
Doc No: SC22/WG21/N2252
J16/07-0112
of project JTC1.22.32

Address: LM Ericsson Oy Ab
Hirsalantie 11
Jorvas 02420

Date: 2007-05-06 Phone: +358 40 507 8729 (mobile)

Reply to: Attila (Farkas) Fehér

Clark Nelson

Email: attila f feher at ericsson com
wolof at freemail hu
clark.nelson@intel.com

Adding Alignment Support to the C++
Programming Language / Wording

Short summary

Document status: wording proposal to be considered by CWG and LWG.

One-liner: Extending the standard language and library with alignment related features.

Problems targeted:

• Allow most efficient implementation of fixed capacity-dynamic size containers

• Allow most efficient implementation of optional elements

• Allow specially aligned variables/buffers for hardware related programming

• Allow building heterogeneous containers at run time

• Allow programming of discriminated unions

• Allow optimized code generation for data with stricter alignment

Related issues not addressed:

• Class-type “packing” (although allowed)

• Requesting specially aligned memory from allocators (new, malloc)

Proposed changes:

• New: alignment-specifier (alignas) to declarations

• New: alignof expression to retrieve alignment requirements of a type (like sizeof for

size)

• New: alignment arithmetic by library support (aligned_storage, aligned_union)

• New: standard function (std::align) for pointer alignment at run time

The numbering in this document is based on N2134 Working
Draft, Standard for Programming Language C++.

Typographical conventions:

- New paragraphs, notes examples etc. are normally typesetted

- Insertions into existing text are green and double underlined

- Deletions from existing text are green and stricken through

WG21/N2165 = J16/07-0025 Alignment page 2

Evolution WG Proposal Wording of 10

- Existing coloring, underlining and strike-through from N2134 is kept for clarity

- Any other change to existing text is unintentional and shall be ignored

Special thanks to Premanand Rao of HP for his hands with design and wording, Clark Nelson
of Intel for his effective guidance on managing the task and Benjamin Kosnik for his help with
Library wording.

WG21/N2165 = J16/07-0025 Alignment page 3

Evolution WG Proposal Wording of 10

Alignment Wording Proposal

Add new keywords to 2.11 Keywords [lex.key]

Add the word alignas and alignof before the asm keyword.

Add new bullet to 3.2 One definition rule §4 note [basic.def.odr]

- the type T is the subject of an alignof expression (5.3.6) or an alignas specifier
(7.1.6), or

Update 3.7.3.1 Allocation functions §2 [basic.stc.dynamic.allocation]

2 The allocation function attempts to allocate the requested amount of storage. If it is
successful, it shall return the address of the start of a block of storage whose length in bytes
shall be at least as large as the requested size. There are no constraints on the contents of
the allocated storage on return from the allocation function. The order, contiguity, and initial
value of storage allocated by successive calls to an allocation function are unspecified. The
pointer returned shall be suitably aligned so that it can be converted to a pointer of any
complete object type with a fundamental alignment requirement (3.11/2) and then used to
access the object or array in the storage allocated (until the storage is explicitly deallocated
by a call to a corresponding deallocation function). Even if the size of the space requested is
zero, the request can fail. If the request succeeds, the value returned shall be a non-null
pointer value (4.10) p0 different from any previously returned value p1, unless that value p1
was subsequently passed to an operator delete. The effect of dereferencing a pointer
returned as a request for zero size is undefined.37)

Add note to 3.9.2 Compound types §3 [basic.compound]

[Note: Pointers to over-aligned types have no special representation, but their valid value
range is restricted by the extended alignment requirement. This international standard
specifies only two ways of obtaining such a pointer: taking the address of a valid object with
over-aligned type, or using one of the runtime pointer alignment functions. An implementation
may provide other means of obtaining a valid pointer value for an over-aligned type. – end
note]

Add 3.11 Alignment [basic.align]

1 Alignment is a property of an address (3.9 §5).

2 An alignment requirement is an integer value (3.9 §5), also called an alignment value. This
international standard defines two kinds of alignments – fundamental alignments and
extended alignments.

3 A fundamental alignment is represented by an alignment value less than or equal to the
greatest alignment supported by the implementation in all contexts, which is equal to
alignof(std::max_align_t) (18.1).

WG21/N2165 = J16/07-0025 Alignment page 4

Evolution WG Proposal Wording of 10

4 An extended alignment is represented by an alignment value greater than

alignof(std::max_align_t). It is implementation-defined whether any extended

alignments are supported and the contexts in which they are supported (8.3.7). A type
having an extended alignment requirement is an over-aligned type.

5 Alignment values are represented as values of the type std::size_t. Valid alignment

values include only those values returned by an alignof expression for the fundamental

types, plus an additional implementation-defined set of values, which may be empty.

6 Alignments have an order from weaker to stronger or stricter alignments. Stricter alignments
have larger alignment values. An address which satisfies an alignment requirement also
satisfies any lesser valid alignment requirement.

7 The alignment requirement of a complete type can be queried using an alignof expression

(5.3.6). Furthermore the types char, signed char and unsigned char shall have the

weakest alignment requirement. [Note: This enables the character types to be used as the
underlying type for an aligned memory area (8.3.7).– end note]

8 Comparing alignment values is meaningful and provides the obvious results:

- Two alignments are equal when their numeric values are equal.

- Two alignments are different when their numeric values are not equal.

- When an alignment value is larger than another it represents a stricter alignment.

9 [Note: The run-time pointer alignment functions (20.4.8) can be used to obtain an aligned
pointer within a buffer; and aligned-storage support templates in the library can be used to
obtain aligned storage (20.6.8).]

Update 5.3 Unary expressions §1 [expr.unary]

1 Expressions with unary operators group right-to-left.

unary-expression:
 postfix-expression
 ++ cast-expression

 -- cast-expression

 unary-operator cast-expression
 sizeof unary-expression

 sizeof (type-id)

 alignof (type-id)

 new-expression
 delete-expression

unary-operator: one of
 * & + - ! ~

Update 5.3.4 New §11 [expr.new]

11 A new-expression passes the amount of space requested to the allocation function as the
first argument of type std::size_t. That argument shall be no less than the size of the

WG21/N2165 = J16/07-0025 Alignment page 5

Evolution WG Proposal Wording of 10

object being created; it may be greater than the size of the object being created only if the
object is an array. For arrays of char and unsigned char, the difference between the

result of the new-expression and the address returned by the allocation function shall be an
integral multiple of the most stringent fundamental alignment requirement (3.9, 3.11) of any
object type whose size is no greater than the size of the array being created. [Note: Because
allocation functions are assumed to return pointers to storage that is appropriately aligned for
objects of any type with fundamental alignment, this constraint on array allocation overhead
permits the common idiom of allocating character arrays into which objects of other types will
later be placed. — end note]

Add 5.3.6 Alignof [expr. alignof]

1 An alignof expression takes the following form:

 alignof (type-id)

2 An alignof expression yields the alignment requirement of its operand type as an

alignment value. The operand shall be a type-id representing a complete object type.

3 The result is an integral constant of type std::size_t.

4 When applied to a reference type, the result is the alignment of the referenced type. When
applied to an array type, the result is the alignment of the element type.

5 A type shall not be defined in an alignof expression.

Update 5.19 Constant expressions §1 [expr. const]

1 In several places, C++ requires expressions that evaluate to an integral or enumeration
constant: as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths
(9.6), as enumerator initializers (7.2), as static member initializers (9.4.2), and as integral or
enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expression canshall involve only literals of arithmetic types (2.13, 3.9.1),
enumerators, non-volatile const variables orand static data members of integral orand

enumeration types initialized with constant expressions (8.5), non-type template parameters
of integral orand enumeration types, and sizeof expressions, and alignof expressions.

Floating literals (2.13.3) canshall appear only if they are cast to integral or enumeration
types. Only type conversions to integral orand enumeration types canshall be used. In
particular, except in sizeof and alignof expressions, functions, class objects, pointers, or

references shall not be used, and assignment, increment, decrement, function call (including
new-expressions and delete-expressions), or comma operators, and throw-expressions shall
not be used.

Update 7.1 Specifiers §1 [dcl.spec]

1 The specifiers that can be used in a declaration are

WG21/N2165 = J16/07-0025 Alignment page 6

Evolution WG Proposal Wording of 10

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend

typedef

alignment-specifier

Insert 7.1.6 Alignment specifier [dcl.align]

1 The alignment specifier has the form

alignment-specifier:
alignas (constant-expression)

alignas (type-id)

2 The alignment specifiers apply to the name declared by the declarator-id that precedes it,
and specifies the alignment requirement for the object declared by that name.

3 When the alignment specifier is of the form alignas(constant-expression):

- the constant expression shall be an integral constant expression

- if the constant-expression evaluates to a fundamental alignment, the alignment
requirement of the declared object shall be the specified fundamental alignment

- if the constant-expression evaluates to an extended alignment value and the
implementation supports that alignment in the context of the declaration, the alignment
of the declared object shall be that alignment

- if the constant-expression evaluates to an extended alignment value and the
implementation does not support that alignment in the context of the declaration, the
program is ill formed

- if the constant-expression evaluates to zero, the alignment specifier shall have no
effect

- if the value of the constant-expression does not represent a valid alignment value, the
program is ill-formed

4 When the alignment specifier is of the form alignas(type-id), it shall have the same effect

as alignas(alignof(type-id)) (5.3.6).

5 When multiple alignment specifiers are specified for an object, the alignment requirement
shall be set to the strictest specified alignment.

6 The combined effect of all alignment specifiers in a declaration shall not specify an alignment
that is less strict than the alignment that would otherwise be required for the object being
declared.

7 An alignment specifier shall not be specified in a declaration of a typedef, or a bit-field, or a
reference, or a function parameter or return type, or an object declared with the register

storage-class specifier. [Note: In short, the specifier can be used on automatic variables,
namespace scope variables, members of class types (as long as they are not bit-fields). In

WG21/N2165 = J16/07-0025 Alignment page 7

Evolution WG Proposal Wording of 10

other words it cannot be used in contexts where it would become part of a type so it would
effect name mangling, name lookup or ordering of function templates. – end note.]

8 If the defining declaration of an object has an alignment specifier, any non-defining
declaration of that object shall either specify equivalent alignment or have no alignment
specifier. No diagnostic is required if declarations of an object have different alignment
specifiers in different translation units.

9 [Note: For creating aligned buffers it is advisable to use the type unsigned char as
underlying type; since that type has the weakest alignment and it represents unsigned
bytes of memory. – end note.]

10 [Example: If any other type T than char, signed char or unsigned char is used as underlying
type for an aligned buffer for an alignment requirement represented by A (type or integral
constant expression) the portable way to define such a buffer is:

T alignas(T) alignas(A) buffer_[N];

// where N is the number of T elements making up the buffer

This is necessary since A might represent a weaker alignment than alignof(T), but listing

T in the alignment specifier list will ensure that the final requested alignment will not be

weaker than alignof(T) and therefore the program will not be ill-formed.

- end example.]

11 [Note: Strengthening alignment of a union type may be done by applying the alignment
specifier onto any member of the union. – end note.]

12 [Note: To create a union containing a type with non-trivial constructor/destructor the
aligned_union (20.4.8) can be used. – end note.]

Update 8.1 Type names §1 [dcl.name]

1 To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or

typeid, the name of a type shall be specified. This can be done with a type-id, which is

syntactically a declaration for an object or function of that type that omits the name of the
object or function.

The rest of the paragraph is unchanged.

Update 14.6.2.2 Type-dependent expressions §4 [temp.dep.expr]

4 Expressions of the following forms are never type-dependent (because the type of the
expression cannot be dependent):

literal

postfix-expression . pseudo-destructor-name

postfix-expression -> pseudo-destructor-name

sizeof unary-expression

sizeof (type-id)

WG21/N2165 = J16/07-0025 Alignment page 8

Evolution WG Proposal Wording of 10

alignof (type-id)

typeid (expression)

typeid (type-id)

::opt delete cast-expression

::opt delete [] cast-expression

throw assignment-expressionopt

[Note: For the standard library macro offsetof, see 18.1. —end note]

Update 14.6.2.3 Value-dependent expressions §2 [temp.dep.constexpr]

2 An identifier is value-dependent if it is:

- a name declared with a dependent type,

- the name of a non-type template parameter,

- a constant with integral or enumeration type and is initialized with an expression that is
value-dependent.

Expressions of the following form are value-dependent if the unary-expression is type-
dependent or the type-id is dependent (even if sizeof unary-expression and sizeof (type-id

) are not type-dependent):

sizeof unary-expression

sizeof (type-id)

alignof (type-id)

[Note: For the standard library macro offsetof, see 18.1. —end note]

Update 18.5.1.1 Single object forms §1,§3,§7 [new.delete.single]

1 Effects: The allocation function (3.7.3.1) called by a new-expression (5.3.4) to allocate size
bytes of storage suitably aligned to represent any object of that size. It is implementation-
defined whether any extended alignment is supported.

Update 18.5.1.2 Array forms §1 [new.delete.array]

1 Effects: The allocation function (3.7.3.1) called by the array form of a new-expression (5.3.4)
to allocate size bytes of storage suitably aligned to represent any array object of that size or
smaller.218) It is implementation-defined whether any extended alignment is supported.

Update 20.4.2 Header <type_traits> synopsis [meta.type.synop]

Add aligned_union synopsis:

WG21/N2165 = J16/07-0025 Alignment page 9

Evolution WG Proposal Wording of 10

 // [20.4.8] other transformations:

template <std::size_t Len, class ... Types> struct aligned_union;

Update 20.4.4 General requirements §4 [meta.requirements]

4 Table 46 defines atwo templates that can be instantiated to define a types with specific
alignment and size.

Add to 20.4.8 Other transformations [meta.trans.other]

Table 46: Other transformations

Template Condition Comments

template <template

<std::size_t Len,

std::size_t Align>

struct aligned_storage;

Len is nonzero. Align is

equal to
alignment_of<T>::value

for some type T.

The member typedef type shall be a

POD type suitable for use as
uninitialized storage for any object
whose size is at most Len and whose
alignment is a divisor of Align.

template <

 std::size_t Len,

 class ... Types

> struct aligned_union;

At least one type is
provided.

The member typedef type shall

be a POD type suitable for use as
uninitialized storage for any
object whose type is listed in
Types, as long as Len provided is
zero or the types size is at most
Len bytes.

The static member
alignment_value shall be an

integral constant of type
std::size_t whose value is

the strictest alignment of any type
listed in Types.

1 [Note: A typical implementation would define aligned_storage as:

 template <std::size_t Len, std::size_t Alignment>

struct aligned_storage

{

 alignas(Alignment) unsigned char __data[Len];

};

 – end note]

2 It is implementation defined whether any extended alignment is supported.

3 If aligned_union is supplied with zero Len it will use the length of the largest of Types

(sizeof) for the size of the member type type.

WG21/N2165 = J16/07-0025 Alignment page 10

Evolution WG Proposal Wording of 10

Extend 20.6 Memory §1 synopsis [memory]

// 20.6.8 Pointer aligner function

void *align(std::size_t alignment, std::size_t size, void *&ptr, std::size_t&

space);

Update 20.6.1.1 Allocator members §5 [allocator.members]
5 Returns: a pointer to the initial element of an array of storage of size n * sizeof(T),

aligned appropriately for objects of type T. It is implementation defined whether over-aligned

types are supported.

Update 20.6.3 Temporary buffers §1 [temporary.buffer]
1 Effects: Obtains a pointer to storage sufficient to store up to n adjacent T objects. It is
implementation defined whether over-aligned types are supported.

Add subclause 20.6.8 Align [ptr.align]

 namespace std {

 void *align(

 std::size_t alignment,

 std::size_t size,

 void *&ptr,

 std::size_t &space

);

}

1 Effects: If it would be possible to fit size bytes of storage aligned by alignment into the buffer
starting at ptr with length space, the function updates ptr to point to the first possible address
of such storage and decreases space by the number of bytes used for alignment. Otherwise
the function has no effect.

2 Requires:

- alignment to be a fundamental alignment-value or an extended alignment-value
supported by the implementation in this context

- ptr is pointing to at least space bytes of contiguous storage

3 Returns: A null pointer if the function had no effect; otherwise the updated value of ptr.

4 [Note: The function updates its ptr and space arguments so that it can be repeatedly called
with possibly different alignment and size arguments for the same buffer. – end note]

