
WG21/N1983 J16/06-0053 2006-04-21

Nick Maclaren
University of Cambridge Computing Service,

New Museums Site, Pembroke Street,
Cambridge CB2 3QH, England.

Email: nmm1@cam.ac.uk
Tel.: +44 1223 334761
Fax: +44 1223 334679

long long, size t and compatibility

Introduction

This proposal is NOT about long long as such.

Whether or not introducing long long was essential, unnecessary or harmful, that battle has been lost
and won. For good or ill, we have long long defined as a type that holds at least 64 bits, with the naıv̈e
assuming that it holds exactly 64 bits.

This proposal is how to alleviate the source code incompatibility introduced by the implicit permission
to allow size t and ptrdiff t to be longer than unsigned long and long, respectively. See later for why
this is serious.

Proposal

One of the following should be done:

1. C++ should state that an implementation must not make size t and ptrdiff t to be longer than
unsigned long and long, respectively.

2. C++ should require a diagnostic in the following cases:

• Either of size t or ptrdiff t is cast or converted to unsigned long or long, including when it is
done via other integer types that are potentially longer than unsigned long or long.

• When the new rules would cause a different type to passed as an argument of a <stdargs.h> function
if size t or ptrdiff t were longer than unsigned long and long, respectively.

3. C++ should require such diagnostics only for implementations that choose to make size t and ptrdiff t

longer than unsigned long and long, respectively.

The first option maintains source compatibility, the second provided the maximum help with diagnosing
problems, and the third has least impact.

Justification

Since the very early days of K&R C, there have been exactly 4 notional lengths of built-in integer type.
C89 and C++ (3.9.1) say:

There are four signed integer types, designated as signed char,

short int, int, long int.

and:

ptrdiff_t

which is the signed integer type of the result of subtracting two

pointers;

size_t

WG21/N1983 J16/06-0053 2006-04-21

which is the unsigned integer type of the result of the sizeof

operator;

C89 and C++ usual arithmetic conversions (5 paragraph 9, not quoted for brevity) also spell out that
unsigned long and long are required to be the longest built-in integer types.

C99 broke that guarantee. On the grounds of not restarting old flame wars, I shall not go into details.

Based on experience and investigations, this is essentially an issue solely for size t and ptrdiff t —
in theory, it could affect wchar t, clock t, time t and many POSIX types (from pid t to off t) but, in
practice, it doesn’t. In practice, all other standard integer types are no longer than int, except for ones
that have often been implemented as structures or other non-integers (e.g. off t and time t) and hence are
known to be prolematic.

However, a great many clean, portable, conforming (and even strictly conforming) programs include code
like the following:

ptrdiff_t length;

printf("%ld\n",(long)length);

or:

#define OFFSET 16l

printf("%ld\n",OFFSET+sizeof(double));

or:

#define BLOCK_SIZE 16384

ptrdiff_t offset, block, entry;

ldiv_t result;

result = ldiv((long)offset,(long)BLOCK_SIZE);

block = result.quot;

block = result.rem;

Furthermore, programs that wanted to maintain K&R compatibility often used long as a calculation
type for indices. In fact, quite a few newer C89 programs do, where the author prefers to use long for all
variables rather that flipping between ptrdiff t and long for calculations.

All of the above are undefined behaviour in C99, in any implementation that chooses to make ptrdiff t

longer than long. Worse, two of them will often not show up on test data (i.e. small sizes), but will when
given larger values, and one of them will sometimes appear to work on some implementations with ptrdiff t

longer than long.

Appendix: The Evidence

This is what I posted to the SC22WG14 reflector. To the best of my knowledge, it is the only hard
evidence that has ever been published on this topic.

I took a copy of gcc and hacked it around enough to produce diagnostics

for some of the problem cases, where C9X introduces a quiet change over

C89 in the area of ’long’ and ’long long’. However, this hack has the

following properties:

1) It flags only some traps.

2) It produces a large number of false positives.

3) It requires header hacks, and produces broken code.

[I removed the false positives by hand before producing the table below.]

I then ran it on a range of widely-used and important public-domain

WG21/N1983 J16/06-0053 2006-04-21

codes, taken from the Debian 1.3.1 CD-ROM set. Many of these are

effectively the same codes that are shipped with commercial systems,

and others are relied on heavily by many sites.

Most of the codes used "long" to hold object and file positions, or as

a way of printing an unknown integer type. The ones that I have marked

as "Yes" will almost certainly invoke undefined behaviour if faced with

a C9X compiler where ptrdiff_t is longer than "long", and probably will if

off_t is. The ones that I have marked "Maybe" could well have checks

to prevent this, or were too spaghettified to investigate.

Only 4 had any reference to "long long" whatsoever, and it was in a

single non-default #if’d out section in 3 of them; one of those defined

a symbol that was never referred to, another was solely for Irix 6 file

positions, and the last could trivially have been replaced by double.

The ONLY program that either had any reference to "long long" by

default, or used it seriously, was gcc itself.

Loss of data printf fails Uses long long

------------ ------------ --------------

apache Yes Yes No

bison No No No

bash Maybe Yes No

cpio Yes No Effectively not

csh Yes No No

diff Maybe No No

elm Build process failed No

exim Yes No No

fileutils Yes No Effectively not

findutils Yes Yes No

flex No No No

gawk Yes Yes No

gcc Build process failed Yes

gnuplot Maybe No No

gzip Yes No No

icon Yes No No

inn Build process failed No

nvi Maybe Yes No

pari Maybe No No

perl Build process failed Effectively not

sendmail Yes Yes For Irix 6

trn Maybe No No

wu-ftpd No Yes No

zip Yes Yes No

We absolutely MUST have some MANDATED migration aids in C9X to detect

at least the worst of these problems. If not, then we need to preserve

C89 as an alternative standard for at least the next 5 years, and I

really don’t want that!

WG21/N1983 J16/06-0053 2006-04-21

