:

const // this is a const object...

class {

public:

 template<class T> // convertible to any type

 operator T*() const // of null non-member

 { return 0; } // pointer...

 template<class C, class T> // or any type of null

 operator T C::*() const // member pointer...

 { return 0; }

private:

 void operator&() const; // whose address can't be taken

} nullptr = {}; // and whose name is nullptr

There is one real advantage to this workaround:

 It does not make nullptr a reserved word. This means that it would not break existing
programs that use nullptr as an identifier, but on the other hand it also means that its
name can be hidden by such an existing identifier. (Note: In practice, the name is in-
tended to be pervasively used and so will still be effectively a reserved word for most
purposes.)

There is one apparent advantage that we believe is less significant in practice:

 It provides nullptr as a library value, rather than a special value known to the compi-
ler. We believe it is likely that compiler implementations will still treat it as a special
value in order to produce quality diagnostics (see note below).

This alternative has drawbacks:

 It requires that the user include a header before using the value.

 Since nullptr doesn‟t implicitly convert to bool, it does not support usages like if(

nullptr), although these will probably not be common.

 Experiments with several popular existing compilers show that it generates poor
and/or misleading compiler diagnostics for several of the common use cases de-
scribed in section 2. (Examples include: “no conversion from „const ‟ to „int‟”; “no suit-
able conversion function from „const class <unnamed>‟ to „int‟ exists”; “a template ar-
gument may not reference an unnamed type”; “no operator „==‟ matches these ope-
rands, operand types are: int == const class <unnamed>”.) We believe that compilers

WG21/N2431 = J16/07-0301 page 4

A name for the null pointer: nullptr (revision 4)

will still need to add special knowledge of nullptr in order to provide quality diagnos-
tics for common use cases.

 Although available for many years, it has not been widely adopted and incompatible
variants are not uncommon.

 An elaborate class-based solution would cause problems in constant expressions as
will become common with the adoption of generalized constant expressions (con-

stexpr).

1.2 Alternative #2: (void*)0

A second alternative solution would be to accept (void*)0 as a “magic” pointer value with
roughly the semantics of the nullptr proposed in section 2.

However, this solution has serious problems:

 It would still be necessary for programmers to use the macro NULL to name the null
pointer (the notation (void*)0 is just too ugly).

 Furthermore, (void*)0 would have to have a unique semantics; that is, its type would
not be void*. We do not consider opening the C type hole by allowing any value of
type void* to any T*.

The introduction of nullptr as proposed in section 2 is a far cleaner solution.

2. Our Proposal

We propose a new standard reserved word nullptr. The nullptr keyword designates a constant
rvalue of type decltype(nullptr). We also provide the typedef:

typedef decltype(nullptr) nullptr_t;

nullptr_t is not a reserved word. It is a typedef (as its _t typedef indicates) for decl-

type(nullptr) defined in <cstddef>. We do not expect to see much direct use of nullptr_t in
real programs.

nullptr_t is a POD type that is convertible to both a pointer type and a pointer-to-member
type.

All objects of type nullptr_t are equivalent and behave identically, except that they may differ
in cv-qualification and whether they are rvalues or lvalues. The address of nullptr itself can-
not be taken (it is a literal, just like 1 and true); another nullptr_t object‟s address could be
taken, although this isn‟t very useful. Objects of type nullptr_t can be copied and thrown.

An object of type nullptr_t can be converted to any pointer or pointer-to-member type by a
standard conversion. It cannot be converted to any other type (including any integral or bool
type), cannot be used in an arithmetic expression, cannot be assigned to an integral value,
and cannot be compared to an integral value; a diagnostic is required for these cases.

WG21/N2431 = J16/07-0301 page 5

A name for the null pointer: nullptr (revision 4)

With this specification for nullptr and nullptr_t, the following points follow from the existing
rules already in the standard:

 Performing a reinterpret_cast to and from a nullptr_t object is allowed (this is already
covered by saying that nullptr_t is a pointer type, see [C++03] §5.2.10).

 nullptr_t matches both a T* and a T::* partial specialization. If it matches two partial
specializations of the same template, the result is ambiguous because neither partial
specialization is more specialized than the other (see [C++03] §14.5.4.2).

We recommend that the name of the reserved word be nullptr because:

 nullptr says what it is. For example, it is not a null reference.

 Programmers have often requested that the null pointer constant have a name, and
nullptr appears to be the least likely of the alternative text spellings to conflict with
identifiers in existing user programs. For example, a Google search for nullptr cpp re-
turns a total of merely 150 hits, only one of which appears to use nullptr in a C++ pro-
gram.

o The alternative name NULL is not available. NULL is already the name of an im-
plementation-defined macro in the C and C++ standards. If we defined NULL to
be a keyword, it would still be replaced by macros lurking in older code. Also,
there might be code “out there” that (unwisely) depended on NULL being 0. Fi-
nally, identifiers in all caps are conventionally assumed to be macros, testable
by #ifdef, etc.

o The alternative name null is impractical. It is nearly as bad as NULL in that null is
also a commonly used in existing programs as an identifier name and (worse)
as a macro name. For example, a Google search for null cpp returns about
180,000 hits, of which an estimated 3% or over 5,000 use null in C++ code as an
identifier or as a macro. Another favorite, nil, is worse still.

o Any other name we have thought of is longer or clashes more often.

 The alternative spelling 0P or 0p, adding the letter as a constant type suffix, is imprac-
tical. It overlaps with a C99 extension that already uses P or p in a constant to write the
binary exponent part of a hexadecimal floating-point constant (see [C99] clause
6.4.4.2). For example, 0P occurs as a part of the constant 0x0P2. Although using 0P or
0p would not be ambiguous today (the C99 P or p must be preceded by 0x and a hex
number, and must be followed by a decimal number), it seems imprudent to reuse a
constant type suffix already used for another type of constant in a sister standard. Al-
so, using an obscure notation, such as 0P, would encourage people to rely on a NULL
macro.

 Our informal polling suggests that people seem to like nullptr. If nothing else, it is the
spelling that has elicited the fewest strong objections to date in our experience.

WG21/N2431 = J16/07-0301 page 6

A name for the null pointer: nullptr (revision 4)

We do not propose to define the standard library macro NULL to nullptr. We considered that
and liked the idea, but the EWG opinion was that it would break too much code, even
though in many cases that would be code that deserved to be broken. New code should use
the cleaner and safer nullptr.

2.1 Basic Cases

The following example illustrates basic use cases: assignment, comparison, and arithmetic.

char* ch = nullptr; // ch has the null pointer value

char* ch2 = 0; // ch2 has the null pointer value

int n = nullptr; // error

int n2 = 0; // n2 is zero

if(ch == 0); // evaluates to true

if(ch == nullptr); // evaluates to true

if(ch); // evaluates to false

if(n2 == 0); // evaluates to true

if(n2 == nullptr); // error

if(nullptr); // error, no conversion to bool

if(nullptr == 0); // error

// arithmetic

nullptr = 0; // error, nullptr is not an lvalue

nullptr + 2; // error

In particular, note that 0 can still be assigned to a pointer. This is essential for compatibility.

2.2 Advanced Cases

The following example illustrates additional use cases: the ternary operator, sizeof, typeid,
throw, overload resolution, and template specialization.

// Ternary operator cases

//

char* ch3 = expr ? nullptr : nullptr; // ch1 is the null pointer value

char* ch4 = expr ? 0 : nullptr; // error, types are not compatible

int n3 = expr ? nullptr : nullptr; // error, nullptr can’t be converted to int

int n4 = expr ? 0 : nullptr; // error, types are not compatible

// Sizeof, typeid, and throw

//

sizeof(nullptr); // ok

typeid(nullptr); // ok

throw nullptr; // ok

WG21/N2431 = J16/07-0301 page 7

A name for the null pointer: nullptr (revision 4)

// Overloading cases

//

void f(char*);

void f(int);

f(nullptr); // calls f(char*)

f(0); // calls f(int)

// Deduction to nullptr_t, no deduction to pointer type

//

template<typename T> void g(T* t);

g(nullptr); // error

g((float*) nullptr); // deduces T = float

template<typename T> void h(T t);

h(0); // deduces T = int

h(nullptr); // deduces T = nullptr_t

h((float*) nullptr); // deduces T = float*

3. Interactions and Implementability

3.1 Interactions

See §2.2.

Effects on legacy code: Existing code that uses nullptr as an identifier will have to change the
name of that identifier because it will be a reserved word.

3.2 Implementability

There are no known or anticipated difficulties in implementing this feature.

4. Proposed Wording

In this section, where changes are either specified by presenting changes to existing wording,
strikethrough text refers to existing text that is to be deleted, and underscored text refers to
new text that is to be added. Existing footnotes are unchanged unless otherwise indicated. All
clause references are to [C++03].

WG21/N2431 = J16/07-0301 page 8

A name for the null pointer: nullptr (revision 4)

In §2.11, Table 3, add nullptr to the list of keywords.

In §2.13 add the alternative pointer-literal to literal.

Insert a new section after §2.13.5:

2.13.6 Pointer literal [lex.nullptr]

 pointer-literal:
 nullptr

1 The pointer literal is the keyword nullptr. It is an rvalue of type std::nullptr_t.

Change §3.9(10) as indicated:

10 Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member
types (3.9.2), and std::nullptr_t, and cv-qualified versions of these types (3.9.3) are col-
lectively called scalar types. Scalar types, POD classes (clause 9), arrays of such types
and cv-qualified versions of these types (3.9.3) are collectively called POD types. Scalar
types, trivial class types (clause 9), arrays of such types and cv-qualified versions of
these types (3.9.3) are collectively called trivial types. Scalar types, standard-layout
class types (clause 9), arrays of such types and cv-qualified versions of these types
(3.9.3) are collectively called standard-layout types.

Insert a new paragraph after §3.9.1(9):

9a A value of type std::nullptr_t is a null pointer constant (4.10). Such values participate
in the pointer and pointer to member conversions (4.10, 4.11). sizeof(nullptr_t) shall be
equal to sizeof(void*).

Change §4.1(2) as indicated:

2 When an lvalue-to-rvalue conversion occurs in an unevaluated operand or a subex-
pression thereof (clause 5) the value contained in the referenced object is not accessed.
Otherwise, if the lvalue has a class type, the conversion copy-initializes a temporary of
type T from the lvalue and the result of the conversion is an rvalue for the temporary.
Otherwise, if the lvalue has (possibly cv-qualified) type std::nullptr_t, the rvalue result
is a null pointer constant (4.10). Otherwise, the value contained in the object indicated
by the lvalue is the rvalue result.

Change §4.10(1) as indicated:

1 A null pointer constant is an integral constant expression (5.19) rvalue of integer type
that evaluates to zero or an rvalue of type std::nullptr_t. A null pointer constant can be
converted to a pointer type; the result is the null pointer value of that type and is distin-
guishable from every other value of pointer to object or pointer to function type. Two
null pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to cv-qualified type is a single conversion, and not the se-
quence of a pointer conversion followed by a qualification conversion (4.4).

WG21/N2431 = J16/07-0301 page 9

A name for the null pointer: nullptr (revision 4)

Change §5.2.10(9) as indicated:

9 The null pointer value (4.10) is converted to the null pointer value of the destination
type. [Note: A null pointer constant, which has of integral type, is not necessarily con-
verted to a null pointer value. (A null pointer constant of type std::nullptr_t cannot
appear as the operand of reinterpret_cast, nor can any value be converted by reinterp-

ret_cast to type std::nullptr_t.) —end note]

Change §5.9(1) as indicated:

1 The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not
(a<b)&&(b<c). —end example]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

 The operands shall have arithmetic, enumeration or pointer type or type std::nullptr_t.
The operators < (less than), > (greater than), <= (less than or equal to), and >= (great-
er than or equal to) all yield false or true. The type of the result is bool.

Insert a new paragraph at the end of §5.9:

3 If two operands of type std::nullptr_t are compared, the result is true if the operator is
<= or >=, and false otherwise.

Insert a new paragraph at the end of §5.10:

3 If two operands of type std::nullptr_t are compared, the result is true if the operator is
==, and false otherwise.

Change the beginning of §8.5(5) as indicated:

5 To zero-initialize an object of type T means:

— if T is std::nullptr_t, the object is set to the value of nullptr.

 — otherwise, if T is a scalar type (3.9), the object is set to the value 0 (zero), taken as an
integral constant expression, converted to T; 91)

[etc. as before]

Change §14.3.2(5) as indicated:

5 The following conversions are performed on each expression used as a non-type tem-
plate-argument. If a non-type template-argument cannot be converted to the type of the
corresponding template-parameter then the program is ill-formed.

WG21/N2431 = J16/07-0301 page 10

A name for the null pointer: nullptr (revision 4)

 for a non-type template-parameter of integral or enumeration type, integral promo-
tions (4.5) and integral conversions (4.7) are applied.

 for a non-type template-parameter of type pointer to object, qualification conversions
(4.4) and the array-to-pointer conversion (4.2) are applied; if the template-argument is
of type std::nullptr_t, the null pointer conversion (4.10) is applied. [Note: In particu-
lar, neither the null pointer conversion for a zero-valued integral constant expres-
sion (4.10) nor the derived-to-base conversion (4.10) are applied. Although 0 is a va-
lid template-argument for a non-type template-parameter of integral type, it is not a va-
lid template-argument for a non-type template-parameter of pointer type. However,
both (int*)0 and nullptr are is a valid template-arguments for a non-type template-
parameter of type “pointer to int.” —end note]

 For a non-type template-parameter of type reference to object, no conversions apply.
The type referred to by the reference may be more cv-qualified than the (otherwise
identical) type of the template-argument. The template-parameter is bound directly to
the template-argument, which must be an lvalue.

 For a non-type template-parameter of type pointer to function, only the function-to-
pointer conversion (4.3) is applied; if the template-argument is of type std::nullptr_t,
the null pointer conversion (4.10) is applied. If the template-argument represents a set
of overloaded functions (or a pointer to such), the matching function is selected
from the set (13.4).

 For a non-type template-parameter of type reference to function, no conversions ap-
ply. If the template-argument represents a set of overloaded functions, the matching
function is selected from the set (13.4).

 For a non-type template-parameter of type pointer to member function, if the template-
argument is of type std::nullptr_t, the null member pointer conversion (4.11) is ap-
plied; otherwise, no conversions apply. If the template-argument represents a set of
overloaded member functions, the matching member function is selected from the
set (13.4).

 For a non-type template-parameter of type pointer to data member, qualification con-
versions (4.4) are applied; if the template-argument is of type std::nullptr_t, the null
member pointer conversion (4.11) is applied.

Change §15.3(3) as indicated:

1 A handler is a match for an exception object of type E if

 The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-
level cv-qualifiers), or

 the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or

 the handler is of type cv1 T* cv2 and E is a pointer type that can be converted to the
type of the handler by either or both of

WG21/N2431 = J16/07-0301 page 11

A name for the null pointer: nullptr (revision 4)

 a standard pointer conversion (4.10) not involving conversions to pointers to
private or protected or ambiguous classes

 a qualification conversion

 the handler is a pointer or pointer to member type and E is std::nullptr_t.

[Note: a throw-expression which whose operand is an integral constant expression of in-
teger type that evaluates to zero does not match a handler of pointer or pointer to
member type; that is, the null pointer constant conversions (4.10, 4.11) do not apply. —
end note]

In §18.1, add nullptr_t to Table 15 as follows:

Table 15—Header <cstddef> synopsis

Kind Name(s)
Macros: NULL offsetof
Types: ptrdiff_t size_t nullptr_t

Also in §18.1, insert the following new paragraph:

6 nullptr_t is defined as follows:

namespace std {

 typedef decltype(nullptr) nullptr_t;

}

The type for which nullptr_t is a synonym has the characteristics described in 3.9 and
4.10. [Note: Although nullptr‟s address cannot be taken, the address of another nullptr_t
object that is an lvalue could be taken. —end note]

Acknowledgments

Thanks to CWG members, and Mike Miller in particular, for multiple reviews of the wording
in this paper.

References

[C99] ISO/IEC 9899:1999(E), Programming Language C.

[C++03] ISO/IEC 14882:2003(E), Programming Language C++.

[Meyers96] S. Meyers. More Effective C++, 2nd edition (Addison-Wesley, 1996).

