
Decltype (revision 5)
Programming Language C++

Document no: N1978=06-0048

Jaakko Järvi
Texas A&M University

College Station, TX
jarvi@cs.tamu.edu

Bjarne Stroustrup
AT&T Research

and Texas A&M University
bs@research.att.com

Gabriel Dos Reis
Texas A&M University

College Station, TX
gdr@cs.tamu.edu

2006-04-24

1 Introduction
We suggest extending C++ with the decltype operator for querying the type of an expression. Further, we suggest
a new function declaration syntax, which allows one to place the return type expression syntactically after the list of
function parameters.

This document is a revision of the documents N1705=04-0145 [JSR04], 1607=04-0047 [JS04], N1527=03-0110 [JS03],
and N1478=03-0061 [JSGS03], and builds also on [Str02]. The document reflects the specification as discussed in
the EWG in the Lillehammer meeting, April 2004, and includes some changes to earlier specifications. [JSR04,JS04].
Most notably, the proposed wording has changed significantly, and achieves the same semantics more succinctly now.

We assume the reader is familiar with the motivation for and history behind decltype, and include only minimal
background discussion in this document; see N1607=04-0047 [JS04] for more of the history.

2 The decltype operator

2.1 Why decltype is crucial
The return type of a generic function often depends on the types of the arguments. In some cases the dependency can
be expressed within the current language. For example:

template<class T>
T min(const T& a, const T& b) { return a < b ? a : b; }

In other cases this is not as easy, or even possible. Consider the following example:

template<class A, class B>
R add(const A& a, const B& b) { return a + b; }

The return type, denoted here with R, should be the type of the expression a + b. That type may, however, be A, B,
or something entirely different. In short, the type R depends on the types A and B in a way that is not expressible in
today’s C++.

Functions where the return type depends on the argument types in a non-trivial way are common in generic li-
braries, such as tr1::bind, tr1::function, and Boost.Lambda, and Boost.µBLAS.

1

Doc. no: N1978=06-0048 2

2.2 Syntax of decltype
The syntax of decltype is:

simple-type-specifier
...
decltype (expression)
...

We require parentheses (as opposed to sizeof’s more liberal rule). Syntactically, decltype(e) is treated as if it
were a typedef-name (cf. 7.1.3). The operand of decltype is not evaluated.

2.3 Semantics of decltype
Determining the type decltype(e) build on a single guiding principle: look for the declared type of the expression e.
If e is a variable or formal parameter, or a function/operator invocation, the programmer can trace down the variable’s,
parameter’s, or function’s declaration, and find the type declared for the particular entity directly from the program
text. This type is the result of decltype. For expressions that do not have a declaration in the program text, such
literals and as calls to built-in operators, lvalueness implies a reference type.

The semantics of the decltype can be described succinctly with the help of l/rvalueness of the expression as
follows (these rules are directly from the proposed wording given in Section 5):

The type denoted by decltype(e) is defined as follows:

1. If e is of the form (e1), decltype(e) is defined as decltype(e1).

2. If e is a name of a variable or non-overloaded function, decltype(e) is defined as the type used in
the declaration of that variable or function. If e is a name of an overloaded function, the program is
ill-formed.

3. If e is an invocation of a user-defined function or operator, decltype(e) is the return type of that
function or operation.

4. Otherwise, where T is the type of e, if T is void or e is an rvalue, decltype(e) is defined as T,
otherwise decltype(e) is defined as T&.

The operand of the decltype operator is not evaluated.

2.4 Decltype examples and discussion
In the following we give examples of decltype with different kinds of expressions. First, however, note that unlike
the sizeof operator, decltype does not allow a type as its argument:

sizeof(int); // ok
decltype(int); // error (and redundant: decltype(int) would be int)

2.4.1 Variable and function names

Situations where the second bullet in Section 2.3 applies:

• Variables in namespace or local scope:

Doc. no: N1978=06-0048 3

int a;
int& b = a;
const int& c = a;
const int d = 5;
const A e;

decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // const int
decltype(e) // const A

• Formal parameters of functions:

void foo(int a, int& b, const int& c, int* d) {
decltype(a) // int
decltype(b) // int&
decltype(c) // const int&
decltype(d) // int*
...

}

• Function types:

int foo(char);
int bar(char);
int bar(int);
decltype(foo) // int(char)
decltype(bar) // error, bar is overloaded

Note that rule 4 applies when a pointer to a function is formed:

decltype(&foo) // int(*)(char)
decltype(*&foo) // int(&)(char)

• Array types:

int a[10];
decltype(a); // int[10]

• Member variables:

The type given by decltype is the type declared as the member variables type. In particular, the cv-qualifiers
originating from the object expression within a . operator or from the pointer expression within a -> expression
do not contribute to the declared type of the expression that refers to a member variable. Similarly, the l- or
rvalueness of the object expression does not affect whether the decltype of a member access operator is a
reference type or non-reference types.

class A {
int a;
int& b;
static int c;

void foo() {

Doc. no: N1978=06-0048 4

decltype(a); // int
decltype(this->a) // int
decltype((*this).a) // int
decltype(b); // int&
decltype(c); // int (static members are treated as variables in namespace scope)

}

void bar() const {
decltype(a); // int
decltype(b); // int&
decltype(c); // int

}
...

};

A aa;
const A& caa = aa;

decltype(aa.a) // int
decltype(aa.b) // int&
decltype(caa.a) // int

Handling references to member variables has changed from the rules proposed in N1705=04-0145 [JSR04],
back towards the specification in 1607=04-0047 [JS04]. The N1705=04-0145 specification considered accesses
to member variables as member access operators, whose type was defined using the rule 4. The current specifi-
cation retains more information on how the members have been declared — decltype in the N1705=04-0145
specification could not distinguish whether a member was defined as a reference or a non-reference type.

Member variable names are not in scope in the class declaration scope. Should this be seen as a serious restric-
tion, relaxing it ought to be considered.

class B {
int a;
enum B_enum { b };

decltype(a) c; // error, a not in scope
static const int x = sizeof(a); // error, a not in scope

decltype(this->a) c2; // error, this not in scope
decltype(((B*)0)->a) hack; // error, B* is incomplete

decltype(a) foo() { ... }; // error, a not in scope

decltype(b) enums_are_in_scope() { return b; } // ok
...

};

Built-in operators .* and ->* follow the decltype rule 4: l- or rvalueness of the expression determines whether
the result of decltype is a reference or a non-reference type.

Using the classes and variables from the example above:

decltype(aa.*&A::a) // int&
decltype(aa.*&A::b) // illegal, cannot take the address of a reference member
decltype(caa.*&A::a) // const int&

Doc. no: N1978=06-0048 5

• this:

class X {
void foo() {
decltype(this) // X*, ‘‘this’’ is ‘‘non−lvalue’’ (see 9.3.2 (1))
decltype(*this) // X&

...
}
void bar() const {
decltype(this) // const X*
decltype(*this) // const X&

...
}

};

• Pointers to member variables and functions:

class A {
...
int x;
int& y;
int foo(char);
int& bar() const;

};

decltype(&A::x) // int A::*
decltype(&A::y) // error: pointers to reference members are disallowed (8.3.3 (3))
decltype(&A::foo) // int (A::*) (char)
decltype(&A::bar) // int& (A::*) () const

• Literals:

String literals are lvalues, all other literals rvalues.

decltype("decltype") // const char(&)[9]
decltype(1) // int

• Redundant references (&) and cv-qualifiers.

Since a decltype expression is considered syntactically to be a typedef-name, redundant cv-qualifiers and &

specifiers are ignored:

int& i = ...;
const int j = ...;
decltype(i)& // int&. The redundant & is ok
const decltype(j) // const int. The redundant const is ok

• Function invocations:

int foo();
decltype(foo()) // int

float& bar(int);
decltype (bar(1)) // float&

Doc. no: N1978=06-0048 6

class A { ... };
const A bar();
decltype (bar()) // const A

const A& bar2();
decltype (bar2()) // const A&

• built-in operators

decltype(1+2) // int (+ returns an rvalue)
int* p;
decltype(*p) // int& (* returns an lvalue)
int a[10];
decltype(a[3]); // int& ([] returns an lvalue)

int i; int& j = i;
decltype (i = 5) // int&, because assignment to int returns an lvalue
decltype (j = 5) // int&, because assignment to int returns an lvalue

decltype (++i); // int&
decltype (i++); // int (rvalue)

2.5 decltype and forwarding functions
Forwarding functions wrap calls to other functions. They are functions that forward their parameters, or some ex-
pressions computed from them, into another function and return the result of that function. In the case of generic
forwarding functions, return type of the forwarding function may depend on the types of its actual arguments: the
function called from the forwarding function can be overloaded, or a template. For such a forwarding function to be
transparent, its return type should match exactly with the return type of the wrapped function, no matter with what
types the forwarding function template is instantiated. It is not in general possible to write type expressions that would
accomplish this in today’s C++; providing this ability is one of the main motivations for decltype.

The key property of decltype for enabling generic forwarding functions is that no essential information on
whether a function returns a reference type or not, is lost. The following example demonstrates why this is crucial:

int& foo(int& i);
float foo(float& f);

template <class T> void only_lvalues(T& t) { ... }; // doesn’t accept temporaries

template <class T> auto transparent_forwarder(T& t) -> decltype(foo(t)) {
...; return foo(t);

}

int i; float f;
only_lvalues(foo(i)); // ok
only_lvalues(transparent_forwarder(i)); // should be ok too

only_lvalues(foo(f)); // not ok
only_lvalues(transparent_forwarder(f)); // should not be ok either

Further, similar forwarding should work with built-in operators:

Doc. no: N1978=06-0048 7

template <class T, class U>
auto forward_foo_to_comma(T& t, U& u) -> decltype(foo(t), foo(u)) {
return foo(t), foo(u);

}

int i; float f;
forward_foo_to_comma(i, f); // should return float
forward_foo_to_comma(f, i); // should return int&

This behavior would be easily attained with a an operator that results in a reference type if and only if it its operand is
an lvalue (see Section 4 for a discussion on an alternative proposal for the valtype operator with this semantics). The
proposed decltype operator obeys this rule except for member variable accesses. This deviation from the rule is not
serious. Member variable accesses are syntactically distinct from any other forms of expression, and it is not difficult
to attain lvalue/rvalue semantics for the case where member access is the expression being forwarded.

For example, when calling the following forwarding function with argument a, the expression t.data is an lvalue,
but decltype(t.data), and thus forward_data function, has return the type int.

class A { int data; }

template <class T>
auto forward_data (T& t) -> decltype(t.data) { return t.data; }

A a;
forward_data(a); // rvalue

Rewriting the forward_data() function as

template <class T>
auto forward_data (T& t) -> decltype(void(), t.data) { return t.data; }

The comma operator returns t.data, but the result type is now computed with decltype’s rule 4, and thus is a
reference type. To guarantee the use of built-in comma operator, the left-hand side is a void operation.

2.6 Decltype and SFINAE
If decltype is used in the return type or a parameter type of a function, and the type of the expression is dependent on
template parameters, the validity of the expression cannot in general be determined before instantiating the template
function. For example, before instantiating the add function below, it is not possible to determine whether operator+
is defined for types A and B:

template <class A, class B>
void add(const A& a, const B& b, decltype(a + b)& result);

Obviously, calling this function with types that do not support operator+ is an error. However, during overload
resolution the function signature may have to be instantiated, but not end up being the best match, or not even be a
match at all. In such a case it is less clear whether an error should result. For example:

template <class T, class U>
void combine(const T& t, const U& u, decltype(t + u)& result);

class A { ... };
void combine(const A& a, const A& b, std::ostream& o);

A a, b;
...
combine(a, b, cout);

Doc. no: N1978=06-0048 8

Here, the latter combine() function is the best, and only, matching function. However, the former prototype must also
be examined during overload resolution, in this case to find out that it is not a matching function. Argument deduction
gives formal parameters a and b the type A, and thus the decltype expression is erroneous (we assume here that
operator+ is not defined for type A). We can identify three approaches for reacting to an operand of decltype
which is dependent and invalid during overload resolution (by invalid we mean a call to a non-existing function or an
ambiguous call, we do not mean a syntactically incorrect expression).

1. Deem the code ill-defined.

As the example above illustrates, generic functions that match broadly, and contain decltype expressions with
dependent operands in their arguments or return type, may cause calls to unrelated, less generic, or even non-
generic, exactly matching functions to fail.

2. Apply the “SFINAE” (Substitution-Failure-Is-Not-An-Error) principle (see 14.8.2.). Overload resolution would
proceed by first deducing the template arguments in deduced context, substituting all template arguments in
non-deduced contexts, and use the types of formal function parameters that were in deduced context to resolve
the types of parameters, and return type, in non-deduced context. If the substitution process leads to an invalid
expression inside a decltype, the function in question is removed from the overload resolution set. In the example
above, the templated add would be removed from the overload set, and not cause an error.

Note that the operand of decltype can be an arbitrary expression. To be able to figure out its validity, the com-
piler may have to perform overload resolution, instantiate templates (speculatively), and, in case of erroneous
instantiations back out without producing an error. To require such an ability from a compiler is problematic;
there are compilers where it would be very laborious to implement.

Note that this option gives programmers the power to query (at compile time) whether a type, or sequence of
types, support a particular operation. One can also group a set of operations into one decltype expression, and
test its validity (cf. concepts). It would also be possible to overload functions based on the set of operations that
are valid: For example:

template <class T>
auto advance(T& t, int n) -> decltype(t + n, void()) {
t + n;

}

This function would exist only for such types T, for which + operation with int is defined.

3. Unify the rules with sizeof (something in between of approaches 1. and 2.)

The problems described above are not new, but rather occur with the sizeof operator as well. Core issue 339:
“Overload resolution in operand of sizeof in constant expression” deals with this issue. 339 suggests restricting
what kind of expressions are allowed inside sizeof in template signature contexts.

The first rule is not desirable because distant unrelated parts of programs may have surprising interaction (cf.
ADL). The second rule is likely not possible in short term, due to implementation costs. Hence, we suggest that the
topic is bundled with the core issue 339, and rules for sizeof and decltype are unified. However, it is crucial
that no restrictions are placed on what kinds of expressions are allowed inside decltype, and therefore also inside
sizeof. We suggest that issue 339 is resolved to require the compiler to fail deduction (apply the SFINAE principle),
and not produce an error, for as large set of invalid expressions in operands of sizeof or decltype as is possible to
comfortably implement. We wish that implementors aid in classifying the kinds of expressions that should produce
errors, and the kinds that should lead to failure of deduction.

Doc. no: N1978=06-0048 9

3 New function declaration syntax
We anticipate that a common use for the decltype operator will be to specify return types that depend on the types
of function arguments. Unless the function’s argument names are in scope in the return type expression, this task
becomes unnecessarily complicated. For example:

template <class T, class U> decltype((*(T*)0)+(*(U*)0)) add(T t, U u);

The expression (*(T*)0) is a hackish way to write an expression that has the type T and does not require T to be
default constructible. If the argument names were in scope, the above declaration could be written as:

template <class T, class U> decltype(t+u) add(T t, U u);

Several syntaxes that move the return type expression after the argument list are discussed in [Str02]. If the return
type expression comes before the argument list, parsing becomes difficult and name lookup may be less intuitive; the
argument names may have other uses in an outer scope at the site of the function declaration.

We suggest reusing the auto keyword to express that the return type is to follow after the argument list. The return
type expression is preceded by -> symbol, and comes after the argument list and potential cv-qualifiers in member
functions and the exception specification:

template <class T, class U> auto add(T t, U u) -> decltype(t + u);
class A {
auto f() const throw () -> int ;

};

The syntax with which a function is declared is insignificant. For example, the following two function declarations
declare the same function:

auto foo(int) -> int;
int foo(int);

The new syntax should be allowed to express function types in any context where a function type is allowed today. We
see this as a natural opportunity to introduce a more readable syntax for types that involve function types, which are a
source of unnecessary difficulty in today’s C++.

We do not present the wording for the new function declaration syntax in this proposal. What we are proposing
here differs from what was discussed in the Berlin meeting, and all details on how the syntax fits into existing wording
in the standard, and whether it is free of parsing problems, have not yet been fully worked out. Instead, we present the
ideas informally.

The new function type syntax should be allowed as such in defining and declaring functions. In all other uses, the
function type must be enclosed in parentheses, and it behaves syntactically as a typedef-name (except for the rules of
eliminating redundant cv-qualifiers and & specifiers). The following examples illustrate:

auto f(int)->int { ... } // ok, function definition
auto f(int)->int; // ok, function declaration

typedef auto F(int)->int; // error
typedef (auto (int)->int) F; // ok

typedef auto (*PF)(int)->int; // error
typedef (auto (int)->int)* PF; // ok, pointer to function

(auto (int)->int)* a[10]; // ok, array of function pointers

To demonstrate the improved readability, consider the two function declarations, both declaring the same function
prototype taking a pointer to a function from int to void as its second parameter, and returning a pointer to a function
of the same type:

Doc. no: N1978=06-0048 10

void (*signal(int signum, void (*handler)(int)))(int);

auto signal(int signum, (auto (int) -> void)* handler) -> (auto (int) -> void)*

Of course, typedefs can be used to improve the readability of complex type expressions involving function types.

4 The valtype proposal
Jason Merrill suggested in a draft proposal D1896 that decltype should be named valtype, and its semantics
changed so that the l/rvalueness of the operand of valtype determines in all cases whether the operator gives a
reference type or not. Basically semantics of valtype would be obtained by removing rule 2 in the numbered list of
rules in Section 2.3.

The valtype semantics are slightly simpler to specify, and possibly a bit easier to implement, but no difficulties is
expected in implementing either semantics. We do not feel very strongly which semantics to use: both are correct for
defining forwarding functions, which is the main motivation for introducing decltype, or a similar operator, to C++.
We do think, however, that valtype is a misleading name. We easily interpret the name to suggest giving a “value
type” where a possible reference has been removed.

The valtype semantics were discussed both in the Santa Cruz and Oxford meetings (also advocated by some of
the authors of this proposal) but did not get support in the EWG. One of the examples that was considered troublesome
with that semantics was the following (though the name valtype was not mentioned in those discussions):

int i;
valtype(i) j = f(); // j would be of type int&

The valtype proposal argues that the above is not a real use case, and the code would instead likely be written as
follows:

int i;
auto j = f();

We do not disagree with this observation.
The benefits of the valtype semantics over the decltype semantics include a small gain in simplicity of the

specification, possibly implementation. Moreover, l- and r-valueness would become more directly part of the C++ type
system by classifying l-values to be of reference types, and r-values of non-reference types. On the other hand, there
are cases where the valtype semantics may be surprising. A slight variation of the example above is where one or
more uninitialized variables are declared to have the same type than some other variable. Uninitialized variables are
useful, for example as “output arguments” of functions. In the code below, tmp1 and tmp2 would get a reference type
with the valtype semantics, and render the code ill-formed:

auto i = f();
valtype(i) tmp1, tmp2;

Another case of declaring variables without an initializer are extern variables. The following example is taken from
the GNU libc library (where we have replaced the uses of the non-standard __typeof__ with the valtype operator):

extern valtype (uselocale) __uselocale;
/* ... */
extern valtype (wcstol_l) __wcstol_l;

This would declare the above variables to have reference types, which is not the intention. To get the right semantics,
for example the first line would have to be written as:

extern std::remove_reference<valtype (uselocale)>::type __uselocale;

or alternatively, using decltype:

Doc. no: N1978=06-0048 11

extern decltype (uselocale) __uselocale;

The valtype of a member variable is always a reference type, and thus the information whether a member
variable was declared to be a reference or non-reference type is lost. As discussed in Section 2.4.1, decltype retains
this information. We do not know whether there are important use cases that would benefit from this ability.

One possible use of the decltype or valtype operator would be to merely avoid typing long type names:

auto foo(a_very_long_argument_type_too_long_to_write_twice a) -> valtype(a);

With valtype semantics, this function’s return type would be a reference type.
In sum, either the valtype or decltype semantics solve the forwarding problem, which is the main motivation

for a decltype-like operator. The arguments for choosing one over the other are not strikingly strong to either
direction.

Finally, note that the following macro defines valtype in terms of decltype:

#define valtype(e) decltype(void(),e)

5 Proposed wording

5.1 Wording for decltype
Section 2.11 Keywords [lex.key]

Add decltype to Table 3.

Section 3.2 One definition rule [basic.def.odr]

The first sentence of the Paragraph 2 should be:

An expression is potentially evaluated unless it appears where an integral constant expression is required
(see 5.19), is the operand of the sizeof operator (5.3.3) or the decltype operator ([dcl.type.decltype]),
or is the operand of the typeid operator and the expression does not designate an lvalue of polymorphic
class type (5.2.8).

Core issue 454 may change the wording slightly.

Section 4.1 Lvalue-to-rvalue conversion [conv.lval]

Paragraph 2 should read:

The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue
conversion occurs within the operand of sizeof (5.3.3) or decltype ([dcl.type.decltype]) the value
contained in the referenced object is not accessed, since that operator does those operators do not evaluate
itstheir operands.

Section 7.1.5 Type specifiers [dcl.type]

The list of exceptions in paragraph 1 needs a new item.

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

Doc. no: N1978=06-0048 12

— const or volatile can be combined with any other type-specifier. However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3), decltype
([dcl.type.decltype]), or template type arguments (14.3), in which case the redundant cv-qualifiers
are ignored.

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

decltype (expression)

To Table 7, add the line:

decltype (expression) the type as defined below

Add a new paragraph after paragraph 3:

The type denoted by decltype(e) is defined as follows:

1. If e is of the form (e1), decltype(e) is defined as decltype(e1).

2. If e is a name of a variable or non-overloaded function, decltype(e) is defined as the type used in
the declaration of that variable or function. If e is a name of an overloaded function, the program is
ill-formed.

3. If e is an invocation of a user-defined function or operator, decltype(e) is the return type of that
function or operation.

4. Otherwise, where T is the type of e, if T is void or e is an rvalue, decltype(e) is defined as T,
otherwise decltype(e) is defined as T&.

The operand of the decltype operator is not evaluated.

Section 14.6.2.1 [temp.dep.type] Dependent types

Add a case for decltype in the paragraph 6:

A type is dependent if it is:

— denoted by decltype(expression), where expression is type-dependent ([temp.dep.expr]).

Section 9.3.2 The this pointer ([class.this])

Paragraph 1 should start:

In the body of a nonstatic (9.3) member function, the keyword this is a non-lvalue an rvalue expression
...

5.2 New function declaration syntax that moves the return type expression after the param-
eter list

Wording not yet provided, as explained in Section 3 of this proposal.

Doc. no: N1978=06-0048 13

References
[JS03] J. Järvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revis-

ited. Technical Report N1527=03-0110, ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++, September 2003. http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1527.pdf.

[JS04] Jaakko. Järvi and Bjarne Stroustrup. Decltype and auto (revision 3). Technical Report N1607=04-0047,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language C++, March 2004.

[JSGS03] Jaakko Järvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto. C++ standards com-
mittee document N1478=03-0061, April 2003. http://anubis.dkuug.dk/jtc1/sc22/wg21/
docs/papers/2003/n1478.pdf.

[JSR04] Jaakko. Järvi, Bjarne Stroustrup, and Gabriel Dos Reis. Decltype and auto (revision 4). Technical Report
N1705=04-0145, ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming Language
C++, September 2004.

[Str02] Bjarne Stroustrup. Draft proposal for "typeof". C++ reflector message c++std-ext-5364, October 2002.

6 Acknowledgments
We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides for their valuable input in preparing this
proposal. Clearly, this proposal builds on input from members of the EWG as expressed in face-to-face meetings and
reflector messages. Jens Maurer contributed to the proposed wording in this document.

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf

	Introduction
	The [basicstyle=]decltype operator
	Why [basicstyle=]decltype is crucial
	Syntax of [basicstyle=]decltype
	Semantics of [basicstyle=]decltype
	Decltype examples and discussion
	Variable and function names

	[basicstyle=]decltype and forwarding functions
	Decltype and SFINAE

	New function declaration syntax
	The [basicstyle=]valtype proposal
	Proposed wording
	Wording for decltype
	New function declaration syntax that moves the return type expression after the parameter list

	Acknowledgments

