
Doc no: N2221=07-0081
Date: 2007-03-12
Reply-To: Bjarne Stroustrup

bs@cs.tamu.edu

An analysis of concept intersection

Bjarne Stroustrup Gabriel Dos Reis

Texas A&M University

Abstract

We present the notion of intersection of concepts (as initially pre-
sented in [DRS06] and [GS06]), give some motivating examples, ex-
plain workarounds, and give an algorithm for dealing with intersec-
tion which approaches zero cost for the simplest examples and the
cost of the most naive approach for the most complicated examples.

1 Introduction

We see concept map intersection || as an integral part of the concept pro-
posal. However, N2161 [GL07] raised doubts about its usefulness and im-
plementability, so we thought it better to discuss it separately. This pa-
per is that discussion, partly based on discussions at the “Google concept
meeting” and a late evening exploration of the issues by Bjarne Stroustrup,
Doug Gregor, and Gaby Dos Reis. Our conclusion is that concept intersec-
tion is more useful than we suspected and more easily implemented (an
implementation was part of Gaby’s concept prototype). Thus, || should
be “part of concepts.”

If you look at concepts as predicates on types (which is part of what
they are) it is obvious that you can combine concepts using &&, ||, and !.
For example

1

N2221=07-0081

template<typename T>
requires C1<T> || C2<T>
void f(const T& t);

That is, f() requires its argument type, T, to meet either the requirements
of C1 or those of C2. As stated, C1<T> and C2<T> need not have anything
in common, but if they have not, f() cannot use any operations on T.
What f() does to a T must be in the intersection of C1<T> and C2<T> –
for some definition of intersection.

Please note that in the discussion below, we do not try to exactly match
every detail of specific concepts as presented in various proposals. We are
trying to present just what is necessary to discuss concept intersection.

2 Motivating examples

Imagine that you want to use argument types coming from libraries Lib1
and Lib2. In particular, you want to write a template function that takes
as arguments types from two libraries that has each developed a notion of
“and ordinary value type” and represented them as concepts. One way to
proceed is to say that you’ll accept both:

template<typename T>
requires Lib1::value_type<T> || Lib2::Regular<T>
void my_algorithm(vector<T>& v);

If my notion of an ordinary value type fits nicely into the intersection
of their notions I can just use their notions. I don’t have to develop my
own notion. I don’t have to understand the details of their notions. And,
I don’t have to keep my notion in sync with theirs as their notions evolve.
Obviously, the compiler will sharply remind me if my guess about their
concepts were wrong (so that I used operations on T not supported by
those concepts) or if those concepts evolved in ways that didn’t suit me.

When concepts become popular, this scenario will become common
as different groups develop concepts independently. This will happen in
many application domains, including many that the standards community
will never get around to addressing.

2.1 value type example

First consider the “simple value type” scenario. We might have

Stroustrup & Dos Reis 2

N2221=07-0081

namespace Lib1 {
concept value_type<T> {

typedef T value_type;
T();
T(const T&);
T& operator=(T&, T);
int hash(T);

};
}

and

namespace Lib2 {
concept Regular<T> {

T();
T(const T&);
T& operator=(T&, T);
bool operator==(T,T);
bool operator!=(T a, T b) { return !(a==b); }

};
}

There is basically no problem. Lib1::value_type<T> || Lib2::Regular<T>
is simply a shorthand for what the user would have written after reading
Lib1::value_type<T> and Lib2::Regular<T>:

concept Ordinary_value_type<T> {
T();
T(const T&);
T& operator=(T&, T);

};

Now consider a use

template<typename T>
requires Ordinary_value_type<T>
void copy(vector<T> a, vector<T>& v)
{

a = b;
}

Actually, this Ordinary_value_type requirement is not quite min-
imal. We over-specified by requiring the copy constructor. Using ||, we
don’t run the risk of limiting the utility of our algorithm through over-
specification.

Stroustrup & Dos Reis 3

N2221=07-0081

2.2 Numeric example

There are many kinds of numbers. They all tend to have similar operations
(e.g. + and *) with similar signatures. However, they can differ dramat-
ically in the detailed semantics. For example, floating point numbers are
not commutative (i.e. x*y can be different from y*x) but for a specific algo-
rithm or for a slightly different implementation of floating point numbers
it can be very advantageous to treat them as commutative. For example:

concept Integral<Value_type T> {
};

concept Associative_FP<Value_type T> {
};

Now, when we know that a given FP type can be treated as associative
(possibly because of an explicit concept_map), we can treat is as associa-
tive, just like am integer.

We can imagine uses of || that keeps track of which alternative is cho-
sen (eventhough the use is in the intersection) and generates different code
for the alternatives to take advantage of differences in axioms. However,
the use of axioms is implementation specific, so we don’t make any sug-
gestions or assumptions about such cases.

2.3 copy example

Consider std::copy(). It will copy anything that supports an assign-
ment. For example

int* a1[10];
int* b1[10];
auto_ptr<int> a2[10];
auto_ptr<int> b2[10];
...
template<class T>
void cpy(T& a, T& b, int n)
{

copy(a,a+n, b);
}
...
cpy(a1,b1,10);
cpy(a2.b2,10);

How could we define requirements for cpy()? For int*, = means
copy (that is, a=b leaves two valid objects behind); whereas for auto_ptr<int>,

Stroustrup & Dos Reis 4

N2221=07-0081

= means move (that is, a=b leaves a single valid object behind). An obvi-
ous solution is:

template<Random_iterator T>
requires Copyable<T::value_type> || Movable<T::value_type>
void cpy(T& a, T& b, int n)
{

copy(a,a+n, b);
}

Obviously, we have made a few assumptions here, most prominently
that Random_iterator doesn’t make any assumptions about whether
we can copy its value_type.

This example raises a lot of questions, most prominently whether it is
a good idea to define a single operation to have two meaning with such
different semantics. What is interesting here is

1. that people do do it (and have done so for at least a decade), so we
can’t just ignore it

2. we actually can distinguish the two uses of = because they have dif-
ferent signatures the copy version of of = takes a const T& and the
move version takes a “plain” T&.

Consider

concept Moveable<T> {
T(T&);
T& operator=(T&, T&);

};

concept Copyable<T> {
T(const T&);
T& operator=(T&, const T&);

};

The interesting thing here is that we cannot write a concept that is a
simple intersection of Movable and Copyable: Their signatures differ even
tough the code that uses them does not. There is a difference in the seman-
tics of the two meanings of = that happens not to be significant for our
code.

It has been suggested that ”such code is just bad” and that ”anything
like auto_ptr should be ignored.” However, such moralizing missed the
point that here (using ||), the writer of the algorithm is expressing the

Stroustrup & Dos Reis 5

N2221=07-0081

minimal requirements of the algorithm and expressed them using existing
concepts. Requiring rewriting of existing code to suit the needs of a new
algorithm is rarely feasible and eliminating the need to do so is one of the
aims of concepts.

3 Workarounds

What would we do if we did not have a concept intersection operator?
basically, we have three choices

1. replicate the template bodies

2. provide (replicated) concept maps

3. simplify our problem by imposing a hierarchical order on our con-
cepts

3.1 The naive approach (replication)

So how do we implement concept intersection? The simplest and most
naive approach is simply to replicate template definitions for each alterna-
tive and then rely on concept-based overloading. For example, given

template<typename T>
requires Lib1::value_type<T> || Lib2::Regular<T>

void my_alorithm(vector<T>& v)
{

// ...
}

we just generate
template<typename T>

requires Lib1::value_type<T>
void my_algorithm(vector<T>& v)
{

// ...
}

template<typename T>
requires Lib2::Regular<T>

void my_algorithm(vector<T>& v)
{

// ...
}

Stroustrup & Dos Reis 6

N2221=07-0081

This works. The resulting object code is identical. The resulting com-
pile time is at least as bad (worse, see §4). The code is replicated. The
replication is a nuisance and as the number of alternatives (and replica-
tions) increase, it becomes a maintenance hazard. Manual replication is at
best a nasty workaround (inviting macro artistry).

Compilation costs can be high for a naive implementation f ||. How-
ever, this simple workaround will impose exactly the same costs. For nasty
caces where alternatives pile on alternatives the combinatorial explosion is
the same in both cases – and is unacceptable and (hopefully) self limiting.
We have to do better.

Replicating template functions is relatively easy. Concept-based over-
loading allows us to distinguish the copies. However, consider template
casses:

template<typename T>
requires Lib1::value_type<T> || Lib2::Regular<T>

class My {
void my_algorithm(vector<T>& v)
{

// ...
}
// ...

};

Replication gives
template<typename T>

requires Lib1::value_type<T>
class My {

void my_algorithm(vector<T>& v)
{

// ...
}
// ...

};

template<typename T>
requires Lib2::Regular<T>

class My {
void my_algorithm(vector<T>& v)
{

// ...
}
// ...

};

Such overloading is not well supported and would lead to (otherwise
unnecessary) template metaprogramming or macro artistry.

Stroustrup & Dos Reis 7

N2221=07-0081

3.2 The concept map approach

Rather than replicating template definitions, we could replicate concept
maps.

For example, given

template<typename T>
requires Lib1::value_type<T> || Lib2::Regular<T>

void my_alorithm(vector<T>& v)
{

// ...
}

we write

template<typename T>
requires my_regular<T>

void my_algorithm(vector<T>& v)
{

// ...
}

template<class T>
concept_map<Lib1::value_type<T>> {

// ...
}

template<class T>
concept_map<Lib2::Regular<T>> {

// ...
}

This seems more elegant and less brute force, but it turns one algo-
rithm into an algorithm plus a concept (here, my_regular) plus N con-
cept maps (where N is determined by the number of alternatives – here,
it’s 2). So we still have an explosion of written source code that needs
maintenance. If instead of writing my own my_regular concept, I recy-
cled one of the library ones, I get from N+1 pieces of code down to the
minimal N pieces. However, the cost is that I have now not stated my
intent clearly in the code; I have over-specified and become directly de-
pendent on some library.

The compile–time burden of this replication can still be significant. It
is similar to simple replication.

Stroustrup & Dos Reis 8

N2221=07-0081

3.3 Impose a hierarchical order

The general problem was that we were presented with related notions of
“ordinary type” Lib1::value_type<T> and Lib2::Regular<T>. If
one had been the refinement of the other, we would not have had a prob-
lem. Unfortunately, we can’t in general impose a hierarchical order on con-
cepts and even for concepts that could be hierarchically ordered (through
refinement), we can’t always go back and chance the concepts. Retroac-
tive mappings is the concept_map solution. Hierarchical ordering is ideal
in many cases. However, it is only feasible within an organization that
controls all the concepts, and even then it can be hard to do after that or-
ganization has acquired users.

Imposing a hierarchy solves the compile-time overhead problem by
eliminating the combinatorical explosion.

4 Calculating intersection

The intersection of two concept maps CM1 and CM2 is defined as the col-
lection of all symbols that are common to both CM1 and CM2, along with
consistent type description. More specifically:

1. All symbols that are not declared in both CM1 and CM2 are ignored
from the result of the intersection.

2. If n is a name declared in CM1 and CM2, then both CM1 and CM2
must declare it as either a type, or a function. It is an error for n to
designates a type in one concept map, and a function in the other.

3. If n designates a type in both CM1 and CM2, recursively compute
the intersection of the requirements on n from CM1 and CM2.

4. if n designates a function in both CM1 and CM2, then compute the
intersection of the overload set of n from CM1 and the overload set
of n from CM2 — see §4.1.

4.1 Intersection of the requirements for two overload sets

An overload set for a function f is partitioned into disjoint subsets, corre-
sponding to the arity of contained functions. For example, the overload

Stroustrup & Dos Reis 9

N2221=07-0081

set

void foo();
int foo(int);
int foo(double);
int foo(double, int);
int foo(int, double);

is partitioned into three subsets:

• arity 0:

void foo();

• arity 1:

int foo(int);
int foo(double);

• arity 2:

int foo(double, int);
int foo(int, double);

A subset corresponding to arity n of an overloaded function f is writ-
ten f/n. Furthermore, when performing overloading resolution within
a given arity subset of an overloaded function, one is making (the best)
choice between several candidates. For the discussion below, it is handy
to manipulate the collection of those candidate as a whole, so we will de-
note the type of the best candidate (when one exist) as

T1 ∨ · · · ∨ Tn

were each Ti is the (function) type of a candidate.
So given the overload set for a function symbol f from two concepts

maps CM1 and CM2, we do the following:

1. for every arity n

• either f@CM1/n or f@CM2/n is empty, then so is f@intersect(CM1,CM2)/n.

• Otherwise, call T 1
1 ∨ · · · ∨ T 1

n the type of the best candidate from
CM1, and T 2

1 ∨· · ·∨T 2
n the type of the best candidate from CM2.

The type of the best candidate in the intersection of CM1 and
CM2 is

(T 1
1 ∨ · · · ∨ T 1

n) ∧ (T 2
1 ∨ · · · ∨ T 2

n).

Stroustrup & Dos Reis 10

N2221=07-0081

What this notation is that the use of f must give a best candidate
from (T 1

1 ∨ · · · ∨ T 1
n) and a best candidate from (T 2

1 ∨ · · · ∨ T 2
n). If

both types are identical, then we just write one component.
the type of the intersection must be one that guarantees typeck-
ing from both CM1 and CM2, without being the same type in
CM1 and CM2.

2. The result of the intersection of CM1 and CM2 is the collection of the
all intersections of f@CM1 and f@CM2.

Example: Consider

namespace Lib1 {
concept value_type<T> {

typedef T value_type;
T();
T(const T&);
T& operator=(T&, T);
int hash(T);

};
}

namespace Lib2 {
concept Regular<T> {

T();
T(const T&);
T& operator=(T&, T);
bool operator==(T,T);
bool operator!=(T a, T b) { return !(a==b); }

};
}

We want to compute value_type<T> || Regular<T>

1. the symbol value_type is defined in value_type<T> but, not in
Regular<T>, so it is not part of the intersection.

2. Similarly the symbols hash, operator==, and operator!= are not
part of the intersection.

3. Next both value_type<T> and Regular<T> declare the same set
of constructors (same arity, same type), the result of the intersection
contains

() 7→ T ∨ (const T&) 7→ T

Stroustrup & Dos Reis 11

N2221=07-0081

for T’s constrcutor, which is just another notation for saying that the
intersection contains both the default constructor and the copy con-
structor.

4. Finally, the symbol operator= has the same type in both concept
maps, so is part of the intersection.

References

[DRS06] Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ Con-
cepts. In Conference Record of POPL ’06: The 33th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
295–308, Charleston, South Carolina, USA, 2006.

[GL07] Douoglas Gregor and Andrew Lumsdaine. Considering Con-
cept Constraint Combinator. Technical Report N2161=07-0021,
ISO/IEC SC22/JTC1/WG21, September 2007.

[GS06] Douoglas Gregor and Bjarne Stroustrup. Concepts (Revision 1).
Technical Report N2081=06-00112, ISO/IEC SC22/JTC1/WG21,
September 2006.

Stroustrup & Dos Reis 12

