
WG21/N2089 J16/06-0159 2006-09-07

Nick Maclaren
University of Cambridge Computing Service,

New Museums Site, Pembroke Street,
Cambridge CB2 3QH, England.

Email: nmm1@cam.ac.uk
Tel.: +44 1223 334761
Fax: +44 1223 334679

Asynchronous Exceptions for Threads

1.0 The Problem

Thread cancellation is a horrible issue, but the problem is that many users want it and
will use facilities like pthread cancel() and pthread kill() if C++ does not provide
anything. We discussed this in Redmond, and here is what I suggest should be provided,
based on mainframe designs (including but not limited to ones that I implemented) – note
that the syntax is all wrong, and this is describing solely the semantics.

1.1 Primitives with Defined Behaviour

These can be implemented reliably with defined semantics; the first is the one we dis-
cussed in Redmond. The second may seem a bit pointless, but is a hook for implementa-
tions that want to provide such a facility; it is trivial to implement by always saying “no”,
and no portable code should rely on it doing anything.

• typedef enum {failure, normal, flagged, terminating;} state t;

• state t thread interrupt delayed (thread t thread);

Unless the thread is already terminating, this sets a flag for the target thread to request
an exception. If is is already terminating, it leaves the state unchanged. In both cases,
it returns what the state was immediately before the call.

The thread checks the flag in certain library calls; if it is set, it clears it and throws
the asynchronous termination exception. The set of checks should include both entry
to and exit from a defined set of thread library synchronisation calls. An implementation
may define other places where it is checked, and the wording should allow anything from
no other checking up to checking between every statement.

• state t thread interrupt immediate (thread t thread);

This behaves like thread interrupt delayed() but requests the implementation to
behave as if a throw asynchronous termination; statement had been inserted between
two statements in the target thread’s code “effective immediately”. If an implementation
cannot do this and honour C++ semantics (as will be the case for most optimised code),
it shall do nothing and return failure.

WG21/N2089 J16/06-0159 2006-09-07



1.2 Primitives with Undefined Behaviour

Unfortunately, there are requirements for more draconian interruption mechanisms,
as shown by the existence of pthread cancel() with PTHREAD CANCEL ASYNCHRONOUS

and pthread kill(). Either of pthread cancel() with PTHREAD CANCEL DEFERRED or
pthread kill() combined with signal masking can be used fairly safely and portably, and
provide essentially the same functionality as thread interrupt delayed() above, but I
am referring to the other cases.

Because of the C language specifications and modern implementation strategies, an
unexpectedly cancelled or interrupted thread can do almost anything. The only case where
this is not true is for non-portable codes, where the program relies on implementation-
dependent behaviour. Very few implementations guarantee such behaviour, so even such
codes are very often reliable only for a particular release of the implementation.

The specification of the following functions needs to make it clear that calling these
functions will result in undefined behaviour, though an implementation may be kind and
define what will happen, and that the answer “no” should always be expected. The correct
use of these primitives is cleaning up after something has already gone wrong, when the
only realistic alternatives also cause undefined behaviour.

Please note that I have missed functions like these, as an implementor, and provided
them as an extension, because they are important when cleaning up after a fatal error.
There is no good reason not to expose them to the user, as their specification is portable,
even though their behaviour is largely unpredictable.

• state t thread interrupt abort (thread t thread);

This behaves as if the currently executing statement in the target thread were forced to
call the abort() function immediately, but where the effect of the abort() would apply
only to the target thread. If an implementation is unable to cause this, for any reason, it
should return failure.

• bool thread interrupt abort all ();

This calls the thread interrupt abort() function on all active threads, including dis-
connected ones, and returns true only if it succeeded on all of them.

WG21/N2089 J16/06-0159 2006-09-07


