
N2388: Pointer Arithmetic for shared_ptr Page 1 of 3

Doc No: N2388=07-0248
Date: 2007-09-07
Author: Pablo Halpern

Bloomberg, L.P.

phalpern@halpernwightsoftware.com

Pointer Arithmetic for shared_ptr

Contents
Pointer Arithmetic for shared_ptr...1
Motivation..1
Document Conventions..2
Summary ..2

New Member Operators ..2
New Free Operators..2
Changes to Shared Pointer Comparison..2
Limitations ...3

Proposed Wording..3

Motivation

Shared pointers are a type of smart pointer intended to replace raw pointers in
situations where the lifetime of the pointed-to object cannot easily be determined in
advance. The use of operator* and operator-> for dereferencing give them a pointer-like
syntax, but unlike real pointers, shared_ptr cannot participate in pointer arithmetic.
At the July 2007 meeting in Toronto, aliasing was added to smart pointers, allowing two
smart pointers to share ownership of one object but point to a different object, typically
a sub-part of the owned object. Aliasing allows us to create two shared pointers that
share ownership of an array but point to two different elements within that array. For
example:

const int SZ = 100;
shared_ptr<char> dataBegin(new char[SZ], ArrayDeleter<char>());
shared_ptr<char> dataEnd(dataBegin, dataBegin.ptr() + SZ);

Wouldn’t it be nice if the same operation could be accomplished with operator+()?

shared_ptr<char> dataEnd = dataBegin + SZ;

Adding pointer arithmetic operations to shared_ptr would make them more like real
pointers.

N2388: Pointer Arithmetic for shared_ptr Page 2 of 3

Document Conventions

All section names and numbers are relative to the August 2007 working draft, N2369.

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the
working paper are shown with green strikeouts for deleted text and green underlining for inserted text
within the indented blue original text. Large proposed insertions into the working paper are shown in
the same dark blue indented format.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appears with yellow shading.

Summary

New Member Operators

I propose to add the following members to shared_ptr<T>:

shared_ptr<T>& operator++();
shared_ptr<T> operator++(int);
shared_ptr<T>& operator--();
shared_ptr<T> operator--(int);
shared_ptr<T>& operator+=(ptrdiff_t);
shared_ptr<T>& operator-=(ptrdiff_t);
T& operator[](ptrdiff_t index);

New Free Operators

I propose to add the following free operators:

shared_ptr<T> operator+(const shared_ptr<T>&, ptrdiff_t);
shared_ptr<T>&& operator+(shared_ptr<T>&&, ptrdiff_t);
shared_ptr<T> operator-(const shared_ptr<T>&, ptrdiff_t);
shared_ptr<T>&& operator-(shared_ptr<T>&&, ptrdiff_t);
ptrdiff_t operator-(const shared_ptr<T>&,
 const shared_ptr<T>&);

Changes to Shared Pointer Comparison

It is a basic axiom of pointer arithmetic that if q = p + 1, then p < q. The semantics of
operator<() in the current working draft, however, would have p and q be equivalent
because they share ownership. I propose that we redefine operator<() such that p <
q iff p.get() < q.get(). This definition of operator<() would be consistent with the
definition of operator==().

N2388: Pointer Arithmetic for shared_ptr Page 3 of 3

In order to continue to support ownership comparisons, I also propose adding a new
member function:

template <typename U>
int compare_ownership_group(const shared_ptr<U>& other);

This function would return 0 if *this and other share ownership of an object (i.e., they
belong to the same ownership group) and –1 or 1 otherwise, such that
x.compare_ownership_group(y) < 0 is a strict weak ordering on all shared
pointers. The combination of operator< and compare_ownership_group allows a
user to compare shared pointers based on value, ownership, value then ownership, or
ownership then value. Note that the other comparison operators are defined in terms of
operator<, so no change is necessary there.

Because the language does not guarantee that comparing pointers yields a strict week
ordering unless the pointers point into the same array, std::less, std::greater,
std::greater, etc., are specialized for pointers such that it produces a total ordering
over the entire domain. A similar specialization would be needed for shared_ptr:

template <class T>
struct less<shared_ptr<T> > :
 binary_function<shared_ptr<T>, shared_ptr<T>, bool>
{
 bool operator()(const shared_ptr<T>& x,
 const shared_ptr<T>& y) const
 { return std::less<T*>()(x.get(), y.get()); }
};

Limitations

This proposal is limited to those aspects of shared_ptr that cannot be implemented
outside the library itself. In particular, it does not propose methods for creating shared
pointers to arrays i.e. array-based deleters, and array-based make_shared and
allocate_shared factory functions.

Proposed Wording

Proposed wording is not yet available due to time constraints. If there is interest in
Kona, proposed wording should be simple to add, possibly during the Kona meeting
itself.

