
Doc. no.: N2104=06-0174
Date: 2006-09-29
Project: Programming Language C++
Reply to: Arch D. Robison <arch.robison@intel.com>

Intel Corporation
1906 Fox Drive
Champaign IL USA 61820

A Proposal to Add Parallel Iteration to the Standard Library

1 Table of Contents
1 Table of Contents..1
2 Motivation...1
3 Impact on the Standard ...2
4 Design Decisions ..2

4.1 General Principles...2
4.2 Implications...3
4.3 Specific Decisions...5
4.4 Comparison with OpenMP Scheduling ..8

5 Proposed Text for the Standard...9
5.1 Requirements ..9
5.2 Class task_scheduler_init..10
5.3 Class affinity_record...11
5.4 Template class blocked_range ..11
5.5 Template class blocked_range2d ..13
5.6 Parallel For..14
5.7 Parallel Reduce ...15
5.8 Template class parallel_while...16
5.9 Class pipeline ..18
5.10 Class filter ...19

6 Acknowledgements...19
7 References...19

2 Motivation
Multi-core processors are becoming common, yet writing even a simple parallel for-loop is
tedious with existing threading packages. Writing an efficient one is much harder. This document
proposes templates for common parallel iteration patterns that enable programmers to get speedup
from multiple cores/processors without having to be experts in synchronization, load balancing,
and cache optimization.

The goal of this proposal is parallelism for performance. It is not a general replacement for
threading libraries.

 1

3 Impact on the Standard
The proposal introduces the notion of multiple threads of control. It assumes that a memory
consistency model will be added to the standard via other proposals. This proposal has been
implemented in standard C++ using POSIX or Windows threads, and some common atomic
operations (compare-and-swap, fetch-and-decrement).

This proposal can be implemented as a pure extension, because conforming implementations may
choose to do no threading at all, as explained in Section 4.1.2.

Partial order diagrams are used to state concurrency constraints. Using pictures for normative
information would be new in the standard, but seems to be most concise.

4 Design Decisions
This proposal is based on experience with a larger library known as Intel® Threading Building
Blocks [TBB06].

4.1 General Principles

4.1.1 Be generic
Generic programming enables high-quality implementations of broadly applicable algorithms.
For example, the proposed template parallel_for applies to any recursively divisible space, not
only integers or random access iterators.

4.1.2 Parallelism is allowed, not required
This proposal allows parallelism, but does not require it. For example, a valid implementation of
the proposed parallel_for is the following recursive routine:

template<class RecursiveRange, class Body>
void parallel_for (const RecursiveRange& range, const Body& body) {
 if (!range.empty())
 if (range.is_divisible()) {
 body(range);
 } else {
 RecursiveRange rest(range,split());
 parallel_for(range,body);
 parallel_for(rest,body);
 }
}

Some parallel programming paradigms require concurrency; e.g., a producer-consumer
relationship with a bounded buffer requires concurrency to avoid deadlock. Mandatory
concurrency is often inefficient when there are more runnable software threads than hardware
threads to service them. Parallel performance is usually best when the system is allowed to
throttle how much available parallelism it turns into real parallelism.

One possible parallel implementation of parallel_for, based on a cobegin/coend extension, is
shown below.

 2

template<class RecursiveRange, class Body>
void parallel_for (const RecursiveRange& range, const Body& body) {
 if (!range.empty())
 if (range.is_divisible()) {
 body(range);
 } else {
 const Body b2(body);
 RecursiveRange r2(range,split());
 cobegin
 parallel_for(range,body);
 parallel_for(r2,b2);
 coend
 }
}

A good way to throttle this parallelism is the work-stealing algorithm from Cilk [BJKLRZ95],
which yields the benefits detailed in Section 4.2.2.

4.1.3 Full support for nested parallelism
Software components are built from other components. Each level of component may be able to
express parallelism. The proposal's interfaces permit efficient implementation of nested
parallelism, such as the approach outlined in Section 4.2.2.

4.1.4 Hide the number of physical threads
The number of available physical threads is often not really known, because some of them may be
servicing other processes on the system. Furthermore, even on a single-program system, support
of nested parallelism implies that not all threads are available to service a routine if there are other
routines running in parallel. Thus this proposal deliberately omits providing any portable way to
find out the number of available physical threads. The implementation should be free to choose
dynamically the appropriate number of underlying physical threads to use at any given moment.

4.1.5 Be efficient without compiler heroics
Doing parallel programming for performance inherently demands efficiency, for if the parallel
routine is slower than the corresponding sequential routine, it was not worth parallelizing. A
parallel programming interface should not rely upon heroic compiler support for practical
implementation. Examples of heroics would be whole program analysis or solving Diophantine
equations. Besides putting a burden on implementers, depending on such heroics puts a burden on
programmers, because the boundary separating where heroics succeed and where they fail is often
murky and implementation dependent. This proposal can be implemented efficiently as a library
using existing C++ compilers.

4.2 Implications

4.2.1 Program with task patterns, not threads.
Traditional pre-emptive threads flunk some of the principles stated in Section 4.1, namely they
require concurrency, and do poorly for nested parallelism because nesting leads to an exponential
explosion of software threads.

 3

Traditional threads are too heavy for small parallel tasks. An alternative would be lighter weight
thread implementations that support nesting [Narlikar99], but that would require significant OS
support.

Therefore, in this proposal the programmer specifies logical tasks as classes. For example, the
body argument to a parallel_for specifies the task to be performed for each subrange in a range,
somewhat analogous to the function argument to std::for_each. Using tasks instead of threads
permits practical finer grained parallelism than traditional threads, because tasks can be executed
by mechanisms that are typically much faster than starting up and shutting down a thread.

4.2.2 Divide and conquer with work stealing
Published work on Cilk [Cilk][BJKLRZ95] indicates that a divide-and-conquer strategy,
combined with work stealing, yields all of the following:

• throttling actual parallelism to available parallelism

• good load balancing

• good cache usage

• efficient nested parallelism

The interfaces of the proposal permit an efficient implementation on top of Cilk or similar run-
time. It is straightforward to build a similar underlying run-time on top of standard C++ and
common threading interfaces without the Cilk syntactic extensions.

4.2.3 Recursive ranges, not iterators
An early prototype of parallel_for took three arguments similar to std::for_each. Two of the
arguments specified: the "body" argument and two random-access iterators: begin and end.
Experience was that the traditional [begin,end) specification was awkward for parallel
programming, for several reasons:

• Only random access iterators sufficed. Sequential access iterators (input, output, forward,
bidirectional) precluded scalable parallelism.

• We often wanted to parallelize over two dimensions. There were ways to contort iterators
to do multi-dimensional traversal with divide-and-conquer, but they were unnatural.

Ranges have been proposed as a way to encapsulate iterators [Ottosen06]. Recursive ranges are
fundamentally more general, because they permit recursive descriptions of iteration spaces that do
not necessarily have iterators. Hence this proposal uses "recursive range" to distinguish from the
other range proposal.

Section 4.3.4 describes how blocked_range provides a way to construct a recursive range from a
[begin,end) pair of random-access iterators.

STAPL [STAPL], another generic parallel C++ library, has a similar notion of recursive parallel
ranges, albeit more complex because it tackles issues in distributed memory programming.

 4

4.3 Specific Decisions

4.3.1 No automagic startup/shutdown
Any user-created thread must initialize the library using task_scheduler_init. An early
prototype had automatic startup/shutdown, but our OpenMP group, based on their experience,
strongly warned against this because it is extremely difficult to implement the shutdown part
correctly on some operating systems. In particular, always knowing when a thread shut down was
problematic on some operating systems.

4.3.2 Splitting syntax
The notion of recursive splitting is central to this proposal. The requirements for recursive ranges
and the requirements for a parallel_reduce's body both require splitting. The proposal uses the
splitting constructor notation R s(r, split()) to split r of type R into subranges r and s. The
dummy type split serves to distinguish it from normal copy construction. The splitting
constructor destructively updates r, and so is allowed to recycle resources from r.

Several alternatives were considered:

• R s = r.split(). This form had the disadvantage of requiring extra object copying. In
principle, the compiler can eliminate the extra copies in most copies, but that depends
upon the compiler having the optimization and the user knowing how to cater to it.

• r.split(s). This form would require prior initialization of s, and thus possibly incur extra
overhead compared to constructing s on the spot.

• r.split(s1,s2) where s1 and s2 would be the new subranges, and r is a const R. This form
would preclude recycling resources in the original range for one of the subranges. This is
a serious overhead in some situations. For example, if the range is a collection, the
collection would have to be copied.

• pair<R> s1s2 = r.split() where r is const R. This form suffers both from object copying
and not being able to recycle.

Allowing splitting into more than two pieces was considered, but seems to add a lot of complexity
with little gain in power, because a K-way split can be implemented as K-1 two-way splits.

4.3.3 affinity_record
Repeated application of a parallel loop can be inefficient if iteration i is run on a different
processor each time, which incurs a cost of moving data associated with i between processors
(and thus often between caches). The performance increase in our prototype from using an
affinity_record with a simple stencil computation is ~25%. The prototyped uses the work
stealing modification described by Acar, Blelloch, and Blumofe [ABB].

4.3.4 blocked_range
A blocked_range abstracts the loop "for(Value i=begin; i<end; ++i)", in a way amenable to
parallel execution. Values are now required to implement LessThanComparable, which gives the
loop well defined semantics even when end<begin.

 5

The original prototype of blocked_range abstracted the loop "for(Value i=begin; i!=end; ++i) in
a way amenable to parallel execution. In that prototype, Values had to be EqualityComparable,
not LessThanComparable. Unfortunately, that meant that parallel algorithms had no way to detect
when the user passed in a backwards range, e.g., [3,-5), and the results of such executions were
wild. Early experience with users indicated that detecting such errors was valuable. Hence the
change to the current requirements.

A random-access iterator with a size_type of size_t can serve as a Value for a blocked_range.
It would be nice if the sizes in blocked_range were generalized to the "size type" of the value
type, instead of coerced to size_t. Because Values are not necessarily iterators, deducing the
"size type" is non-trivial. If the decltype [JSR04] becomes part of the language, then perhaps
deducing the "size type" would be easier to deduce.

Using a signed integral type for the size of a blocked_range was rejected as inconsistent with
containers. The interface for blocked_range attempts to give it the look and feel of a const
container of values.

The grainsize controls amortization of parallel scheduling overhead. Alas, the optimal grainsize
will depend upon implementations. Automatic determination of grainsize is still a research
problem. A default grainsize such as (end-begin)/(P*4) for a P-processor machine usually works
well, but has the bad behavior that amortization gets worse with increasing numbers processors,
causing parallel slowdown instead of parallel speedup. Having a grainsize independent of the
number of processors tends to keep, in common cases, the parallel scheduling overhead in a
constant proportion to real work. However, feedback from users is that they want automatic
grainsize determination, even if it is suboptimal, so the grainsize parameter is optional.

The grainsize is in the blocked_range, not the body argument to the parallel_for or
parallel_reduce. Here's the implications for the alternatives:

• Putting it in the blocked_range allows the decision "is divisible" to be made without
referring to the body. It allows commonly reused splitting logic to be encapsulated in
blocked_range.

• Putting the grainsize in the body would have required adding some kind of requirement to
a recursive range (e.g. "size") that could be queried by the body argument to a
parallel_for or parallel_reduce. This would require adding another required
signature to parallel_for, which would preclude using function objects as the body for
parallel_for. The preclusion would be particularly annoying if lambda expressions are
added to C++ [WJGSL06][Samko06].

4.3.5 blocked_range2d
Template class blocked_range2d is included because beneficial uses for it showed up commonly.
Parallelizing over two dimensions instead of one often yields more parallelism and better cache
behavior than parallelizing over only one dimension.

A generic "cartesian product of any two ranges" was not attempted because it was not clear how
the splitting constructor should behave when both dimensions are divisible.

Extensions to three or more dimensions, or making the number of dimensions a parameter, were
considered but rejected as adding too much complexity with little practically motivating cases.

 6

A constructor for blocked_range2d that takes two blocked_range arguments was considered as
an alternative to the 6-argument constructor, but so far practice has shown that such a constructor
just adds extra clutter.

4.3.6 parallel_for
The Body type must be copy constructible so that implementations have freedom to make thread-
private copies of a body. Because implementations are not required to merge the copies
afterwards, Body::operator() is required to be const qualified, as a syntactic guard against
trying to accumulate side effects in body which would be lost by the thread-private copies.

The specification of parallel_for is general enough to enable coding a crude parallel quicksort
without explicit recursion. The trick is to define a RecursiveRange that represents the key
sequence, using the is_divisible and splitting constructor to do the partitioning logic, and making
Body::operator() perform the leaf-case insertion sorts.

4.3.7 parallel_reduce
The proposal attempts to make parallel_reduce similar to parallel_for. The principle
difference is that thread-private copies of body must be merged at the end.

The requirements are in the form of requiring that alternative execution sequences have the same
net side effects. Thus the specification circumvents trying to define what a pure function is.

4.3.8 parallel_while
The proposed parallel_while usually does not provide scalable parallelism if method add is not
used, because the input stream typically acts as a bottleneck. However, this bottleneck is broken if
the stream is used to "prime a pump" and further items come from invocations of method add
caused by previous items.

Even in the non-scalable case, parallel_while covers a commonly requested idiom of walking
a sequential structure (e.g. a linked list) and dispatching concurrent work for each item in the
structure.

The proposed parallel_while requires that the programmer supply an object with method
pop_if_present(). The implementation is free to concurrently invoke that method on the same
object. An alternative design would be to define the input stream with a range [begin,end) defined
in terms of input iterators. This would have a performance drawback of requiring that the
implementation of parallel_while fetch an item by executing something like:

acquire lock
bool okay=i!=end;
if(okay) item=*i++;
release lock

Experience has been that programmers can often supply an atomic equivalent that is significantly
more efficient; e.g., via an atomic operations library [Boehm06].

4.3.9 pipeline
Pipelined processing is common in multi-media applications. The classical thread-per-stage
implementation suffers two problems:

 7

1. The speedup is limited to the number of stages.

2. When a thread finishes a stage, it must pass its data to another thread.

This proposal follows the recommendations of [MSS] to eliminate these problems. The
programmer specifies whether a stage is serial or parallel. A serial stages processes items one at a
time in order. A parallel stage may process items out of order or concurrently.

A pipeline contains one or more filters, denoted here as fi , where i denotes the position of the
filter in the pipeline. The pipeline starts with filter f0, followed by f1, f2, etc. The following steps
describe how to use class pipeline.

1. Derive classes fi from filter. The constructor for fi specifies whether it is serial or not via
the bool parameter to the constructor for base class filter.

2. Override virtual method filter::operator() to perform the filter’s action on the item,
and return a pointer to the item to be processed by the next filter. The first filter f0
generates the stream. It should return NULL if there are no more items in the stream. The
return value for the last filter is ignored.

3. Create an instance of class pipeline.

4. Create instances of the filters fi and add them to the pipeline, in order from first to last.

5. Call method pipeline::run. The parameter max_number_of_live_tokens puts an
upper bound on the number of stages that will be run concurrently. Higher values may
increase concurrency at the expense of more memory consumption from having more
items in flight.

Given sufficient processors and tokens, the throughput of the pipeline is limited to the throughput
of the slowest serial filter.

4.3.10 filter
The proposed form of a filter takes a (void*) as an argument, and returns a (void*). It would be
nice if the arguments were more precisely typed, but it seems difficult to combine static typing of
filters with the ability to dynamically build a pipeline. To have stronger typing would seem to
require restricting pipelines to a fixed number and sequence of stages at compilation time.

4.4 Comparison with OpenMP Scheduling
OpenMP [OpenMP02] is the most successful parallel extension to date. It is a language extension
consisting of pragmas, routines, and environment variables. OpenMP lets the programmer choose
between three scheduling approaches (static, guided, dynamic) for scheduling loop iterations:

Static scheduling partitions the index space into chunks of equal size. If different iterations
contain differing amounts of work, or the system processors have other tasks too, such
scheduling may incur a load imbalance penalty.

Dynamic scheduling deals out work as worker threads demand it. This scheme provides
optimal load balancing, but often incurs high communication cost because the dealing
mechanism becomes a source of contention.

 8

Guided scheduling deals out work in chunks of exponentially decreasing size. This scheme
provides a good tradeoff of communication versus load balancing, because it hands out big
chunks early, and fills in the load-balancing gaps with small work later. It's like most people
pack a suitcase: big items first and socks last. The dealing mechanism can become a
contention problem, though less than for dynamic scheduling.

In contrast to the three OpenMP scheduling schemes, this proposal has a single divide-and-
conquer approach. Implemented with work stealing, it compares favorably to dynamic or guided
scheduling, but without a centralized dealer. Static scheduling is sometimes faster on systems
undisturbed by other processes (or concurrent sibling code). However, divide-and-conquer comes
close enough for most purposes, and fits well with nested parallelism. Furthermore, generic static
scheduling would impose a more complex "split yourself into p equal pieces" requirement,
instead of the proposals "split yourself into two approximately equal pieces" requirement.

5 Proposed Text for the Standard
This clause describes components for parallel programming.

5.1 Requirements

5.1.1 Recursive Range
A recursive range is a set of values that may be recursively partitioned.

A class R satisfies the requirements of a recursive range. In Table 1, R is a type to be supplied by a
C++ program instantiating a template, r1 and r2 are values of type R, and s is a value of type
const R.

Table 1 – RecursiveRange requirements (in addition to CopyConstructible)

expression return type requirements
s.empty() convertible to bool return true iff range is empty
s.is_divisible() convertible to bool return true iff range should be partitioned

into two subranges.
R r2(r1,split()) pre: r1.is_divisible()

split r1 into two subranges r1 and r2.

Header <parallel> synopsis
namespace std {
 class split {};
 class task_scheduler_init;
 class task_affinity_record;
 template<typename Value> class blocked_range;
 template<typename Value> class blocked_range2d;
 template<typename RecursiveRange, typename Body>
 void parallel_for(const RecursiveRange& range, const Body& body);
 template<typename RecursiveRange, typename Body>
 void parallel_reduce(const RecursiveRange& range,
 const Body& body);
 template<typename Body> class parallel_while;
 class pipeline;
 class filter;
}

 9

5.2 Class task_scheduler_init
A task_scheduler_init represents a thread's request for task scheduling services. A
task_scheduler_init is either active or inactive. A thread must have at least one active
task_scheduler_init while it executes a parallel_for or parallel_reduce.

namespace std {
 class task_scheduler_init {
 public:
 static const int automatic = implementation-defined;
 static const int deferred = implementation-defined;
 task_scheduler_init(int number_of_threads=automatic);
 ~task_scheduler_init();
 void initialize(int number_of_threads=automatic);
 void terminate();
 };
}

5.2.1 Startup

task_scheduler_init(int number_of_threads=automatic);

Requires: The value number_of_threads shall be one of the values in Table 2.

Effects: If number_of_threads==task_scheduler_init::deferred, the
task_scheduler_init is initialized as inactive. Otherwise, the task_scheduler_init is
initialized as active. If there were no other extant active task_scheduler_init objects, then the
argument is a hint at the number of internal worker threads to create, as described in Table 2.

Table 2: Values for number_of_threads
number_of_threads effects

task_scheduler_init::automatic Let library determine number_of_threads based on
hardware configuration.

task_scheduler_init::deferred Defer activation actions.

positive integer If no worker threads exist yet, create
number_of_threads−1 worker threads. If worker threads
exist, do not change the number of worker threads.

[Note:The positive integer values are intended to assist scaling studies during program
development.]

void initialize(int number_of_threads=automatic)

Requires: The task_scheduler_init shall be inactive.

Effects: Make task_scheduler_init active. The number_of_threads has the same meaning
as in the constructor.

 10

5.2.2 Shutdown

~task_scheduler_init()

Effects: If the task_scheduler_init is active, make task_scheduler_init inactive before
destroying it.

void terminate()

Requires: The task_scheduler_init shall be active.

Effects: Make task_scheduler_init inactive.

The description of the destructor specifies what deactivation entails.

5.3 Class affinity_record
An affinity_record is an optional argument to parallel_for and parallel_reduce that
hints that performance might be improved if iterations are run on (or near) the same
processors as for the previous execution with that affinity_record.

namespace std {
class affinity_record {

 public:
 affinity_record();
 ~affinity_record();
 };
}

[Example:
affinity_record a, b;
for(int i=0; i<2; ++i) {
 parallel_for(r,f,a); // #1
 parallel_for(r,g,b); // #2
 parallel_for(r,h,a); // #3
}

Lines #1 and Line #3 hint that they should be run with a similar iteration↔processor mapping
each time. Likewise for Line #2. The separate hint says it is unrelated to #1 and #3.
--end example]

5.4 Template class blocked_range
namespace std {
 template<typename Value>
 class blocked_range {
 public:
 // types
 typedef size_t size_type;
 typedef Value const_iterator;

 // constructors
 blocked_range(Value begin, Value end, size_type grainsize);
 blocked_range(Value begin, Value end);
 blocked_range(blocked_range& r, split);

 11

 // capacity
 size_type size() const;
 bool empty() const;

 // access
 size_type grainsize() const;
 bool is_divisible() const;

 // iterators
 const_iterator begin() const;
 const_iterator end() const;
 };
}

A blocked_range represents a half-open range [i,j) that can be recursively split when the number
of values is greater than its grainsize. It satisfies all of the requirements for a recursive range.

In Table 3, Value is a type supplied by a C++ program instantiating a blocked_range, i and j
are values of type const Value, and k is of type size_t.

Table 3 – requirements on Value for a blocked_range (in addition to CopyConstructible)

expression return type requirements
i<j convertible to bool return true if Value i precedes value j
i-j convertible to size_t number of values in range [i,j).
i+k Value kth value after i

blocked_range(Value begin, Value end, size_t grainsize)
blocked_range(Value begin, Value end)

Effects: Constructs a blocked_range representing the half-open interval [begin,end). If a grain
size is not provided, the implementation chooses a grain size, which may vary dynamically.

[Example:: Let i and j be random-access iterators of type T with a size_type convertible to size_t.
Then the following constructs a recursive range over [begin,end) that breaks the range into
chunks of size less than or equal to 16.

blocked_range<T>(i,j,16)
--end example]

blocked_range(blocked_range& range, split)

Requires: range.is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range is
approximately the second half of the original range, and range is updated to be the remainder of
the original range. The blocked_range has the same grainsize as the original range.

[Example:: Let i and j be integers that define a half-open interval [i,j) and let g specify a grain
size. The statements

blocked_range<int> r(i,j,g);
blocked_range<int> s(r,split);

cause r to represent [i, i +(j −i)/2) and s to represent [i +(j −i)/2, j), both with grain size g.
--end example]

 12

size_type size() const

Requires: !(end()<begin())

Returns: end()−begin()
bool empty() const

Returns: !(begin()<end())
size_type grainsize() const

Returns: grain size of the blocked_range as specified when it was constructed.
bool is_divisible() const

Requires: !(end()<begin())

Returns: grainsize()<size()
const_iterator begin() const

Returns: Inclusive lower bound on range.
const_iterator end() const

Returns: Exclusive upper bound on range.

5.5 Template class blocked_range2d
namespace std {
 template<typename RowValue, typename ColValue=RowValue>
 class blocked_range2d {
 public:
 // types
 typedef blocked_range<RowValue> row_range_type;
 typedef blocked_range<ColValue> col_range_type;

 // constructors
 blocked_range2d(RowValue row_begin, RowValue row_end,
 typename row_range_type::size_type row_grainsize,
 ColValue col_begin, ColValue col_end,
 typename col_range_type::size_type col_grainsize);
 blocked_range2d(RowValue row_begin, RowValue row_end,
 ColValue col_begin, ColValue col_end);
 blocked_range2d(blocked_range2d& r, split);

 // capacity
 bool empty() const;

 // access
 bool is_divisible() const;
 const row_range_type& rows() const;
 const col_range_type& cols() const;
 };
}

A blocked_range2d represents a two dimensional range over the cartesian product [i0,j0)×[i1,j1).
It satisfies all of the requirements for a recursive range.

 13

blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue
row_end, typename row_range_type::size_type row_grainsize, ColValue
col_begin, ColValue col_end, typename col_range_type::size_type
col_grainsize)

Effects: Constructs a blocked_range2d representing a two dimensional space of values. The
space is the half-open Cartesian product [row_begin,row_end)× [col_begin,col_end), with the
given grain sizes for the rows and columns.

 [Example: The following statement constructs a two-dimensional space that contains all value
pairs of the form (i, j), where i ranges from ’a’ to ’z’ with a grain size of 3, and j ranges from 0
to 9 with a grain size of 2.

blocked_range2d<char,int> r(’a’, ’z’+1, 3, 0, 10, 2);

--end example]
blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)

Effects: Partitions range into two subranges. The newly constructed blocked_range2d is
approximately the second half of the original range, and range is updated to be the remainder.
Each subrange has the same grain size as the original range. The split is either by rows or
columns. The choice of which axis to split is implementation defined.

bool empty() const

Returns: rows().empty ()||cols().empty().
bool is_divisible() const

Returns: rows().is_divisible()||cols().is_divisible()
const row_range_type& rows() const

Returns: blocked_range2d containing the rows of the value space.
const col_range_type& cols() const

Returns: blocked_range2d containing the columns of the value space.

5.6 Parallel For
template<class RecursiveRange, class Body>
void parallel_for (const RecursiveRange& range, const Body& body);

template<class RecursiveRange, class Body>
void parallel_for (const RecursiveRange& range, const Body& body,
 task_affinity_record& affinity_record);

Requires: range must be RecursiveRange and body must be a unary function object such
that for RecursiveRange r and const Body b, the expression b(r) applies b to r.
Effects: Recursively partitions range into subranges ri such that ! ri.is_divisible() and
applies body to each ri. The partitioning and application may occur concurrently by the
invoking thread and other threads, subject to the following:

• An instance of body is never applied to more than one ri concurrently.
• An implementation may invoke the copy constructor for body, or a copy thereof,

concurrently with application of body.
Figure 1 shows the maximal concurrency allowed when processing distinct subranges ri and
rj.

 14

Body c(b);

parallel_for(b,ri); parallel_for(c,rj)

c.~B();

Figure 1 -- maximal concurrency allowed for parallel_for implementation

The same instance of body may be applied to multiple ri as long as those applications are
totally ordered.
[Example: Function ParallelApplyFoo evaluates Foo(i) for i in the range [0,n). Each
invocation of operator() operates on a subrange of ten or fewer values.

#include <parallel>
using namespace std;

class ApplyFoo {
public:
 void operator()(const blocked_range<size_t>& r) const {
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(i);
 }
};
void ParallelApplyFoo(size_t n) {
 parallel_for(blocked_range<size_t>(0,n,10), ApplyFoo());
}

An implementation is free to process the subranges in parallel, even if concurrent invocations of
Foo cause races.--end example]

5.7 Parallel Reduce
template<class RecursiveRange, class Body>
 void parallel_reduce(const RecursiveRange& range, Body& body);
template<class RecursiveRange, class Body>
 void parallel_reduce(const RecursiveRange& range, Body& body,
 task_affinity_record& affinity_record);

Requires: In Table 4, R and B are the types used respectively to instantiate RecursiveRange and
Body, b and c are values of type B, and r is a value of type R.

Table 4 --body requirements for parallel_reduce
expression return type requirement
B c(b,split()) create new body to process subrange concurrently.
b.~B()
b(r) accumulate result for subrange
b.join(c); update b to summary result for b and c, where c was

created by the expression Body c(b,split()).

If r and s are the result of R s(r,split()), the programmer must ensure that the two concurrent
execution sequences in Figure 2 have the same net effect; that is, are confluent. The

 15

implementation may choose, non-deterministically, which alternative is used for a given
range or subrange.

Body c(b,split());

parallel_reduce(b,r); parallel_reduce(c,s)

b.join(c);

c.~B();

parallel_reduce(b,r);

parallel_reduce(c,s)

Figure 2: confluence requirement on arguments to parallel_reduce

Effect: Recursively partitions range into subranges ri such that ! ri.is_divisible() and
applies body to each ri. The implementation may do the partitioning and application
concurrently using the invoking thread and other threads. Invocations of the splitting
constructor are always paired with a corresponding invocation of join.

[Note: The function represented by type Body should be associative, but does not have to
commutative.]

[Example: The following code performs an exclusive-or reduction:
#include <parallel>
using namespace std;

struct Xor {
 int value;
 Xor() : value(0) {}
 Xor(Xor& s, split) {value = 0;}
 void operator()(const blocked_range<int*>& range) {
 int temp = value;
 for(int* a=range.begin(); a!=range.end(); ++a) {
 temp ^= *a;
 }
 value = temp;
 }
 void join(Xor& rhs) {value ^= rhs.value;}
};

float ParallelXor(int array[], size_t n) {
 Xor total;
 parallel_reduce(blocked_range<int*>(array, array+n, 1000),
 total);
 return total.value;

}

--end example]

5.8 Template class parallel_while
namespace std {

 16

 template<typename Body>
 class parallel_while {
 public:
 parallel_while();
 ~parallel_while();
 typedef typename Body::argument_type value_type;
 template<typename Stream>
 void run(Stream& stream, const Body& body);
 void add(const value_type& item);
 };
}

The class parallel_while performs parallel iteration over a collection of items. Items may be
added to the initial collection while the parallel iteration is running.

Table 5 shows the requirements on the types Body and Stream used to instantiate the template
class and its template member. In Table 5, B is the type used to instantiate Body, b is a value of
type B, x is of type B::argument type, and s is a value of the type used to instantiate Stream. Type
B::argument type must be copy constructible and have a default constructor.

Table 5: parallel_while requirements

expression return type requirements
B::argument_type argument type of b
s.pop_if_present(x) bool get next item from s and return true; or

return false if no more items are available.
b(x) process item x.

parallel_while<Body>()

Effects: Construct a parallel_while that is not running.
~parallel_while<Body>()

Effects: Destroy a parallel_while.
template<typename Stream>
void run(Stream& stream, const Body& body)

Effects: Repeatedly invokes applies body to each item in the associated collection. The associated
collection consists of items obtained from stream.pop_if_present() and provided by method add.
Returns when both of the following conditions become true:

1. stream.pop_if_present has returned false

2. body(x) has returned for all items x generated from the stream or method add.

An implementation may concurrently invoke stream.pop_if_present(xi) and body(xi) on the
same parallel_while object w with distinct xi.

 17

X xi;

w.pop_if_present(xi)

b(xi);

xi.~X();

X xj;

w.pop_if_present(xj)

b(xj);

xj.~X();

Figure 3 -- concurrency of parallel_while for i≠j

void add(const value_type& item)

Requires: Must be called directly or indirectly from an invocation of body.operator() created
by parallel_while. Otherwise, behavior is undefined.

Effects: Add item to associated collection. Multiple concurrent invocations of w.add(item) are
permitted for a instance w of parallel_while.

5.9 Class pipeline
namespace std {
 class pipeline {
 public:
 pipeline();
 virtual ~pipeline();
 void add_filter(filter& f);
 void run(size_t max_number_of_live_tokens);
 void clear();
 }
}

A pipeline represents pipelined application of a series of filters to a stream of items. Each filter
is parallel or serial. See class filter (5.10) for details.

pipeline()

Effects: Constructs pipeline with no filters.
~pipeline()

Effects: Remove all filters from the pipeline and destroy the pipeline
void add_filter(filter& f)

Effects: Append filter f to sequence of filters in the pipeline. If filter f is already in a pipeline, the
effect is undefined.

void run(size_t max_number_of_live_tokens)

Effects: Runs the pipeline until the first filter returns NULL and each subsequent filter has
processed all items from its predecessor. The number of items actually processed in parallel
depends upon the structure of the pipeline and number of available threads. At most
max_number_of_live_tokens are in flight at any given time.

 18

void clear()

Effects: Remove all filters from the pipeline.

5.10 Class filter
namespace std {
 class filter {
 protected:
 filter(bool is_serial);
 public:
 bool is_serial() const;
 virtual void* operator()(void* item) = 0;
 virtual ~filter();
 };
}

A filter represents a filter in a pipeline. A filter is parallel or serial. An implementation may
apply a parallel filter concurrently or out of order on multiple items. An implementation must
apply a serial filter to items one at a time in the original order they were returned by the first filter
in the pipeline. [Note: Throughput is limited by the throughput of the slowest serial filter.]

filter(bool is_serial)

Effects: Constructs a serial filter if is_serial is true, or a parallel filter if is_serial is false.
~filter()

Requires: The filter must not be in a pipeline.

Effects: Destroys the filter.
bool is_serial() const

Returns: True iff filter is serial.
virtual void* operator()(void * item) = 0

Effects: The pipeline calls this method to process an item pointed to by item. The method shall
return a pointer to item to be processed by the next filter in the pipeline. The item parameter shall
be NULL for the first filter in the pipeline.

Returns: pointer to the result of the filter. The first filter in a pipeline shall return NULL if there
are no more items to process. [Note: The result of the last filter in a pipeline is ignored. --end
note]

6 Acknowledgements
Timmie Smith implemented a task affinity prototype while an intern at Intel. Dave Poulsen,
Anton Malakhov, Sanjiv Shah, and Mike Voss provided comments on an earlier draft.

7 References
[ABB] U. Acar, G. Blelloch, and R. Blumofe. "The Data Locality of Work Stealing", in
Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures
(Bar Harbor, Maine, United States, July 09 - 13, 2000). SPAA '00, pp. 1-12.

 19

[BJKLRZ95] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. "Cilk:
An Efficient Multithreaded Runtime System", 5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming PPOPP '95. July 19-21, 1995, Santa Barbara, California, pp.
207-216.

[Boehm06] H. Boehm. An Atomic Opertions Library for C++. C++ standards committee
document N2047, June 2006.

[Cilk] Cilk Papers. http://supertech.csail.mit.edu/cilk/papers/index.html

[JSR04] J. Järvi, B. Stroustrup, and G. Reis. Decltype and auto (revision 4). C++ standards
committee document N1705=04-0145, September 2004.

[MSS] S. MacDonald, D. Szafron, and J. Schaeffer. “Rethinking the Pipeline as Object–Oriented
States with Transformations”, Ninth International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS'04).

[Narlikar99] G.Narlikar and G. Blelloch, "Space-Efficient Scheduling of Nested Parallelism",
ACM Transactions on Programming Languages and Systems, 21(1), January 1999, pp. 138-173.

 [OpenMP02] OpenMP C and C++ Application Program Interface, Version 2.0 March 2002.
http://www.openmp.org

[Ottosen06] T. Ottosen. Range Library Core. C++ standards committee document N2068,
September 2006.

[Samko06] V. Samko. A proposal to add lambda functions to the C++ standard. C++ standards
committee document N1958=06-028, February 2006.

[STAPL] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, L.
Rauchwerger. "STAPL: An Adaptive, Generic Parallel C++ Library", Workshop on Language
and Compilers for Parallel Computing (LCPC 2001), Cumberland Falls, Kentucky Aug 2001.
Lecture Notes in Computer Science 2624 (2003): 193-208. See also STAPL home page at
http://parasol.tamu.edu/groups/rwergergroup/research/stapl/.

 [TBB06] Reference for Intel® Threading Building Blocks, Version 1.3.
http://www.intel.com/support/performancetools/tbb/sb/CS-023279.htm .

[WJGSL06] J. Willcock, J. Järvi, D. Gregor, B. Stroustrup, A. Lumsdaine, Lambda Expressions
and Closures for C++, N1968-06-0038.

 20

http://www.cs.ucsb.edu/Conferences/PPOPP95/
http://supertech.csail.mit.edu/cilk/papers/index.html
http://www.cs.ualberta.ca/%7Ejonathan/Papers/Papers/hips04.pdf
http://www.cs.ualberta.ca/%7Ejonathan/Papers/Papers/hips04.pdf
http://csdl.computer.org/comp/proceedings/hips/2004/2151/00/2151toc.htm
http://csdl.computer.org/comp/proceedings/hips/2004/2151/00/2151toc.htm
http://www.openmp.org/
http://parasol.tamu.edu/groups/rwergergroup/research/stapl/
http://www.intel.com/support/performancetools/tbb/sb/CS-023279.htm

	1 Table of Contents
	2 Motivation
	3 Impact on the Standard
	4 Design Decisions
	4.1 General Principles
	4.1.1 Be generic
	4.1.2 Parallelism is allowed, not required
	4.1.3 Full support for nested parallelism
	4.1.4 Hide the number of physical threads
	4.1.5 Be efficient without compiler heroics

	4.2 Implications
	4.2.1 Program with task patterns, not threads.
	4.2.2 Divide and conquer with work stealing
	4.2.3 Recursive ranges, not iterators

	4.3 Specific Decisions
	4.3.1 No automagic startup/shutdown
	4.3.2 Splitting syntax
	4.3.3 affinity_record
	4.3.4 blocked_range
	4.3.5 blocked_range2d
	4.3.6 parallel_for
	4.3.7 parallel_reduce
	4.3.8 parallel_while
	4.3.9 pipeline
	4.3.10 filter

	4.4 Comparison with OpenMP Scheduling
	5 Proposed Text for the Standard
	5.1 Requirements
	5.1.1 Recursive Range
	Header <parallel> synopsis

	5.2 Class task_scheduler_init
	5.2.1 Startup
	5.2.2 Shutdown

	5.3 Class affinity_record
	5.4 Template class blocked_range
	5.5 Template class blocked_range2d
	5.6 Parallel For
	5.7 Parallel Reduce
	5.8 Template class parallel_while
	5.9 Class pipeline
	5.10 Class filter

	6 Acknowledgements
	7 References

