
N2387: Omnibus Allocator Fix-up Proposals Page 1 of 40

Doc No: N2387=07-0247

Date: 2007-09-10

Author: Pablo Halpern

Bloomberg, L.P.

phalpern@halpernwightsoftware.com

Omnibus Allocator Fix-up Proposals

Contents

Introduction .. 2

Document Conventions .. 2

1. Remove Weasel Words ... 3

2. Library-wide Requirements for Use of Allocators.. 4

3. The “Scoped” Allocator Model .. 5

Requirements.. 7

Allocator-related Type Traits ... 8

Pair changes .. 10

Container Requirements ... 12

basic_string Changes ... 18

deque changes .. 18

list changes.. 19

vector changes .. 19

Changes to adapters .. 20

map changes ... 21

multimap changes.. 22

set changes .. 22

multset changes.. 23

unordered_map changes .. 23

unordered_multimap changes... 23

unordered_set changes ... 24

unordered_multiset changes.. 24

4. Polymorphic Allocators .. 25

5. Polymorphic Allocator as the Default Allocator ... 33

6. Semantics of swap.. 34

7. Semantics of pointer and address in Allocators ... 35

8. Allow the Use of address for Foreign Objects .. 37

9. Consistent Copy and Equality Semantics for Allocators ... 38

10. Add variadic construct Requirement for Allocators ... 39

N2387: Omnibus Allocator Fix-up Proposals Page 2 of 40

11. Correction to function interface... 40

12. Allocator-aware stringstream... 40

13. Acknowledgements ... 40

Introduction

This series of proposals is intended to address numerous defect reports and

enhancement requests related to allocators in the standard library. To be optimally

useful, allocators must conform to a well-defined model whereby library facilities

always allocate memory from an optional user-supplied allocator.

These proposals address the following issues:

• LWG 580: must use construct, destroy, address

• N1850: Towards a Better Allocator Model

• LWG 401: incorrect type casts in table 32 in lib.allocator.requirements

• LWG 634: turn address into boost::addressof

• LWG 635: domain of allocator::address

• Make templated rvalue-ref construct variadic.

• Create concepts for a pointer type

• LWG 258: Missing allocator requirement (transitive ==)

• LWG 431 (N1599): Swapping containers with unequal allocators

• Allocator copy issues with std::function

• Require that Container::value_type match

Container::allocator_type::value_type.

Because concepts are not yet final, I have deferred most concept-related issues in this

paper. Concepts will play an important roll in allocator usage, however, and I have

tried to point out where I think concepts can be applied.

Document Conventions

All section names and numbers are relative to the August 2007 working draft, N2369.

N2387: Omnibus Allocator Fix-up Proposals Page 3 of 40

Existing and proposed working paper text is indented and shown in dark blue. Small edits to the

working paper are shown with green strikeouts for deleted text and green underlining for inserted text

within the indented blue original text. Large proposed insertions into the working paper are shown in

the same dark blue indented format (no green underline).

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appears with light (yellow) shading.

1. Remove Weasel Words

Motivation

The 1998 standard contains words that leave several important details of allocator usage

to the implementation. These vagaries prevent the portable use of stateful allocators

and allocators that use an unconventional memory model.

Proposed Wording

In section [allocator.requirements] (20.1.2), remove the last paragraphs 4 and 5:

Implementations of containers described in this International Standard are permitted to assume that

their Allocator template parameter meets the following two additional requirements beyond those in

Table 40.

— All instances of a given allocator type are required to be interchangeable and always compare

equal to each other.

— The typedef members pointer, const_pointer, size_type, and difference_type are required to be

T*, T const*, std::size_t, and std::ptrdiff_t, respectively.

Implementors are encouraged to supply libraries that can accept allocators that encapsulate more

general memory models and that support non-equal instances. In such implementations, any

requirements imposed on allocators by containers beyond those requirements that appear in Table 40,

and the semantics of containers and algorithms when allocator instances compare non-equal, are

implementation-defined.

Removing these words is a prerequisite for the other proposals in this paper. This

paper proposes standard behavior for stateful allocators and allocators that use smart

pointers.

N2387: Omnibus Allocator Fix-up Proposals Page 4 of 40

2. Library-wide Requirements for Use of Allocators

Motivation

As described in LWG Issue 580, the 1998 standard specifies requirements for allocators,

including required member functions and types, but does not require that the standard

library used those members. If those facilities are not used (e.g., the construct

function is not called), then the author of the allocator cannot properly control the way

memory is used. This is especially problematic when the allocator provides special

pointer and reference types.

Proposed Wording

At the beginning of section [conforming] (17.4.4), change the introductory paragraph as

follows:

17.4.4 Conforming implementations [conforming]

This subclause describes the constraints upon, and latitude of, implementations of the C++ Standard

library. The following subclauses describe an implementation’s use of headers (17.4.4.1), macros

(17.4.4.2), global functions (17.4.4.3), member functions (17.4.4.4), reentrancy (17.4.4.5), access

specifiers (17.4.4.6), class derivation (17.4.4.7), and exceptions (17.4.4.8), and allocators (17.4.4.9).

After [res.on.exception.handling] (17.4.4.8), insert a new section:

17.4.4.9 Use of Allocators [use.of.allocators]

Many of the classes (including instantiations of class templates) defined in the C++ Standard Library

are constructed with a user-supplied object that meets the requirements for a memory allocator

([allocator.requirements] 20.1.2). A copy of this allocator shall be used, by the constructors and by all

member functions of standard library classes, to allocate, construct, destroy, deallocate, and obtain

pointers to objects whose lifetime is managed by the class object, including but not limited to those of

a container's value_type. Allocation shall be performed "as if" by calling the allocate() member

function on a copy of the allocator object of the appropriate type [New Footnote], and deallocation

"as if" by calling deallocate() on a copy of the same allocator object of the corresponding type. All

objects residing in storage allocated by a container's allocator shall be constructed "as if" by calling

the construct() member function on a copy of the allocator object of the appropriate type. The same

objects shall be destroyed "as if" by calling destroy() on a copy of the same allocator object of the

same type. The address of such objects shall be stored within the object using the allocator’s

pointer or const_pointer types and obtained "as if" by calling the address() member function

on a copy of the allocator object of the appropriate type. For classes that define a max_size() member

function, the value returned from max_size() shall be no larger than the value returned by calling

max_size() on a copy the object’s allocator.

New Footnote: This type may be different from Allocator: it may be derived from Allocator via

Allocator::rebind<U>::other for the appropriate type U.

N2387: Omnibus Allocator Fix-up Proposals Page 5 of 40

This description was chosen so that the allocator author would have maximal control

over how memory is used from within a library object, especially if non-standard

pointers (e.g. a smart pointers into special memory) are used. The intent is to require

that the allocator be used for objects that are part of the data structure, but not for

temporaries that are not managed by the class object. The wording is largely the same

as Martin Sebor’s proposed resolution for LWG 580. However, because there are now

non-container classes in the library that use allocators (e.g. shared_ptr and

function), I have moved the wording up from the container requirements section to

the library-wide requirements section and have made the wording less container-centric

(though one mention of containers was necessary). Also, since some of the new uses of

allocator use type-erasure and do not parameterize the class on the allocator, I have

removed references to such parameterization.

3. The “Scoped” Allocator Model

Motivation

When allocators are allowed to have state, it is necessary to have a model for

determining from where an object obtains its allocator. We’ve identified two such

models: the “Moves with Value” allocator model and the “Scoped” allocator model.

In the “Moves with Value” allocator model, the copy constructor of an allocator-aware

class will copy both the value and the allocator from its argument. This is the model

specified in the C++03 standard. With this model, inserting an object into a container

usually causes the new container item to copy the allocator from the object that was

inserted. This model can be useful in special circumstances, e.g., if the items within a

container use an allocator that is specially tuned to the item’s type.

In the “Scoped” allocator model, the allocator used to construct an object is determined

by the context of that object, much like a storage class. With this model, inserting an

object into a container causes the new container item to use the same allocator as the

container. To avoid allocators being used in the wrong context, the allocator is never

copied during copy or move construction. Thus, it is possible using this model to use

allocators based on short-lived resources without fear that an object will transfer its

allocator to a copy that might outlive the (shared) allocator resource. This model is

reasonably safe and generally useful on a large scale. There was strong support in the

2005 Tremblant meeting for pursuing an allocator model that propagates allocators

from container to contained objects.

N2387: Omnibus Allocator Fix-up Proposals Page 6 of 40

With this proposal, we strive to support both models well. As we’ll see in subsequent

sections, clarifying the allocator models allows us to reason about the best solutions to a

number of known issues. Note that stateless allocators work identically in both models.

Summary of Changes

The proposed wording for this section is long because similar changes are made in

many places in the working draft. The basic concepts can be explained much more

concisely, however, and are summarized here.

We begin with two new traits:

uses_scoped_allocator<T>

suggest_scoped_allocator<Alloc>

Both traits are elective, meaning they do not specify an intrinsic quality of the type but

rather a deliberate choice by the author of the type. The first trait is specialized for a

given type, T to derive from true_type if T uses an allocator and conforms to the

“Scoped” allocator model. The second trait is specialized for an allocator type to

indicate that client’s of that allocator should use the “Scoped” allocator model. All of

the standard containers define the first trait if the second trait is true for their

allocator_type. The class template, function<F> also defines the

uses_scoped_allocator as true.

Every container class, C, is enhanced with an extended move constructor and extended copy

constructor as follows:

C(C&&, const allocator_type&); // extended move constructor

C(const C&, const allocator_type&); // extended copy constructor

The normal move and copy constructors for each container class are modified to have

the following behavior:

If uses_scoped_allocator<C>::value is true, then C(other) behaves

like C(other, C::allocator_type()), otherwise C(other) behaves like
C(other, other.get_allocator()).

In other words, if an allocator is not provided to the copy constructor, then the copy

constructor behaves differently depending on whether or not the

uses_scoped_allocator trait is true. If the trait is true, the object uses the default-

constructed allocator, otherwise, you get the C++03 behavior and the allocator is copied

from the argument.

N2387: Omnibus Allocator Fix-up Proposals Page 7 of 40

For each insertion function (including insert, push_back, push_front, and

constructors that insert), the following rule is used when copying each inserted value, v,

into the container:

If uses_scoped_allocator is true for both the container and its

value_type, and if C::value_type is constructible with

C::allocator_type then construct a copy of v by calling

C::value_type(v, c.get_allocator()), i.e., use the extended copy

constructor or extended move constructor for value_type. Otherwise, call the

normal copy or move constructor, C::value_type(v).

In other words, pass the container’s allocator to the constructor of each of the

container’s elements (if the correct traits are defined and the allocators are compatible).

Class template pair is not technically a container, but it must allow its members to be

constructed with specific allocators. This proposal adds an allocator argument to each

of pair’s constructors if either or both of the pair member types use the “scoped”

allocator model.

Because, depending on the allocator model, allocators are not always copied at copy-

construction, it will also be necessary to add allocators to queue, priority_queue,

and stack. The stringstream class can also benefit from user-controlled allocation.

Proposed Wording

Requirements

Modify the first paragraph of [utility.arg.requirements] (20.1.1) as follows:

The template definitions in the C++ Standard Library refer to various named requirements whose

details are set out in tables 31–38[new table number]. In these tables, T is a type to be supplied by a

C++ program instantiating a template; a, b, and c are values of type const T; s and t are modifiable

lvalues of type T; u is a value of type (possibly const) T; and rv is a non-const rvalue of type T, M is a

storage allocator type (20.1.2) used by T, and m is a value of type convertible to M.

In section [utility.arg.requirements] (20.1.1), after tables 38, add three more tables:

Table 38+1: ExtendedDefaultConstructible requirements

expression post-condition

T t(m); t uses a copy of m to allocate memory.

The constructor for T accepting a single allocator argument is known as the extended default

constructor.

Table 38+2: ExtendedMoveConstructible requirements

N2387: Omnibus Allocator Fix-up Proposals Page 8 of 40

expression post-condition

T t(rv, m); t is equivalent to the value of rv. t uses a copy of

m to allocate memory.

[Note: This is a binary requirement on the relationship between T and

M. – end note] [Note: There is no requirement on the value of rv after

the assignment. – end note]

The constructor for T accepting a T&& argument and an allocator argument is known as the extended

move constructor.

Table 38+3: ExtendedCopyConstructible requirements

expression post-condition

T t(u, m); The value of u is unchanged and is equivalent to t.

t uses a copy of m to allocate memory.

[Note: This is a binary requirement on the relationship between T and

M. – end note] [Note: A pair of types that satisfy the

ExtendedCopyConstructible requirements also satisfies the

ExtendedMoveConstructible requirements – end note]

The constructor for T accepting a const T& argument and an allocator argument is known as the

extended copy constructor.

These requirements are needed to describe the requirements and behavior of containers

that propagate their own allocator to their contained items (see the

uses_scoped_allocator trait, below). Like other requirements in this section of the

working draft, these new requirements will eventually be implemented as concepts.

Allocator-related Type Traits

In section [memory] (20.6), insert the following class declarations at the beginning of the

Header <memory> synopsis:

// 2.6.x, allocator-related traits
template <class T> struct uses_scoped_allocator;

template <class Alloc> struct suggest_scoped_allocator;

template <class T, class Alloc> struct constructible_with_allocator;

Insert before [default.allocator] (20.6.1):

2.6.x Allocator-related traits [allocator.traits]

The class templates, uses_scoped_allocator and suggest_scoped_allocator meet

the UnaryTypeTrait requirements ([meta.rqmts] 20.4.1). The class template

constructible_with_allocator meets the requirements of a BinaryTypeTrait ([meta.rqmts]

20.4.1). Each of these templates shall be publicly derived directly or indirectly from true_type if

the corresponding condition is true, otherwise from false_type. All are elective traits; they are

not computed automatically by determining an intrinsic quality of the type but rather indicate a

deliberate choice by the author of the type. A program may specialize these traits for user-defined

N2387: Omnibus Allocator Fix-up Proposals Page 9 of 40

types to indicate that the “Scoped” allocator model is used for a those types. The main attributes of a

class that conforms to the “Scoped” allocator model are:

– An object’s allocator is not copied or moved on copy construction or move construction.

– If the class is MoveConstructible or CopyConstructible, then it is also

ExtendedMoveConstructible or ExtendedCopyConstructible, respectively

([utility.arg.requirements] 20.1.1).

A conforming container containing items of a class that conforms to the “Scoped” allocator model

will pass a copy of the container’s allocator to the constructors of the items that it manages.

In table [new table number], T denotes any type and Alloc denotes a storage allocator, as defined in

[allocator.requirements] (20.1.2).

Table [new table number]: Allocator-related traits

Template Condition default

template <class T>

uses_scoped_allocator

T conforms to the “item use

container’s allocator” model.

false

template <class Alloc>

suggest_scoped_allocator
Classes that use Alloc should

adhere to the “item use container’s

allocator” model

false

template <class T, class Alloc>

constructible_with_allocator

ExtendedDefaultConstructible<T,A>

or ExtendedMoveConstructible<T,A>

Note A

Note A: The generic implementation of constructible_with_allocator is derived from

true_type iff T uses_scoped_allocator<T>::value and

is_convertible<Alloc, T::allocator_type>::value are both true. This class must

be specialized for any class for which uses_scoped_allocator<T>::value is true but which

does not have an allocator_type member type (e.g. class template function,

([func.wrap.func] 20.5.14.2)). Implementations are permitted to implement this trait in

a more sophisticated (and possibly implementation-dependent) way that more accurately detects the

actual condition that T is constructible from Alloc is the last argument to at least one constructor of

T.

Once concepts are finalized, the uses_scoped_allocator trait should be computed

automatically for most types by detecting the ExtendedMoveConstructible<T, A>

concept. However, the trait is still needed so that it can be specialized to evaluate false

in the case where heuristic detection yields the wrong value. The

constructible_with_allocator trait, however, can be fully replaced by a using

concepts, once they become generally available in compilers.

The suggest_scoped_allocator trait provides a “master switch” by which an

allocator can select the allocator-model for all of the standard containers and any other

container that follows the suggestion. The other alternative we considered was to add

an additional (defaulted) template parameter specifying the allocator model for each

container type, but that would make the use of the new model very tedious and

somewhat error prone.

N2387: Omnibus Allocator Fix-up Proposals Page 10 of 40

Note that detecting “constructible with allocator” is difficult in the most general case,

even with concepts. We might want to require that all allocator-aware classes supply

an allocator_type declaration, even those classes, like function, that use type-

erasure. In the type-erasure case, allocator_type would be some generic type that

is convertible from any allocator type. This might replace one complexity with another.

Opinions?

Pair changes

In section [pairs] (20.2.3), add a new paragraph after paragraph 1:

A pair can be instantiated on almost any two types, provided the first type can be constructed with

zero or one argument. [Is this correct?] If either or both of the types uses a storage allocator

([allocator.requirements] 20.1.2) and has the uses_scoped_allocator trait, then the

instantiated pair class also uses an allocator and uses_scoped_allocator is specialized to

true_type for the pair. An allocator passed as an extra argument to a pair constructor will be

passed on to one or both of the pair’s elements, provided that it is compatible with that element’s

allocator.

Then, modify the declaration of pair<T1, T2>, as follows:

template <class T1, class T2>

struct pair {

 typedef T1 first_type;

 typedef T2 second_type;

 T1 first;

 T2 second;

 pair();

 pair(const T1& x , const T2& y);

 template<class U , class V > pair(U&& x , V&& y);

 pair(pair&& p);

 template<class U , class V > pair(const pair<U , V >& p);

 template<class U, class... Args> pair(U&& x, Args&&... args);

 template <class Alloc> pair(const Alloc& a);

 template <class Alloc>

 pair(const T1& x, const T2& y, const Alloc& a);

 template<class U , class V, class Alloc >

 pair(U&& x , V&& y const Alloc& a);

 template <class Alloc> pair(pair&& p, const Alloc& a);

 template<class U , class V, class Alloc >

 pair(const pair<U , V >& p, const Alloc& a);

 template<class U , class V, class Alloc >

 pair(pair<U, V>&& p, const Alloc& a);

 pair& operator=(pair&& p);

 template<class U , class V > pair& operator=(pair<U , V >&& p);

N2387: Omnibus Allocator Fix-up Proposals Page 11 of 40

 void swap(pair&& p);

};

After the definition of template<class U,class V> pair(pair<U,V >&& p),

add the following definitions:

template <class Alloc> pair(const Alloc& a);

template <class Alloc>

 pair(const T1& x, const T2& y, const Alloc& a);

template<class U , class V, class Alloc >

 pair(U&& x , V&& y const Alloc& a);

template <class Alloc> pair(pair&& p, const Alloc& a);

template<class U , class V, class Alloc >

 pair(const pair<U , V >& p, const Alloc& a);

template<class U , class V, class Alloc >

 pair(pair<U, V>&& p, const Alloc& a);

requires: Alloc shall be an Allocator ([allocator.requirements] 20.1.2);

uses_scoped_allocator<pair> (see below);

constructible_with_allocator<pair, Alloc> (see below).

effects: equivalent to the previous six constructors except that the allocator argument is passed

conditionally to the constructors of first, second, or both. If
uses_scoped_allocator<T1>::value &&

constructible_with_allocator<T1,Alloc>::value, the a is passed as the last

argument to the constructor for first. Similarly, if
uses_scoped_allocator<T2>::value &&

constructible_with_allocator<T2,Alloc>::value, the a is passed as the last

argument to the constructor for second.

These definitions allow containers (especially associative containers) to pass an allocator

to items of pair type. There are probably ambiguities created by these additional

definitions. These ambiguities can be eliminated by combining ambiguous constructors

into a single prototype, then using meta-programming to distinguish an allocator

argument from a normal argument. Once Allocator is implemented as a concept, the

ambiguities should disappear.

template <class T1, class T2>

struct uses_scoped_allocator<pair<T1, T2> > : see below;

Derived directly or indirectly from true_type if
uses_scoped_allocator<T1>::value ||

uses_scoped_allocator<T2>::value, else derived directly or indirectly from

false_type.

template <class T1, class T2, class Alloc>

struct constructible_with_allocator<pair<T1, T2>, Alloc> : see below;

requires: Alloc shall be an Allocator ([allocator.requirements] 20.1.2)

N2387: Omnibus Allocator Fix-up Proposals Page 12 of 40

Derived directly or indirectly from true_type if
constructible_with_allocator<T1, Alloc>::value ||

constructible_with_allocator<T2, Alloc>::value, else derived directly or

indirectly from false_type.

Automatically determine pair traits based on the traits of its elements.

Note that something similar to the changes above would also be needed for tuple.

Container Requirements

Reword [container.requirements] (23.1), paragraph 8 as follows:

Copy constructors for all container types defined in this clause copy an allocator argument from their

respective first parameters. All other constructors except the copy and move constructors for these the

container types defined in this clause take an const Allocator& argument (20.1.2), an allocator whose

value type is the same as the container’s value type. A copy of this argument is used for any memory

allocation performed, by these constructors and by all member functions, during the lifetime of each

container object. In all container types defined in this clause, the member get_allocator() returns a

copy of the Allocator object used to construct the container.
253)

The allocator selected by a container during move construction or copy construction depends on the

allocator model, as set by the value of the uses_scoped_allocator trait for the container. If

the trait is false, the move and copy constructors copy the allocator from their argument. If the trait is

true, then the allocator is default-constructed. [Note: if the trait is used and the allocator type is not

DefaultConstructible, then the container will not be MoveConstructible or CopyConstructible (though

it could still be ExtendedMoveConstructible and ExtendedCopyConstructible). – end note]

253)
 As specified in 20.1.2, paragraphs 4-5, the semantics described in this clause applies only to the

case where allocators compare equal.

The trait-based copy/move semantics prevent allocators from being transferred on copy

and move construction when the “Scoped” allocator model is in use.

The behavior and performance of move and copy constructors is unchanged for

stateless allocators and for the (common) case where the object being moved has an

allocator equal to the default-constructed allocator. Otherwise, the move constructor

will become an O(n) operation instead of an O(1) operation. In the spirit of “you pay

only for what you use,” only users who care about using multiple, distinct values of

stateful allocators with the new model will pay this penalty, and even they can avoid

the penalty under most circumstances. Also, in the spirit of “support the novice without

interfering with the expert,” the default behavior is safe and consistent with the model,

and an experienced allocator-user can pass the allocator explicitly in such a way as to

ensure that the move is fast.

N2387: Omnibus Allocator Fix-up Proposals Page 13 of 40

In [memory] (20.6), before the declaration of uninitialized_copy, add the following

algorithm declaration:

template <class C>

 typename C::allocator_type

 select_allocator_for_copy(const C&);

template <class C, class Alloc>

 typename Alloc select_allocator_for_copy(const C&, Alloc&& A);

In [specialized.algorithms], before [uninitialized.copy] (2.6.4.1) insert:

2.6.4.y template function select_allocator_for_copy [select.allocator]

template <class C>

 typename C::allocator_type

 select_allocator_for_copy(const C& container);

Requires: C provides a type allocator_type and a member function, get_allocator()

that returns allocator_type. A program is permitted to overload this function for user-

defined classes.

Returns: If uses_scoped_allocator<C >, then returns C::allocator_type(),

otherwise returns container.get_allocator().

template <class C, class Alloc>

 typename Alloc select_allocator_for_copy(const C&, Alloc&& A);

A program is permitted to overload this function for user-defined classes.

Requires: C has a member type, allocator_type.

Returns: If uses_scoped_allocator<C>, then returns

Alloc(C::allocator_type()), otherwise returns Alloc(move(A)).

These are helpful functions for implementing the semantics of copy and move

construction for containers as described above.

In section [container.requirements] (23.1), replace paragraph 3:

Objects stored in these components shall be MoveConstructible and MoveAssignable. If the copy

constructor of a container is used, objects stored in that container shall be CopyConstructible. If the

copy assignment operator of a sequence container is used, objects stored in that container shall be

CopyConstructible and CopyAssignable. If the copy assignment operator of an associative container

is used, objects stored in that container shall be CopyConstructible.

For a container C, using allocator A and containing items of type T, if
items_use_containers_allocator<C>::value &&

items_use_containers_allocator<T>::value &&

N2387: Omnibus Allocator Fix-up Proposals Page 14 of 40

consructible_with_allocator<T,A>::value, then the container will pass its allocator

as an additional argument to T’s constructor for each of the container’s items. In this case, the

requirements on T in all of the tables in this clause (including Tables 87, 89, 90, 91, and 93) are

modified such that MoveConstructible is replaced by ExtendedMoveConstructible,

CopyConstructible is replaced by ExtendedCopyConstructible, and DefaultConstructible is replaced

by ExtendedDefaultConstructible (with respect to the container’s allocator).

The requirements on T should be stated on a per-function basis in the tables, to avoid

unnecessary restrictions. For example there is no need for T to be MoveAssignable if a

function that uses move-assignment is never invoked. The uses_scoped_allocator

trait is used to choose the allocator model. The allocator is propagated from the

container to the contained item if and only if both the container and the item agree to

this contract. If they do agree, the container passes its own allocator to the item when it

constructs the item. The use of the model is determined once for the container; it does

not vary from function to function, e.g., the container will not propagate the allocator

on, say, move construction but not on copy construction. Note that this paragraph does

not require that either the container or the item type use an allocator (because allocator-

specific behavior depends on the uses_scoped_allocator trait, which applies only

to classes that use allocators).

In section [container.requirements] (23.1), Table 87: Container requirements, change

selected rows as follows:

expression return type operational

semantics

assertion/note

pre/post-condition

complexity

X::value_-

type

T T is
CopyConstructible

compile time

…

X(a); requires: T is

CopyConstructible.
a == X(a)

linear

X u(a);

X u = a;

requires: T is

CopyConstructible.

post: u == a

Equivalent to: X u; u = a;

linear

X u(rv);

X u = rv;

requires: T is

MoveConstructible.

post: u shall be equal to

the value that rv had

before this construction

Equivalent to: X u; u =

rv;

constant

(Note B)

Modify the paragraph immediately following Table 87 as follows:

N2387: Omnibus Allocator Fix-up Proposals Page 15 of 40

Notes: the algorithms swap(), equal() and lexicographical_compare() are defined in clause 25. Those

entries marked “(Note A)” should have constant complexity. Those entries marked “(Note B)” have

worst-case linear complexity, but will often have constant complexity.

In section [container.requirements] (23.1), after paragraph 12 (just before

[sequence.reqmts]) add the following text and additional table:

All of the containers defined in this clause and in clause [basic.string] (21.3), except array, meet the

additional requirements of an allocator-aware container, as described in Table [88+1].

In Table [88+1], X denotes an allocator-aware container class of element type T using allocator type

Alloc, u denotes a variable, t denotes an lvalue or a const rvalue of type X, rv denotes a non-const

rvalue of type X, m is a value of type Alloc.

Table [88+1] Allocator-aware container requirements (in addition to container)

expression return type assertion/note

pre/post-condition

complexity

allocator_type Alloc requires:
allocator_type::value_type

is the same as value_type.

compile time

uses_scoped_allo

cator<X>

derived from

true_type or
false_type

true if
suggest_scoped_allocator<A

lloc> is true

compile time

get_allocator() Alloc constant

X()

X u;

requires: Alloc is

DefaultConstructible.

post: X().size() == 0,
get_allocator()== Alloc()

constant

X(m)

X u(m);
post: a.size() == 0,
get_allocator() == m

constant

X(t)

X u(t);

requires: T is CopyConstructible;

Alloc is DefaultConstructible.
post: u == a

linear

X(t,m)

X u(t,m);

requires: T is CopyConstructible
post: u == a,

get_allocator() == m

linear

X(rv)

X u(rv);

requires: T shall be

MoveConstructible
post: u == a

linear if m !=

Alloc() and

uses_scoped_alloc

ator<X>, else

constant

X(rv,m)

X u(rv,m);

requires: T shall be

MoveConstructible
post: u == a,

get_allocator() == m

constant if m ==

rv.get_allocator(),

else linear

Add the allocator requirements. The uses_scoped_allocator traitis computed

automatically from suggest_scoped_allocator. We specify the extended default,

move, and copy constructors, and clarify the complexity of the normal default, move,

N2387: Omnibus Allocator Fix-up Proposals Page 16 of 40

and copy constructors. Note that all containers now have a constructor that takes a

single allocator argument. The absence of such a constructor has caused grief for those

of us using stateful allocators up until now.

In section [sequence.reqmts] (23.1.1), modify paragraph 3 as follows:

In Tables 89 and 90, X denotes a sequence container class, a denotes a value of type X containing

elements of type T, i and j denote iterators satisfying input iterator requirements and refer to elements

implicitly convertible to value_type, [i, j) denotes a valid range, n denotes a value of X::size_type, p

denotes a valid const iterator to a, q denotes a valid dereferenceable const iterator to a, [q1, q2)

denotes a valid range of const iterators in a, t denotes an lvalue or a const rvalue of X::value_type,

and rv denotes a non-const rvalue of X::value_type. Args denotes a template parameter pack; args

denotes a function parameter pack with the pattern Args&&.

In section [container.requirements] (23.1), Table 89, change selected rows as follows:

a.emplace(p,args); iterator requires: T shall be constructible from

args and CopyAssignable.

Inserts an object of type T constructed

with T(std::forward<Args>(args)...).;

a.insert(p,t) iterator requires: T shall be CopyConstructible

and CopyAssignable.

inserts a copy of t before p.

a.insert(p,rv) iterator requires: T shall be MoveConstructible

and MoveAssignable.

inserts a copy of rv before p.

a.erase(q) iterator requires:T shall be MoveAssignable.

Erases the element pointed to by q

a.erase(q1,q2) iterator requires:T shall be MoveAssignable.

Erases the elements in the range [q1,q2)

In section [sequence.reqmts] (23.1.1), modify rows in Table 90 as follows:

a.push_-

front(args)

void a.emplace(a.begin(),

std::forward<Args>(args)…)

requires: T shall be constructible from

args

list, deque

a.push_-

back(args)

void a.emplace(a.end(),

std::forward<Args>(args)…)

requires: T shall be constructible from

args

list, deque,

vector

We specify the requirements for push_front and push_back because they turn out to

be less than the requirements for emplace.

In section [associative.reqmts] (23.1.2): Associative containers, modify paragraph 2 as

follows:

Each associative container is parameterized on Key and an ordering relation Compare that induces a

strict weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary

N2387: Omnibus Allocator Fix-up Proposals Page 17 of 40

type T with the Key. The object of type Compare is called the comparison object of a container. This

comparison object may be a pointer to function or an object of a type with an appropriate function

call operator. If the Compare type uses an allocator, then it conforms to the same rules as a container

item; the container will construct the comparison object with the allocator appropriate to the allocator

model in use by the container and the allocator-related traits of the Compare type.

In section [associative.reqmts] (23.1.2): Associative containers, modify paragraph 7 as

follows:

In Table 91, X denotes an associative container class, a denotes a value of X, a_uniq denotes a value

of X when X supports unique keys, a_eq denotes a value of X when X supports multiple keys, u

denotes an identifier, r denotes an lvalue or a const rvalue of type X, and rv denotes a non-const

rvalue of type X. i and j satisfy input iterator requirements and refer to elements implicitly convertible

to value_type. [i,j) denotes a valid range, p denotes a valid const iterator to a, q denotes a valid

dereferenceable const iterator to a, [q1, q2) denotes a valid range of const iterators in a, t denotes a

value of X::value_type, k denotes a value of X::key_type and c denotes a value of type

X::key_compare. M denotes the storage allocator used by X and m denotes an allocator of type

convertible to M.

In section [associative.reqmts] (23.1.2): Associative containers, modify table 91 as

follows:

X(c)

X a(c)
requires: key_compare is

CopyConstructible

constructs an empty container

uses a copy of c as a comparison object

constant

X()

X a;
requires: key_compare is

DefaultConstructible

constructs an empty container

uses Compare() as a comparison object

constant

X(i,j,c)

X a(i,j,c);
requires: key_compare is

CopyConstructible

constructs an empty container and

inserts elements from the range

[i,j) into it; uses a copy of c as a

comparison object

NlogN in general

(N is the distance

from i to j); linear

if [i, j) is sorted

with

value_compare()

X(i,j)

X a(i,j);
requires: key_compare is

DefaultConstructible

same as above, but uses Compare(),

as a comparison object.

same as above

In section [unord.req] (23.1.3), modify paragraph 3 as follows:

Each unordered associative container is parameterized by Key, by a function object Hash that acts as

a hash function for values of type Key, and by a binary predicate Pred that induces an equivalence

relation on values of type Key. Additionally, unordered_map and unordered_multimap associate an

arbitrary mapped type T with the Key. If the Hash and/or the Pred type use an allocator, then they

conform to the same rules as container items; the container will construct the Hash and Pred objects

with the allocator appropriate to the allocator model in use by the container and the allocator-related

traits of the Hash and Pred types.

N2387: Omnibus Allocator Fix-up Proposals Page 18 of 40

basic_string Changes

In section [basic.string] (21.3), modify paragraph 3 as follows:

The class template basic_string conforms to the requirements for a Sequence (23.1.1), and for a

Reversible Container (23.1) , and for an allocator-aware container (23.1). Thus, the iterators

supported by basic_string are random access iterators (24.1.5).

In section [basic.string] (21.3), add the following constructors:

basic_string(const basic_string&, const Allocator&);

basic_string(basic_string&&, const Allocator&);

In section [basic.string] (21.3), modify the description of the copy and move

constructors as follows:

basic_string(const basic_string<charT,traits,Allocator>& str);

basic_string(basic_string<charT,traits,Allocator>&& str);

Effects: Constructs an object of class basic_string as indicated in Table 58. In the first form,

the stored Allocator value is copied from str.get_allocator() constructed as if copied from

select_allocator_for_copy(str). In the second form, the stored Allocator value is

move constructed as if moved from str.get_allocator()

select_allocator_for_copy(str, move(strAlloc)), and str is left in a valid state

with an unspecified value.

Throws: The second form throws nothing if the allocator’s move constructor throws nothing.

Then add descriptions of the extended copy and move constructors:

basic_string(const basic_string& str, const Allocator& alloc);

basic_string(basic_string&& str, const Allocator& alloc);

Effects: Constructs an object of class basic_string as indicated in Table [58+1]. The stored

allocator is constructed from alloc. In the second form, str is left in a valid state with an

unspecified value.

Throws: The second form throws nothing if alloc == str.get_allocator() and the

allocator’s copy constructor throws nothing.

Element Value

data() points to the first element of an allocated copy of

the array whose first element is pointed at by the

original value of str.data()

size() the original value of str.size()

capacity() a value at least as large as size()

deque changes

In section [deque] (23.2.2): Class template deque, modify paragraph 2:

N2387: Omnibus Allocator Fix-up Proposals Page 19 of 40

A deque satisfies all of the requirements of a container, and of a reversible container, and of an

allocator-aware container (given in tables in 23.1) and of a sequence container, including the optional

sequence container requirements (23.1.1). Descriptions are provided here only for operations on

deque that are not described in one of these tables or for operations where there is additional semantic

information.

Add the following constructors:

deque(const deque&, const Allocator&);

deque(deque&&, const Allocator&);

And add the following trait specialization:

template <class T, class Allocator>

struct uses_scoped_allocator<deque<T, Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

list changes

In section [list] (23.2.3): Class template list, modify paragraph 2:

A list satisfies all of the requirements of a container, and of a reversible container, and of an allocator-

aware container (given in two tables in 23.1) and of a sequence container, including most of the the

optional sequence container requirements (23.1.1). The exceptions are the operator[] and at member

functions, which are not provided.
258

) Descriptions are provided here only for operations on list that

are not described in one of these tables or for operations where there is additional semantic

information.

Add the following constructors:

list(const list&, const Allocator&);

list(list&&, const Allocator&);

And add the following trait specialization:

template <class T, class Allocator>

struct uses_scoped_allocator<list<T, Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

vector changes

In section [vector] (23.2.5): Class template vector, modify paragraph 2:

A vector satisfies all of the requirements of a container, and of a reversible container, and of an

allocator-aware container (given in two tables in 23.1) and of a sequence container, including most of

the optional sequence container requirements (23.1.1). The exceptions are the push_front and

pop_front member functions, which are not provided. Descriptions are provided here only for

operations on vector that are not described in one of these tables or for operations where there is

additional semantic information.

N2387: Omnibus Allocator Fix-up Proposals Page 20 of 40

Add the following constructors:

vector(const vector&, const Allocator&);

vector(vector&&, const Allocator&);

And add the following trait specialization:

template <class T, class Allocator>

struct uses_scoped_allocator<vector<T, Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

In section [vector.bool] (23.2.6): Class vector<bool>, add the following constructors:

vector(const vector&, const Allocator&);

vector(vector&&, const Allocator&);

No additional specialization of uses_scoped_allocator is needed for

vector<bool>. The specialization for vector<T> is sufficient.

Changes to adapters

In section [container.adaptors] (23.2.4): Container adaptors, modify paragraph 1 as

follows:

The container adaptors each take a Container template parameter, and each constructor takes a

Container reference argument. This container is copied into the Container member of each adaptor. If

the container takes an allocator, then a compatible allocator may be passed in to the adaptor’s

constructor. Otherwise, normal copy or move construction is used for the container argument. [Note:

it is not necessary for an implementation to distinguish between the one-argument constructor that

takes a Container and the one-argument constructor that takes an allocator_type. Both

forms use their argument to construct an instance of the container. – end note]

If a container adheres to the “Scoped” allocator model, there is no other way to specify

the allocator to be used by the copy of the container within the adapter. As all of the

proposals in this paper are about making allocators more useful, it is reasonable that we

make it easy to specify allocators ubiquitously.

In section [queue.defn] (23.2.4.1.1): queue definition, add the following constructors:

template <class Alloc> explicit queue(const Alloc&);

template <class Alloc> queue(const Container&, const Alloc&);

template <class Alloc> queue(Container&&, const Alloc&);

template <class Alloc> queue(queue&&, const Alloc&);

And add the following trait specialization:

N2387: Omnibus Allocator Fix-up Proposals Page 21 of 40

template <class T, class Container>

struct uses_scoped_allocator<queue<T, container> >

 : uses_scoped_allocator<Container>::type { };

template <class T, class Container, class Alloc>

struct constructible_with_allocator<queue<T, container>, Alloc >

 : constructible_with_allocator<Container, Alloc>::type { };

In section [priority.queue] (23.2.4.2): Class template priority_queue, add the

following constructors:

template <class Alloc> explicit priority_queue(const Alloc&);

template <class Alloc> priority_queue(const Container&,

 const Alloc&);

template <class Alloc> priority_queue(Container&&,

 const Alloc&);

template <class Alloc> priority_queue(priority_queue&&,

 const Alloc&);

And add the following trait specializations:

template <class T, class Container>

struct uses_scoped_allocator<priority_queue<T, container> >

 : uses_scoped_allocator<Container>::type { };

template <class T, class Container, class Alloc> struct

constructible_with_allocator<priority_queue<T, container>, Alloc >

 : constructible_with_allocator<Container, Alloc>::type { };

In section [stack.defn] (23.2.4.3.1): stack definition, add the following constructors:

template <class Alloc> explicit stack(const Alloc&);

template <class Alloc> stack(const Container&, const Alloc&);

template <class Alloc> stack(Container&&, const Alloc&);

template <class Alloc> stack(stack&&, const Alloc&);

And add the following trait specializations:

template <class T, class Container>

struct uses_scoped_allocator<stack<T, container> >

 : uses_scoped_allocator<Container>::type { };

template <class T, class Container, class Alloc>

struct constructible_with_allocator<stack<T, container>, Alloc >

 : constructible_with_allocator<Container, Alloc>::type { };

map changes

In section [map] (23.3.1): Class template map, change paragraph 2 as follows:

N2387: Omnibus Allocator Fix-up Proposals Page 22 of 40

A map satisfies all of the requirements of a container and of a reversible container (23.1), of an

allocator-aware container (23.1), and of an associative container (23.1.2). A map also provides most

operations described in (23.1.2) for unique keys. This means that a map supports the a_uniq

operations in (23.1.2) but not the a_eq operations. For a map<Key,T> the key_type is Key and the

value_- type is pair<const Key,T>. Descriptions are provided here only for operations on map that are

not described in one of those tables or for operations where there is additional semantic information.

Add the following constructors:

map(const Allocator&);

map(const map&, const Allocator&);

map(map&&, const Allocator&);

And add the following trait specialization:

template <class Key, class T, class Compare, class Allocator>

struct uses_scoped_allocator<map<Key,T,Compare,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

multimap changes

In section [multimap] (23.3.2): Class template multimap, change paragraph 2 as follows:

A multimap satisfies all of the requirements of a container and of a reversible container (23.1), of an

allocator-aware container (23.1), and of an associative container (23.1.2). A multimap also provides

most operations described in (23.1.2) for equal keys. This means that a multimap supports the a_eq

operations in (23.1.2) but not the a_uniq operations. For a multimap<Key,T> the key_type is Key and

the value_type is pair<const Key,T>. Descriptions are provided here only for operations on multimap

that are not described in one of those tables or for operations where there is additional semantic

information.

And add the following trait specialization:

template <class Key, class T, class Compare, class Allocator> struct

uses_scoped_allocator<multimap<Key,T,Compare,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

set changes

In section [set] (23.3.3) Class template set, change paragraph 2 as follows:

A set satisfies all of the requirements of a container and of a reversible container (23.1), of an

allocator-aware container (23.1), and of an associative container (23.1.2). A set also provides most

operations described in (23.1.2) for unique keys. This means that a set supports the a_uniq operations

in (23.1.2) but not the a_eq operations. For a set<Key> both the key_type and value_type are Key.

Descriptions are provided here only for operations on set that are not described in one of these tables

and for operations where there is additional semantic information.

And add the following trait specialization:

N2387: Omnibus Allocator Fix-up Proposals Page 23 of 40

template <class Key, class Compare, class Allocator> struct

uses_scoped_allocator<set<Key,Compare,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

multset changes

In section [multiset] (23.3.4): Class template multiset, modify paragraph 2 as follows:

A multiset satisfies all of the requirements of a container and of a reversible container (23.1), of an

allocator-aware container (23.1), and of an associative container (23.1.2). multiset also provides most

operations described in (23.1.2) for duplicate keys. This means that a multiset supports the a_eq

operations in (23.1.2) but not the a_uniq operations. For a multiset<Key> both the key_type and

value_type are Key. Descriptions are provided here only for operations on multiset that are not

described in one of these tables and for operations where there is additional semantic information.

And add the following trait specialization:

template <class Key, class Compare, class Allocator> struct

uses_scoped_allocator<multiset<Key,Compare,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

unordered_map changes

In section [unord.map] (23.4.1): Class template unordered_map, modify paragraph 2 as

follows:

An unordered_map satisfies all of the requirements of a container, of an allocator-aware container,

and of an unordered associative container. It provides the operations described in the preceding

requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in that

table, not the a_eq operations. For an unordered_map<Key, T> the key type is Key, the mapped type

is T, and the value type is std::pair<const Key, T>.

And add the following trait specialization:

template <class Key,class T,class Hash,class Pred,class Allocator>

struct uses_scoped_allocator<unordered_map<

 Key,T,Hash,Pred,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

unordered_multimap changes

In section [unord.multimap] (23.4.2): Class template unordered_multimap, modify

paragraph 2 as follows:

An unordered_multimap satisfies all of the requirements of a container, of an allocator-aware

container, and of an unordered associative container. It provides the operations described in the

preceding requirements table for equivalent keys; that is, an unordered_- multimap supports the a_eq

operations in that table, not the a_uniq operations. For an unordered_multimap<Key, T> the key type

is Key, the mapped type is T, and the value type is std::pair<const Key, T>.

N2387: Omnibus Allocator Fix-up Proposals Page 24 of 40

And add the following trait specialization:

template <class Key,class T,class Hash,class Pred,class Allocator>

struct uses_scoped_allocator<unordered_multimap<

 Key,T,Hash,Pred,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

unordered_set changes

In section [unord.set] (23.4.3): Class template unordered_set, modify paragraph 2 as

follows:

An unordered_set satisfies all of the requirements of a container, of an allocator-aware container, and

of an unordered associative container. It provides the operations described in the preceding

requirements table for unique keys; that is, an unordered_set supports the a_uniq operations in that

table, not the a_eq operations. For an unordered_set<Value> the key type and the value type are both

Value. The iterator and const_iterator types are both const iterator types. It is unspecified whether

they are the same type.

And add the following trait specialization:

template <class Value,class Hash,class Pred,class Allocator>

struct uses_scoped_allocator<unordered_set<

 Value,Hash,Pred,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

unordered_multiset changes

In section [unord.set] (23.4.3): Class template unordered_multiset, modify paragraph 2

as follows:

An unordered_multiset satisfies all of the requirements of a container, of an allocator-aware

container, and of an unordered associative container. It provides the operations described in the

preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq

operations in that table, not the a_uniq operations. For an unordered_multiset<Value> the key type

and the value type are both Value. The iterator and const_iterator types are both const iterator types. It

is unspecified whether they are the same type.

And add the following trait specialization:

template <class Value,class Hash,class Pred,class Allocator>

struct uses_scoped_allocator<unordered_multiset<

 Value,Hash,Pred,Allocator> >

 : suggest_scoped_allocator<Allocator>::type { };

N2387: Omnibus Allocator Fix-up Proposals Page 25 of 40

Implementation Experience

Most of the elements in this section have been implemented and used extensively at

Bloomberg for several years. We make frequent use of short-lived arena allocators and

allocators that use special memory regions, and these semantics have provided a

powerful way to manage memory. By the time we meet in Kona, there will be at least a

second implementation, this time by a commercial vendor.

4. Polymorphic Allocators

Motivation

One of the most common difficulties people have in using custom allocators is that the

allocator type is part of the container type. Thus, std::vector<int,MyAlloc> is a

different type then std::vector<int,YourAlloc>. This prevents the former from

being passed to a function that expects the latter, even as a const reference. A stateful

allocator can be constructed that is essentially a wrapper around a pointer to an abstract

allocation mechanism. The actual allocation mechanism used by any particular object

would be determined at run-time, and would not affect the type of the object. The

“Scoped” allocator model would prevent such an allocator from accidentally ending up

in the wrong place.

A polymorphic allocator class is most useful if it is standardized so that everybody is

encouraged to use the same one, thus maximizing interoperability among modules. We

propose such a class here, along with an adapter that allows almost any allocator to be

used in the polymorphic context. This proposal assumes acceptance of the “Items Use

Container Allocator” Model proposal.

Proposed Wording

In section [memory] (20.6), before the definition of the default allocator, insert:

class allocator_mechanism;

template <class T> class polymorphic_allocator;

template <> class polymorphic_allocator<void>;

template <class T> struct

 suggest_scoped_allocator< polymorphic_allocator<T> >;

template <class T, class U>

 bool operator==(const polymorphic_allocator<T>&,

 const polymorphic_allocator<U>&) throw();

template <class T, class U>

 bool operator!=(const polymorphic_allocator<T>&,

 const polymorphic_allocator<U>&) throw();

N2387: Omnibus Allocator Fix-up Proposals Page 26 of 40

class new_delete_allocator_mechanism;

template <typename Allocator> class allocator_mechanism_adapter;

allocator_mechanism*

 set_default_allocator_mechanism(allocator_mechanism* m);

allocator_mechanism*

 set_global_allocator_mechanism(allocator_mechanism* m);

allocator_mechanism* default_allocator_mechanism();

allocator_mechanism* global_allocator_mechanism();

Before [default.allocator] (20.6.1), add the following sections:

20.6.c The polymorphic allocator mechanism [allocator.mechanism]

Class allocator_mechanism is an abstract base class defining a polymorphic memory

allocation protocol.

namespace std {

 class allocator_mechanism

 {

 public:

 virtual ~allocator_mechanism();

 virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0) = 0;

 virtual void deallocate(void* p, size_t n) = 0;

 virtual size_t max_size() const = 0;

 };
}

This abstract base class is the key to having runtime allocator selection. Defining a class

derived from allocator_mechanism is also much easier than creating an allocator

from scratch. There is no need to define a series of typedefs or the arcane rebind

template. In fact, I have often seen people make the mistake of deriving an allocator

from std::allocator, forgetting to define rebind and wondering why their

allocator worked for vector but not for list.

20.6.c.1 allocator_mechanism members [allocator.mech.members]

virtual ~allocator_mechanism();

effects: Abtract-class destructor does nothing.

virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0) = 0;

N2387: Omnibus Allocator Fix-up Proposals Page 27 of 40

Returns: A derived-class must override this function to return n bytes of memory with the

specified alignment or else throw an appropriate exception. If hint is specified, a derived class

may be used to optimize memory allocation (e.g., return a block as close as possible to hint).

Note: It is unspecified whether over-aligned requests are supported. A derived-class may honor

the over-aligned request, silently ignore the alignment request, or throw an exception.

virtual void deallocate(void* p, size_t n) = 0;

Requires: p shall be a pointer obtained from allocate() and not yet deallocated; n shall be the

value passed as the first argument to the invocation of allocate() that returned p.

Effects: A derived-class must override this function to the storage referenced by p.

virtual size_t max_size() const = 0;

Returns: A derived-class must override this function to return the largest number of bytes that can

reasonably be returned from this object. The value returned from this function is not guaranteed

to be available for allocation(). An implementation is permitted to assume that the value of

max_size() does not change for the life of the object.

allocator_mechanism is a simple abstract base class for implementing polymorphic

allocators. The requirements for max_size() do not require potentially expensive

capacity computations.

20.6.b Class template polymorphic_allocator [polymorphic.allocator]

An instance of polymorphic_allocator is implicitly convertible from a pointer to

allocator_mechanism and meets the requirements of an Allocator ([allocator.requirements]

20.1.2). Descriptions are provided here only for operations on polymorphic_allocator that are not

described [allocator.requirements] or for operations where there is additional semantic information.

namespace std {

 // specialize for void:

 template <> class polymorphic_allocator<void> {

 public:

 typedef void* pointer;

 typedef const void* const_pointer;

 // reference-to-void members are impossible.

 typedef void value_type;

 template <class U> struct rebind {

 typedef polymorphic_allocator<U> other;

 };

 };

 template <class T> class polymorphic_allocator {

 public:

 typedef size_t size_type;

 typedef ptrdiff_t difference_type;

 typedef T* pointer;

 typedef const T* const_pointer;

N2387: Omnibus Allocator Fix-up Proposals Page 28 of 40

 typedef T& reference;

 typedef const T& const_reference;

 typedef T value_type;

 template <class U> struct rebind {

 typedef polymorphic_allocator<U> other;

 };

 polymorphic_allocator(allocator_mechanism *m = 0) throw();

 polymorphic_allocator(const polymorphic_allocator&) throw();

 template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>&)

 throw();

 ~polymorphic_allocator() throw();

 pointer address(reference x) const;

 const_pointer address(const_reference x) const;

 pointer allocate(size_type,

 polymorphic_allocator<void>::const_pointer hint = 0);

 void deallocate(pointer p , size_type n);

 size_type max_size() const throw();

 void construct(pointer p, const T& val);

 template<class... Args>

 void construct(pointer p, Args&&... args);

 void destroy(pointer p);

 allocator_mechanism* mechanism();

 private:

 allocator_mechanism* mechanism_; // exposition only

 };

}

20.6.b.1 polymorphic_allocator constructors and destructor

polymorphic_allocator(allocator_mechanism *m = 0) throw();

Effects: if m != 0, mechanism_ = m, otherwise

mechanism_ = default_allocator_mechanism().

polymorphic_allocator(const polymorphic_allocator& a) throw();

template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& a)

 throw();

Effects: mechanism_ = a.mechanism_.

~polymorphic_allocator();

Effects: none

20.6.b.2 polymorphic_allocator members

N2387: Omnibus Allocator Fix-up Proposals Page 29 of 40

pointer address(reference x) const;

const_pointer address(const_reference x) const;

Returns: the address of x, even in the presence of overloaded operator&.

pointer allocate(size_type n,

 polymorphic_allocator<void>::const_pointer hint = 0);

Returns: mechanism_->allocate(n*sizeof(T), alignof(T), hint);

Throws: if mechanism_->allocate() throws an exception, then throw bad_alloc.

[Note: does not rethrow the same exception as mechanism_ unless the exception is also

bad_alloc – end note]

This exception behavior produces expected results in code originally written with the

default allocator in mind.

void deallocate(pointer p, size_type n);

Requires: p shall be a pointer obtained by calling allocate() on this same allocator instance

(or an equal copy of the same type) and not yet deallocated; n shall be the value passed as the first

argument to the invocation of allocate() that returned p.

Effects: mechanism_->deallocate(p, n*sizeof(T));

size_type max_size() const throw();

Returns: mechanism_->max_size().

allocator_mechanism* mechanism();

Returns: mechanism_ (i.e., the pointer used to construct this object).

20.6.b.3 polymorphic_allocator type traits

namespace std {

 template <class T> struct

 suggest_scoped_allocator< polymorphic_allocator<T> >

 : true_type { };

20.6.b.4 polymorphic_allocator globals

template <class T, class U>

 bool operator==(const polymorphic_allocator<T>& x,

 const polymorphic_allocator<U>& y) throw();

Returns: x.mechanism() == y.mechanism().

template <class T, class U>

 bool operator!=(const polymorphic_allocator<T>& x,

 const polymorphic_allocator<U>& y) throw();

N2387: Omnibus Allocator Fix-up Proposals Page 30 of 40

Returns: x.mechanism() != y.mechanism().

20.6.c Class new_delete_mechanism

The new_delete_mechanism class is a concrete derived class of allocator_mechanism

that implements storage allocation using operator new() and operator delete().

namespace std {

 class new_delete_mechanism : public allocator_mechanism

 {

 public:

 virtual ~new_delete_mechanism();

 virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0);

 virtual void deallocate(void* p, size_t n);

 virtual size_t max_size() const;

 };
}

20.6.c.1 new_delete_mechanism members [allocator.mech.members]

virtual ~new_delete_mechanism();

effects: none.

virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0);

Returns: a pointer to the n bytes of storage with specified alignment, a. It is implementation-

defined whether over-aligned requests are supported (3.11).

Remark: the storage is obtained by calling ::operator new(std::size_t) (18.5.1), but it is

unspecified when or how often this function is called. The use of hint is unspecified, but intended

as an aid to locality if an implementation so desires.

Throws: bad_alloc if the storage cannot be obtained.

virtual void deallocate(void* p, size_t n) = 0;

Requires: p shall be a pointer obtained from allocate() and not yet deallocated; n shall be the

value passed as the first argument to the invocation of allocate() that returned p.

Effects: Deallocates the storage referenced by p.

Remarks: Uses ::operator delete(void*) (18.5.1), but it is unspecified when this

function is called.

virtual size_t max_size() const = 0;

Returns: the largest value N for which the call allocate(N,1,0) might succeed.

20.6.c Class template allocator_mechanism_adapter

N2387: Omnibus Allocator Fix-up Proposals Page 31 of 40

The allocator_mechanism_adapter class adapts any Allocator class so that it can be

used as a mechanism for constructing a polymorphic_allocator.

namespace std {

 template <class Allocator>

 class allocator_mechanism_adapter : public allocator_mechanism

 {

 public:

 typedef typename

 Allocator::template rebind<void>::other allocator_type;

 allocator_mechanism_adapter(

 const allocator_type& a = allocator_type());

 virtual ~allocator_mechanism_adapter();

 virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0);

 virtual void deallocate(void* p, size_t n);

 virtual size_t max_size() const;

 private:

 typename Allocator::template rebind<max_align_t>::other

 original_; // exposition only

 };
}

20.6.c.1 allocator_mechanism_adapter members [allocator.mech.members]

allocator_mechanism_adapter(

 const allocator_type& a = allocator_type());

Effects: Constructs an allocator_mechanism_adapter with a copy of a.

virtual ~allocator_mechanism_adapter();

effects: original_.~allocator_type().

virtual void* allocate(size_t n, size_t alignment,

 void* hint = 0);

Returns: a pointer to the n bytes of storage with specified alignment, obtained by calling

allocate() on the underlying allocator object. It is unspecified whether valid alignment

requests less than the maximum fundamental alignment are rounded up to the maximum

alignment.

virtual void deallocate(void* p, size_t n) = 0;

Requires: p shall be a pointer obtained from allocate() and not yet deallocated; n shall be the

value passed as the first argument to the invocation of allocate() that returned p.

Effects: Deallocates the storage referenced by p by calling deallocate() on the underlying

allocator.

N2387: Omnibus Allocator Fix-up Proposals Page 32 of 40

virtual size_t max_size() const = 0;

Returns: the largest value N for which the call allocate(N,1,0) might succeed, obtained by

calling max_size() on the underlying allocator.

20.6.d The default and global allocator mechanism

allocator_mechanism*

 set_default_allocator_mechanism(allocator_mechanism* m);

Effects: Sets the default allocator mechanism to be used when default-constructing a polymorphic

allocator. If m is null, then sets the default allocator mechanism to a static object of type

new_delete_mechanism. [Note: The intended purpose of setting the default allocator is to

test that storage is being used correctly by intercepting unintended uses of the default store – end

note]

allocator_mechanism*

 set_global_allocator_mechanism(allocator_mechanism* m);

Effects: Sets the global allocator mechanism for use in constructing static-duration objects

(globals and singletons). If m is null, then sets the global allocator mechanism to a static object of

type new_delete_mechanism. [Note: the use of the global allocator is voluntary, but

recommended for static-duration objects that use allocators. The intended purpose is to allow

testing that memory is being used correctly. – end note]

allocator_mechanism* default_allocator_mechanism();

Returns: The last value set using set_default_allocator_mechanism() or a pointer to

a static object of type new_delete_mechanism if

set_default_allocator_mechanism() was never called.

allocator_mechanism* global_allocator_mechanism();

Returns: The last value set using set_global_allocator_mechanism() or a pointer to a

static object of type new_delete_mechanism if

set_global_allocator_mechanism() was never called.

The intended purpose of these default mechanisms is to allow replacement of the

default and global allocators for testing purposes. It is not recommended that they be

used for any other purpose. These utilities must be standard, however, so that code can

call them. In a testing environment, the default and global mechanisms would each be

set to different test mechanisms, which would monitor intended and unintended uses

of those allocators. The object under test should be constructed with a third test

mechanism. If it is implemented correctly, then the default mechanism should be used

only for transient allocations (e.g., local variables), whose lifetime is entirely within the

scope of a single function. Separating the default from the global mechanism prevents

intended long-term allocations from show up on the default mechanism’s count.

N2387: Omnibus Allocator Fix-up Proposals Page 33 of 40

Question: What should the behavior of the default and global mechanism functions be

in a threaded environment: thread-local? undefined? implementation-specified?

5. Polymorphic Allocator as the Default Allocator

Motivation

The most important quality of the polymorphic allocator is that it allows two objects of

the same type to have different allocator mechanisms. The allocator is chosen at run

time and is bound to an individual object rather than to its type. Ideally, one could pass

a string using a custom allocator to any function that expects a string argument., even if

that function were written years ago without consideration for allocators.

Unfortunately, type std::string is currently defined to use the default allocator, not

the polymorphic allocator. There is no way to pass a string using a polymorphic

allocator to a function that expects an std::string. The same is true for

std::vector and all of the other standard container classes.

Our solution is to make it so that any code compiled with C++0x will use the

polymorphic allocator by default, but where the use of compile-time allocators is still

honored.

Space and Time Considerations

When this idea was first proposed in Tremblant, Canada in 2005, there was concern that

a polymorphic allocator is at least one pointer in size and that it would increase the

footprint of string and every container type, even when the container is empty. A

number of implementation tricks can avoid this overhead in the empty-container case:

• The allocator can be stored in the data field until the first allocation occurs, at which

point it is copied into the allocated storage. A number of variations of this technique

exist, with different tradeoffs (some tradeoffs varying with machine architecture).

• The previous technique can be enhanced further by “stealing” a bit from an existing

field and using that bit to indicate whether or not the allocator uses the

new_delete_mechanism. If it does use the new_delete_mechanism, the

container does not need to store the allocator at all – the container can just use a

global singleton allocator based on the new_delete_alloactor, with no

additional space requirements in the typical case.

Our tests at Bloomberg indicate that the virtual function interface to the allocator

mechanism adds almost nothing to the overall run time of an allocation-heavy function.

In fact, the ability to replace the allocator at run-time has strong performance benefits in

N2387: Omnibus Allocator Fix-up Proposals Page 34 of 40

that it allows optimized allocators to be used in contexts where it was previously

impossible. Moreover, our experience, since 2003, shows that third-party, allocator-

oblivious code worked just fine with our modified standard library (built to support the

scoped allocator model and a polymorphic default constructor) and was able to take

advantage of our special allocators without source-code modifications.

Proposed Wording

Rename the “The default allocator” section to “The new-delete allocator”.

Rename allocator to new_delete_allocator

Rename the “Class template polymorphic_allocator” section in the previous

proposal to “The default allocator”.

Rename polymorphic_allocator to allocator.

Need guidance: new_delete_mechanism can be implemented this way:

typedef

 allocator_mechanism_adapter<new_delete_allocator<void> >

 new_delete_mechanism;

Should that definition be required, permitted, or disallowed?

6. Semantics of swap

Motivation

LWG 431 and N1599 point out that by the current definition of swap for containers, two

containers of the same type can always be swapped in constant time and with no

exception thrown. However, if the two containers contain stateful allocators and if

those allocators do not compare equal, a question arises as to what swap should do.

Should it swap the allocators, or should it do a linear-time swap of the contents of the

containers?

The most recent proposed resolution to LWG 431 is to swap the allocators iff the

allocator type itself is swapable. Implementing this semantic will require concepts.

Never-the-less, it is the right thing to do if the containers use a certain allocator model.

In proposal 3, above, I introduced the “Moves with Value” allocator model and the

“Scoped” allocator model. In the former case, the allocator is copied when the container

is copy-constructed. In the latter case it is not. Swapping the allocators is the right thing

to do if the containers conform to the “Moves with Value” allocator model and

N2387: Omnibus Allocator Fix-up Proposals Page 35 of 40

absolutely the wrong thing to do if the containers conform to the “Scoped” allocator

model. With the two allocator models well-defined, the desired behavior becomes clear.

Proposed Wording

TBD. Exact wording pending.

Rough wording, for each C::swap function:

If uses_scoped_allocator<C>::value is false and C::allocator_type is

Swappable, then swaps both the value and the allocator. Otherwise, swap only values. If the

allocator is swapped, then the operation has constant complexity and does not throw unless the swap

operation for the Compare, Hash, or Pred object throws. Otherwise, if the allocators compare equal

(the typical case), the operation has constant complexity and does not throw (unless Compare, Hash,

or Pred throw). Otherwise, the operation has linear complexity in the size of both containers

combined and may throw an exception.

7. Semantics of pointer and address in Allocators

Motivation

The allocator requirements in [allocator.requirements] (20.1.2) gives the allocator author

freedom to use a pointer type other than value_type* (i.e., a smart pointer type), in

order to be able to allocate memory in unconventional ways. As described in LWG 401

and LWG 634, the definition pointer and of the address() member function of

allocators is incomplete. The intention of this section of this proposal is to clarify the

language in the working paper such that, given a reference to an object allocated using

an allocator, the address() function should recover the pointer returned by the

allocate() function, even if pointer and const_pointer are other than

value_type* and const value_type*, respectively.

Proposed Wording

In section [allocator.requirements] (20.1.2), table 40, modify the rows that describe

pointer as follows:

X::pointer Pointer to T meets the requirements of a mutable

random-access iterator

([random.access.iterators] 24.1.5);

convertible to X::const_pointer.

X::const_pointer Pointer to const T meets the requirements of a random-

access iterator

([random.access.iterators] 24.1.5)

The above changes define “Pointer to T.” A random-access iterator is needed to ensure

that, when allocating more than one object (e.g., in a vector), the resulting array can be

N2387: Omnibus Allocator Fix-up Proposals Page 36 of 40

indexed and that it is possible to determine whether a given pointer object points into

the allocated range. (Note that random-access iterator will eventually be a concept.)

In section [allocator.requirements] (20.1.2), table 40, modify the rows that describe

address() as follows:

a.address(r) X::pointer equivalent to p

a.address(s) X::const_pointer equivalent to q

We also clarify the notion that, after dereferencing a pointer object, you can

reconstitute the original pointer (or something equivalent) by calling address() on the

reference. (For pointers not allocated from a1, see additional proposed changes to

address(), below.)

Change the rows that describe construct and destroy as follows. (Note that this is

the first of two changes proposed in this document for this portion of table 40.):

a.construct(p,t) (not used) Effect: ::new((void*)p) T(t)

Constructs a copy of t at p. If t is an

rvalue, it is forwarded to T's

constructor as an rvalue, else it is

forwarded as an lvalue.

a.construct(p,v) (not used) Effect: ::new((void*)p)

T(std::forward<V>(v)) Constructs a T

object from v at p. If v is an rvalue, it

is forwarded to T's constructor as an

rvalue, else it is forwarded as an

lvalue.

a.destroy(p) (not used) Effect: ((T*)p)->~T()Destroys the

object at p.

The above change addresses LWG 401 using the exact wording in the proposed

resolution. The change ensures that construct and destroy do the “right thing” if

pointer is not a true pointer.

One question remains: would a container that conforms to this clause really be able to

manage memory through non-raw pointers? Does anybody have implementation

experience with such odd-ball allocators?

In section [allocator.members] (20.6.1.1), modify the first two paragraphs as follows:

20.6.1.1 allocator members [allocator.members]

pointer address(reference x) const;

Returns: &x The actual address of x, even in the presence of an overloaded operator&.

const_pointer address(const_reference x) const;

N2387: Omnibus Allocator Fix-up Proposals Page 37 of 40

Returns: &x The actual address of x, even in the presence of an overloaded operator&.

The above change addresses LWG 634 using the exact wording in the proposed

resolution. It ensures that std::allocator<T>::address() does the right thing if

operator& is overloaded for T. Note that this definition of address applies only to

the default allocator (though it makes sense for any allocator for which pointer is the

same as value_type*).

8. Allow the Use of address for Foreign Objects

Motivation

LGW 635 asserts that address should also work on objects not allocated by the

allocator, as well as those that come from allocate(). This has some intuitive appeal

and makes it easy to, e.g., check if an argument has an address that falls within the

object being manipulated. I lean towards including this requirement for the reason that

someone writing an allocator with a custom pointer type must be a brain surgeon

whereas someone writing a container should not need to be as skilled.

Proposed Wording

In section [allocator.requirements] (20.1.2), table 39, modify the row that describes t and

add a new row for w as follows:

w a value of type T&

t a value of type const T& obtained by conversion from a value w

In section [allocator.requirements] (20.1.2), table 40, add more rows to the description of

address() as follows:

a.address(w) X::pointer *a.address(w) is identical to w

a.address(t) X::const_pointer *a.address(t) is identical to t

Guidance needed: This requirement may impose an unacceptable penalty for certain

allocators. For example, assume a shared-memory pointer that contains a process-

independent page ID for the shared memory and an offset into the shared memory.

Only pointers to objects allocated from the allocator’s shared memory space can be

represented by such pointers. Requiring that every object have a corresponding pointer

might require that the pointer type have an additional “raw” pointer to handle

objects that don’t come from the allocator. Without the universal address requirement,

if a container really needs to compare addresses, it can dereference the pointer and use

something like boost::addressof internally to get a raw address but this, as I said would

require more skill from the container author.

N2387: Omnibus Allocator Fix-up Proposals Page 38 of 40

9. Consistent Copy and Equality Semantics for Allocators

Motivation

[allocator.requirements] 20.1.2, table 40 requires that two allocators of the same type

compare equal if memory allocated through one allocator can be deallocated through

the other. It also states that if X and Y are corresponding allocators for different types, T

and U, and if a is of type X and b is of type Y, then X a(b) will yield the post-condition

that Y(a) == b. In other words, conversion is reversible. This comes close to, but

does not fully state, that operator== for allocators must be transitive and reflexive,

and that Y(a) == Y(a).

As intuitive as these relationships may seem to some, there are reasoned opinions that

these requirements are not needed and that there are useful allocators that could be

built if these requirements were not present. For example, a small arena allocator that

contains an array of bytes right within its footprint, would not even be equal to a copy

of itself. Never the less, I propose that operator== be both transitive and reflexive

and that copy-construction imply that the copy compares equal to the original. The

reasons are as follows:

1. It violates a principle of operator overloading that an operator have semantics vastly

different from the standard meaning. For example, operator+ should not mean

multiplication.

2. Similarly, it is not reasonable to assume that copy-constructing an object will yield

an object that does not compare equal to the original.

3. Many containers have already been written that make the standard assumptions

about copy construction and operator==.

4. Some uses of allocators, such as type erasure or footprint optimizations require that

an allocator be able to allocate a copy of itself. At least one implementation of

vector that I’ve seen puts the allocator on the heap.

A stateful allocator in this proposal would be required to share state with all of its

copies (including copy-conversions). However, the benefits of having an allocator with

truly unique state can be obtained by using an allocator with shared state and bundling

the state object with the container that uses the allocator.

Proposed Wording

In section [allocator.requirements] (20.1.2), add the following to Table 40:

N2387: Omnibus Allocator Fix-up Proposals Page 39 of 40

a1 == a2 bool returns true iff storage allocated from

each can be deallocated via the other.

Equality is reflexive and transitive.

a1 != a2 bool same as !(a1 == a2)

X() creates a default instance [Note:

destructor s assumed. – end note]

X a1(a); post: a1 == a

X a(b); post: Y(a) == b

post: a == X(b)

These changes make copy-construction, comparison, and equality consistent with one

another and with the common understanding of how they work.

10. Add variadic construct Requirement for Allocators

Motivation

The adoption of N2268 into the working paper introduced placement insert operations

with variadic template arguments into containers. As per proposal 2 in this paper,

containers should construct objects through the allocator’s construct() function.

This necessitates that construct() take variadic arguments.

Proposed Wording

In [allocator.requirements] (20.1.2), add the following row to Table 39:

Args a template parameter pack

args a function parameter pack with the pattern Args&&

Change the rows that describe construct and destroy as follows. (Note that this is

the second of two changes proposed in this document for this portion of table 40. The

text below shows the cumulative change.):

a.construct(p,t) (not used) Effect: ::new((void*)p) T(t)

Constructs a copy of t at p. If t is an

rvalue, it is forwarded to T's

constructor as an rvalue, else it is

forwarded as an lvalue.

a.construct(p,v) (not used) Effect: ::new((void*)p)

T(std::forward<V>(v)) Constructs a T

object from v at p. If v is an rvalue, it

is forwarded to T's constructor as an

rvalue, else it is forwarded as an

lvalue.

a.construct(p,args) (not used) Effect: Constructs a T object from

args at p. args is passed to T’s

constructor as forward<Args>(args)…

N2387: Omnibus Allocator Fix-up Proposals Page 40 of 40

11. Correction to function interface

TBD

Function objects need the uses_scoped_allocator trait and need to follow the

scoped allocator rules.

12. Allocator-aware stringstream

TBD

stringstream, istringstream, and ostringstream allocate memory and should

allow the user to control that allocation via an allocator argument at construction time.

13. Acknowledgements

I want to thank John Lakos for introducing me to the “Scoped” allocator model and

showing me how powerful a consistent allocator model can be. I also want to thank

John along with Vladimir Kliatchko and Shawn Edwards for their unwavering

encouragement, support and confidence in me. Finally, thank you to Ion Gaztañaga for

his input, and Howard Hinnant for introducing me to Ion.

