
Document Number: WG21/N2386=07-0246
Revision of: WG21/N2312=07-0172

Date: 2007-08-06
Reply to: Michael Spertus

mike_spertus@symantec.com

Namespace Regions

The problem

Although sometimes prone to overuse, the using-directive and using-declaration

constructs are frequently important and valuable. From adding simple convenience, such

as replacing the awkward

std::cout << std::string("Hello ") + "world" << std::endl;

with the more natural

using namespace std;
...
cout << string("Hello ") + "world" << endl;

to simplifying organization-wide conventions, using-directives and using-declarations

are a widely used part of the language.

Unfortunately, using-directives and using-declarations are generally are not suitable

for use in header files because they risk polluting the namespace of the source files

that include the header files. What makes this especially bad is that the prevalence of

templates in modern C++ programming means that much if not most code is in header

files. Indeed, almost the entire Boost library consists of header files. Of course, it

is possible to include such declarations on a method by method basis. However, the

common best practice of keeping methods short makes this technique of limited value.

Even worse, normal use of extensible literals requires using-directives or using-declations

as the use of explicit scope qualifiers with them is not allowed. For example, the

namespace containing the _miles literal must be implicitly search in expressions like

26_miles.1 As a result, it is virtually impossible to use extensible literals in headers
(or template implementation files) without leaking namespaces.

It is not an overstatement to say that the result of this has been that the using-directive

and using-declation constructs have proved largely useless for me. As a result, most of

my code (at least that in header files) looks like the awkward “Hello world” example

above instead of the more natural version that uses namespace std.

Namespace regions

In order to make using-directives and using-declarations better suited for use in header

1
 Although allowing a syntax like units::26_miles might be a worthwhile enhancement to extensible

literals.

files and template implementation files, we propose to allow statements like the

following:

namespace A {
 extern using namespace B; // Strong using
 using namespace C; // Still leaks outside
 private using namespace std; // Not visible outside this region
 class B {
 void foo() {
 cout << string("Hello ") + "world!" << endl; // OK
 }
}
Using namespace A;
void f() {

cout << "foo"; // Ill-formed. Leakage prevented.
}

The exact same reasoning applies to using declarations

namespace A {
 int i;

int j;
}
namespace B {
 using A::i;

private using A::j; // Don’t leak this
…

}

using namespace B;
int
main()
{
 i = 1; // OK

j = 1; // Ill-formed. Leakage prevented
 return 0;
}

This allows much greater control over the region in which using-directives and

declarations are in effect. Of course, this does not help headers in the global namespace,

but we do not regard that as a bad thing, as it would be just one more reason to create

namespaces for ones headers.

Technically, a private using directive or declaration says that the privately-used
namespace is not added to the list of nominated namespaces when the containing

namespace is nominated.

No special treatment is required for argument dependent lookup, which essentially adds

nominated namespaces to lookups, so privately-used namespaces are (properly) not

leaked in argument dependendent lookup.

Proposed wording

In section 7.3.3 [namespace.udecl] change the BNF as follows:

using-declaration:
 privateopt using typenameopt ::opt nested-name-specifier unqualified-id ;
 privateopt using :: unqualified-id ;

In section 7.3.4 [namespace.udir], change the BNF as follows:

 Using-directive:

 privateopt using namespace ::opt nested-name-specifieropt namespace-name ;

Change the start of paragraph 4 of 7.3.4 as follows:

The using-directive is transitive: if a scope contains a non-private using-directive

that nominates a second namespace that itself contains using-directives, the effect

is as if the using-directives from the second namespace also appeared in the first.

[Example:
namespace M {
 int i;
}
namespace N {
 int i;
 using namespace M;
}
namespace P {
 private using namespace M;
 void k() { i = 7; }
}
void f()
{
 using namespace N;
 i = 7; // error: both M::i and N::i are visible
}
void g()
{
 using namespace P;
 i = 7; // error; P only using M::i internally
}

Add a note to 3.4.2

In paragraph 2 of 3.4.3.2, change the phrase “transitive closure of all namespaces

nominated by non-private using-directives in X..”

In the example in 3.4.3.2, add the class
class W {
public:
 private using namespace A;
}

In the function h() in 3.4.3.2, add the line

 W::g(3); // Ill-formed. A is only used internally by W

There will be additional wording

