
Memory Model Overview

Hans-J. Boehm
HP Labs

Hans.Boehm@hp.com
WG21/N2010=J16/06-0080

2006-04-21
Slides presented to concurrency sub-subgroup (slightly revised)

Talk Overview
Status
Very quick overview
Discussion of consequences

This will impact compiler back-ends.
This will constrain future hardware.
I believe this is unavoidable if we want a
tolerable programming model.

Current Status

We currently have an informal proposal.
The evolving version is at

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
N1942 is close.
Builds on Clark Nelson's sequence point
proposal (N1944).
Fundamental assumption:

Usability is more important than 5% performance.
Now is the time to discuss the approach.
It will take time to draft a formal proposal.
Web site has companion atomics interface.

Proposal definitions

Two operations conflict if they affect the same
location, and at least one is a write.
A memory location is a scalar object or a
contiguous sequence of bit-fields.
(Oversimplified) A memory access
happens-before one in another thread if the
second acquires a lock after the first released it.
There is an (inter-thread) data race if there are
two conflicting memory accesses by different
threads, and neither happens-before the other.

Proposal Overview

We define a consistent execution.
Inter-thread visibility is defined using
happens-before.
If there is a consistent execution which

Sees the right input, and
Contains a data race
then the semantics are undefined.

Otherwise the program behaves according to one
of its executions.
We handle atomic operations fairly generally with a more
complicated, and somewhat nonstandard definition of
happens-before.

Library Issues

Haven't looked at this in detail yet.
Plan is to follow SGI STL:

Containers behave like scalars:
Two operations on a container conflict if one
of them logically updates the container.
Allocation doesn't count as update.
User-invisible updates require internal locking.
Other locking is the clients reponsibility.

This seems to be the de facto standard.
except for I/O?

Basic_string and reference counting?
ABI change?

Positive Attributes

Complexity of the proposal seems manageable.
In the absence of atomics, it seems as simple
as anyone might have expected.

We're known to be mathematically sloppy in only
one place: The "depends-on" relation. And that's

probably fixable, if we really wanted.
not critical for mainstream optimization.

Gives a sound foundation to thread in C++.
Simples, teachable rules for common case.

Probably as easy to use as threads and locks
can be.

Other impact on standard

Everything, needs review.
We need clean single-thread ordering semantics.

We need to know what "program order" is.
Part of current discussion uses "sequence
points", part doesn't.
"Sequence points" define an order, and are not
points.
We don't agree on what it means.
This needs to be fixed.

Implementation consequences

Most optimizations are unaffected. Loads and
stores can be eliminated, replicated, and moved
between atomic/synchronization calls.
But

Some fairly fundamental ones are affected.
And (like Java & CLI) we impose hardware
constraints:

Required for multiprocessors.
May need restartable critical sections on
uniprocessors.

Optimization Restrictions

No speculative or unnecessary stores.
Stores to struct/class members may not
unnecessarily overwrite adjacent members.

Intel Example:
struct {char a; int b:9; int c:7; char d;}

A store to b must be implemented as 2 byte
stores.

Speculative register promotion often illegal:
for (T *p = q; p != 0; p = p -> next)

if (p -> data > 0) ++count;
Standard register promotion of count becomes illegal.

Optimization Restrictions 2

Some kinds of code hoisting are problematic.
Stores may not be advanced across potentially
nonterminating loops.

Example:
for (T*p = q; p != 0; p = p -> next) ++count;
x = 42;

Uncommon? But analysis is commonly wrong.

Architectural Implications

Byte stores must be well-supported.
Required for Java/CLI.
Very old DEC Alpha machines won't work.

And compilers should limit support.
Others?

Atomic operations may be optional, but require
more:

Atomic loads/stores for most scalars.
Compare-and-swap (ll/sc) highly desirable.
Cheap way to enforce "causal ordering":

happens-before is transitive.

Questions:

Any concerns?
Single thread performance will take a small hit.

Low single-digit SPECcpu performance?
Except for "no threads" compiler option.
Is this OK? Other options?

Are the architectural constraints OK?
We do have (bad?) options for location defn.

Is the library approach OK?
Atomic operations issues?

