
WG21/N2005=06-0075 Max_digits10 Paul Bristow Page 1 of 3 2006-04-19

N2005 A maximum significant decimal digits value
for the C++0x Standard Library Numeric limits
Document number: JTC 1/SC22/WG21/N2005=06-0075
Date: 2006-04-11, version 4
Project: Languages C++
References:
1 C++ ISO/IEC IS 14882:1998(E),
2 William Kahan http://http.cs.berkley.edu/~wkahan/ieee754status/ieee754.ps
3 Previous version of this document: JTC 1/SC22/WG21/N1822=05-0082, 2005-06-14, version 3.
4 A Proposal to add maximum significant decimal digits macros to the C Standard Library.
Document number: JTC 1/SC22/WG14/N1171, Date: 2006-04-04, version 2
(a revision of WG14/N1151 until sent in the next WG14 mailing, is available at:
http://www.hetp.u-net.com/public/N1171%20max%20significant%20decimal%20digits%20MACROs.pdf
aka http://tinyurl.com/f982q
5 C ISO/IEC 9899:1999.

Reply to: Paul A Bristow, pbristow@hetp.u-net.com, J16/04-0108, www.hetp.u-net.com

Contents

1 Background & motivation

Why is this important? What kinds of problems does it address, and what kinds of programmers is it
intended to support? Is it based on existing practice?

C99[ISO:9899] provides numeric limits 18.2.1 including

 numeric_limits<FloatingPoint Type>::digits10

also available (and often implemented using) via C macros FLT_DIG, DBL_DIG, LDBL_DIG.

The member stores the number of decimal digits that the type can represent without change.

In effect, it is the number of decimal digits GUARANTEED to be correct (after rounding).

While useful, this does not provide another value, often more useful, the number of potentially significant
decimal digits that the type can represent. This number of decimal digits is necessary to avoid misleading
display of two floating-point numbers which only differ by one or a few least significant bits.

For example, if using IEEE 754/IEC559 32-bit floating-point float values, and
numeric_limits<float>::digits10 is 6,

So a number declared as

 float f = 3.145900F;

might be displayed, by setting cout.precision(6) as

WG21/N2005=06-0075 Max_digits10 Paul Bristow Page 2 of 3 2006-04-19

 “3.14590”

But nextafterf(3.145900F, 1.), a single bit different, and so definitely not equal, will also display as
“3.14590” so log files may display a most misleading, and unhelpful, output like

 “3.14590” != “3.14590”

Whereas if the proposed numeric_limits<float>::max_digits10 which is 9 is used, the output

“3.14590001” != “3.14590025”.

that is much less confusing, especially to the majority of readers whose understanding of floating-point
accuracy limitations is incomplete.

This max_digits10 number is also the number of decimal digits required to avoid loss of accuracy when
converting to a string and back to a floating-point representation, for example during serialization.

For example (W. Kahan page 4)

"If a decimal string with at most 6 decimal digits is converted to float, and then converted back to the
same number a significant digits, then the final string should match the original.

If a float is correct to a decimal string with at least 9 significant decimal digits, and then converted back to
float, then the final number must match the original."

(Although the C++ Standard is not clear if it is a requirement that a round trip like

float a = 1.F;
float aa = 0;
std::stringstream s;
s.precision(9); // max_digits10 for 32-bit IEE754 float
s << std::scientific << a;
s >> aa;
assert (a != aa);

or simply a good quality implementation. This could usefully be clarified).

2 Impact on the C and C++ Standards

This is a pure addition to existing numeric_limits class. It does not require any language change, nor any
change to the existing values provided by numeric_limits.

3 Design Decisions

3.1 Implementation

Using the formulae provided by Kahan2, provided

 numeric_limits< T >::is_specialized && std::numeric_limits< T >::radix == 2
 std::numeric_limits<float>::digits == 24 //the number of significand bits
std::numeric_limits<float>::digits10 == 6 // Guaranteed digits

WG21/N2005=06-0075 Max_digits10 Paul Bristow Page 3 of 3 2006-04-19

 floor(float_significand_digits -1) * log10(2) == 6
 ceil(1 + float_significand_digits * log10(2) == 9

Note that a C++ compiler will NOT evaluate this at compile time, but an WILL perform an integer
division, so 301/1000 is already widely used as an approximation for log10(2.).

 float const log10Two = 0.30102999566398119521373889472449F; // log10(2.)

 301/1000 is a good approximation to log10(2), and as noted in the C macros proposal4, will not cause
overflow using 16-bit integers and 53 bit significand (53 * 301 = 15953/10000 = 15 + 2 = 17 decimal
digits needed).
But for greater significand bit floating point representations, the accuracy of this approximation may not
be good enough, so provided int representation is at least 32-bit, then the ratio 30103UL/100000UL will
ensure that for more than 265 significand bits.

So it is convenient to use the an integer formula which can be calculated at compile time:

If std::numeric_limits<int>::digits == 16 then
 2 + std::numeric_limits<Target>::digits * 301/1000;

If std::numeric_limits<int>::digits >= 32 then
 2 + std::numeric_limits<Target>::digits * 30103UL/100000UL;

This formula may also be used for integer types, including built-in types.

C Macros

C995 already has the macro

 DECIMAL_DIG defined as ceil(1+precision*log10(radix)),

But this uses the highest precision available, usually long double, so using this for float and double
would probably result in using more decimal digits than can be significant, so the following floating-point
type-specific macros have been proposed:

#define FLT_MAXDIG10 (2+(FLT_MANT_DIG * 30103UL)/100000UL)
#define DBL_MAXDIG10 (2+ (DBL_MANT_DIG * 30103UL)/100000UL)
#define LDBL_MAXDIG10 (2+ (LDBL_MANT_DIG * 30103UL)/100000UL)

These may provide a convenient way to implement for built-in floating-point types:

std::numeric_limits<FPType>::max_digits10;

Default

An obvious default value is zero (required by 18.2.1.1 note 2), and all types, especially user-defined types
will provide this unless specifically implemented for that type.

User defined Types

WG21/N2005=06-0075 Max_digits10 Paul Bristow Page 4 of 3 2006-04-19

A high-precision user-defined type, for example NTL quad_float type using two 64 –bit numbers to
provide a 128-bit 106-bit significand could sensibly provide digits10 = 31 and max_digits10 = 33 by using
the above formula.

 The table below shows values for some floating-point formats.

Floating point Type

Often used
for C/C++
type

Total
bits

Significand bits
(+ 1 if an implicit bit)

guaranteed decimal
digits digits10

significant
decimal digits
max_digits10

IEEE single float 32 23 + 1 = 24 6 9
VAXF float 32 23 + 1 = 24 6 9
IBM G/390 short float 32 24 6 9
IEEE single extended ? >=43 >=32 7 11
IEEE double double 64 52 + 1 = 53 15 17
VAXG double 64 52 + 1 = 53 15 17
IBM G/390 long double 64 56 15 17
VAXD long double 64 56 15 17
IEEE double
extended long double 80 >=64 19 21

Sparc
doubleextended
(x86)

long double 80 64 18 21

AIX quad long double 128 106 31 33
NTL quad ‘quad’ 128 106 31 33
IBM G/390 extended long double 128 112 33 35
VAXH long double 128 112 + 1 = 113 34 36
IEEE quadruple long double 128 112 + 1 = 113 34 36
Sparc double
extended long double 128 112 + 1 = 113 34 36

signed fractional ? 127 128 38 40
unsigned fractional ? 128 128 38 40
unsigned fractional ? 128 128 + 1 = 129 38 40

Draft of Proposed Revised Text for

18.2.1.1 template class numeric_limits

After

 static const int digits10 = 0;

insert:
 static const int max_digits10 = 0;

After Note 9, insert (and shuffle down the following items):

10 The number of base 10 digits required to ensure that values which differ by only one binary unit in the
last place (ulp), or by numeric_limits::epsilon(), are always differentiated.

