
Conceptualizing the Range-Based for Loop

Author: Douglas Gregor, Indiana University <dgregor@cs.indiana.edu>
Document number: N2049=06-0119
Date: June 24, 2006
Project: Programming Language C++, Evolution Working Group

The new range-based for loop (N1961, N1868) drastically simplifies iteration over con-
tainers, with a new syntax that is concise, easy to teach, and easy to use:

vector<int> vec = ...;
for(int i : vec)

std::cout << i;

Of course, as well as working with library-defined containers and built-in arrays, the range-
based for loop is extensible to user-defined sequences and containers. Unfortunately, this
extensibility relies on argument-dependent lookup, the introduction of four new function
names into the library that extract iterators from sequences and containers (range begin(),
range end(), begin(), and end()), and a series of highly-generalized, unsafe function templates
that make containers work with the range-based for loop. Concepts (N2042) allow us to
restate the ideas of that proposal directly in C++0x, providing a cleaner, safer implementation
of the range-based for loop without changing the intended syntax or semantics.

We begin by building a concept For that captures all of the functionality we need to
iterate over a sequence or container. Like the pre-concept for proposal, we iterate over the
iterator range [begin(c), end(c)). Unlike the pre-concept version, however, we place begin()
and end() inside a concept :

concept For<typename C> {
InputIterator iterator;
iterator begin(C&);
iterator end(C&);

}

Using this concept, we make the range-based for statement:

for(type-specifier-seq simple-declarator : expression) statement

syntactically equivalent to

{
typedef decltype(expression) C;
auto&& rng((expression));

for(auto begin(std::For< C>::begin(rng)), end(std::For< C>::end(rng));
begin != end; ++ begin) {

1

mailto:dgregor@cs.indiana.edu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1961.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1868.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n2042.pdf

Doc. no: N2049=06-0119 2

type-specifier-seq simple-declarator (∗ begin);
statement

}
}

The range-based for loop works for any type C that meets the requirements of the concept
For. One can state that a certain type or set of types C meets these requirements, and how
those requirements are met, with a concept map. For instance, the following concept map
makes it possible to use the range-based for loop with arrays:

template<typename T, size t N>
concept map For<T[N]> {

typedef T∗ iterator;
T∗ begin(T (&array)[N]) { return array; }
T∗ end(T (&array)[N]) { return array + N; }

}

The range-based for proposal also allows iteration over pairs of iterators. We implement
the same functionality with concept maps defined only for pairs of input iterators:

template<InputIterator Iter > template<InputIterator Iter >
concept map For<pair<Iter, Iter> > { concept map For<const pair<Iter, Iter> > {

typedef Iter iterator ; typedef Iter iterator ;
Iter begin(pair <Iter, Iter >& p) Iter begin(const pair<Iter, Iter >& p)
{ return p.first ; } { return p.first ; }
Iter end(pair<Iter, Iter >& p) Iter end(const pair<Iter, Iter >& p)
{ return p.second; } { return p.second; }

} }

Finally, we can support iteration over the contents of any Container:

template<Container C> template<Container C>
concept map For<C> { concept map For<const C> {

typedef C::iterator iterator ; typedef C::const iterator iterator ;
iterator begin(C& c) iterator begin(const C& c)
{ return c. begin(); } { return c. begin(); }
iterator end(C& c) iterator end(const C& c)
{ return c. end(); } { return c. end(); }

} }

User-defined Containers will work with the range-based for loop through these model
templates, and users are, of course, free to provide their own concept maps for anything that
permits iteration.

The For concept and all of its concept maps will be placed in a new header, <for>, which
must be included before the range-based for loop can be used. Each of the Standard Library
container headers (<vector>, <map>, etc.) imply the inclusion of <for>.

Using concepts, we can simplify the implementation and extension of range-based for

loops, eliminating the confusion caused by argument-dependent name lookup, the distinc-
tion between range begin() and begin(), and the poor error messages that will result from
instantiation-time failures in the library-provided range begin() and range end(). We still
retain the same flexibility and extensibility as the pre-concept range-based for proposal.

