

Doc No: SC22/WG21/N1971
J16/06-0041
of project JTC1.22.32

Address: LM Ericsson Oy Ab
Hirsalantie 1
Jorvas 02420

Date: 2002-05-02 to 2006-02-26 Phone: +358 40 507 8729 (mobile)

Reply to: Attila (Farkas) Fehér Email: attila f feher at ericsson com
wolof at freemail hu

Adding Alignment Support to the C++
Programming Language

1 Short summary
Document status: proposal for standards wording.

One-liner: Extending the standard language and library with alignment related features.

Problems targeted:
• Allow most efficient fixed capacity-dynamic size containers and optional elements
• Allow specially aligned variables/buffers for hardware related programming
• Allow building heterogeneous containers runtime
• Allow programming of discriminated unions
• Allow optimized code generation for data with stricter alignment

Related issues not addressed:
• Class-type “packing” (although allowed)
• Requesting specially aligned memory from memory allocators (new, malloc)

Proposed changes:
• New: alignment-specifier to declarations (type based and value based)
• New: alignof operator to retrieve alignment value for a type (like sizeof for size)
• New: alignment arithmetic, alignof as operator to create a union of alignments (for

discriminated unions)
• New: standard functions for pointers for proper alignment runtime

This document is based on ISO/IEC 14882:1998(E) version of the standard.

WG21/N1971 = J16/06-0041 page 2
Evolution WG Proposal

2 Wording proposal

2.1 Alignment
Alignment is a quality of an address. The alignment can be expressed as an implementation-
defined integer value representing a number of bytes (see 3.9 §5), called the alignment value. The
alignment value is specified to have the type align_t; which is an implementation defined signed
integer type defined in the standard header <cstddef> (18.1) and <cstdlib>. The alignment
value 0 is reserved for future use. All other alignment values are implementation-defined. Negative
alignment values are reserved for the implementation to define alignment requirements that are
only known runtime. Positive alignment values represent alignment requirements (and alignments)
known compile time; and are called fixed alignments. All complete types have fixed alignment
requirements that can be retrieved using the unary alignof operator (3.5.6).

Alignments have an order, from weaker to stronger. Stronger alignments have larger alignment
values. An alignment requirement is satisfied by all alignments that have alignment values divisible
without remainder by the alignment value representing the alignment requirement in question.

Implementations may define further alignments that are not related to any type. Those may be
fixed-alignments or – when their alignment value is negative – alignments that are only known
runtime.

The type align_t is a signed integral type; however its valid value range only includes those
values specified by the implementation when used as an alignment-value. No implementations
shall return negative alignment-values from any form of the alignof operator. [Note: Or in other
words, the alignof operator only returns (and accepts) fixed alignment values that can be used
in alignment specifications. Portable applications shall not depend on other values than those
returned by the alignof operator applied to types; and should not mutate these values
afterwards.] Comparing alignment values of type align_t is supported and provides the obvious
results: two alignment values are equal, if their numeric values are equal; when an alignment value
is larger than another it represents a stricter alignment. The remainder operation can be used to
detect if one alignment (represented by an alignment value) satisfies the alignment requirement
(represented by an alignment value); in that case the remainder is zero.

2.2 Add the alignof keyword to 2.11 Keywords [lex.key]
Add the word alignof before the asm keyword.

WG21/N1971 = J16/06-0041 page 3
Evolution WG Proposal

2.3 The alignof operator

2.3.1 5.3 § and grammar to be changed as (change is underlined):
Expressions with unary operators group right-to-left.

unary-expression:

postfix-expression

++ cast-expression

-- cast-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-id)

alignof (type-id)

alignof (constant-expression)

new-expression

delete-expression

unary-operator: one of

* & + ! ~

WG21/N1971 = J16/06-0041 page 4
Evolution WG Proposal

2.3.2 New section 5.3.6 unary alignof expression [expr.unary.alignof] to be
added

5.3.6 alignof [expr.unary.alignof]

The unary alignof operator yields the alignment value representing the alignment requirements
represented by its operand. The parenthesized operand is either a constant-expression that
represents a valid alignment-value, or a type-id representing a complete type. If the operand is an
alignment-value that value is returned. If the operand is a type-id of a complete type, the alignment
value representing the alignment requirements of that type is returned.

The alignof operator shall not be applied to an expression that yields to a negative alignment
value, or the behavior is undefined.

When applied to a reference or a reference type, the result is the alignment of the referenced type.

The result of applying alignof to a base class subobject is the alignment of the base class type.

When applied to an array type-id, the result is the alignment of the element type.

The alignof operator can be applied to a pointer to a function, but shall not be applied directly to
a function.

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions
are not applied to the operand of alignof.

Types shall not be defined in an alignof expression.

The result is a constant of type align_t. [Note: align_t is defined in the standard header
<cstddef> (18.1) and <cstdlib>.]

2.3.3 New section 5.19 alignof operator [expr. alignof] to be inserted

The alignof operator has two forms. The unary-expression form is discussed in 5.3.6. This
section discusses the form with more than one argument.

expression:

alignof (alignment-list)

alignment-list:

alignment-argument

alignment-list, alignment-argument

alignment-argument:

type-id

constant-expression

The non-unary alignof operator yields the smallest alignment value representing the (weakest)
alignment that fulfills the alignment requirements represented by all of its operands. The operands

WG21/N1971 = J16/06-0041 page 5
Evolution WG Proposal

are either a constant-expressions that represent a valid fixed alignment-value, or a type-ids
representing complete types.

The non-unary alignof operator works as if its arguments first are converted to alignment-values
using the unary alignof operator (see 5.3.6). All restrictions and listed in 5.3.6 apply.

The result is a constant of type align_t. [Note: align_t is defined in the standard header
<cstddef> (18.1) and <cstdlib>.]

2.3.4 Change section 5.19 (becomes 5.20) Constant expressions [expr.
const] to be changed in the listed paragraphs, as indicated by the
underlined text

In § 1:

In several places, C++ requires expressions that evaluate to an integral or enumeration constant:
as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6), as
enumerator initializers (7.2), as static member initializers (9.4.2), and as integral or enumeration
non-type template arguments (14.3), and alignof operator arguments (5.3.6, 5.19).

(grammar unchanged)

An integral constant-expression can involve only literals (2.13), enumerators, const variables or
static data members of integral or enumeration types initialized with constant expressions (8.5),
non-type template parameters of integral or enumeration types, and sizeof and alignof
expressions. Floating literals (2.13.3) can appear only if they are cast to integral or enumeration
types. Only type conversions to integral or enumeration types can be used. In particular, except in
sizeof and alignof expressions, functions, class objects, pointers, or references shall not be used.
Assignment, increment, decrement, function-call, or comma operators shall not be used, except in
sizeof expressions.

In § 3:

An arithmetic constant expression shall have arithmetic or enumeration type and shall only have
operands that are integer literals (2.13.1), floating literals (2.13.3), enumerators, character literals
(2.13.2) and sizeof (5.3.3) or alignof (5.3.6, 5.19) expressions (5.3.3). (Rest remains
unchanged)

WG21/N1971 = J16/06-0041 page 6
Evolution WG Proposal

2.4 The (alignof) alignment specifier

2.4.1 Insert 7.1.2 Alignment specifier [dcl.align] (and renumber the following
7.1.x items)

The alignment specifier is:

alignment-specifier:

alignof (alignment-list)

alignment-list:

alignment-argument

alignment-list, alignment-argument

alignment-argument:

type-id

constant-expression

At most one alignment-specifier shall appear in a given declaration. If an alignment-specifier
appears in a to-be-decided, there can be no typedef specifier in the same simple-declaration.

The alignment-specifier applies to the name declared by the init-declarator that precedes it.

The alignment-specifier can be applied only to names of objects and to anonymous unions (9.5).
There can be no aligned function parameters.

An alignment-specifier used in the declaration of an object declares the object to satisfy the
alignment requirements defined by the elements of the alignment-argument-list (?.?.?). An
alignment-specifier can be used in declarations of class members; ?.? describes its effect.

The object being declared shall have large enough size (as sizeof) to store any type specified by
any of the type-ids in the alignment-specifier, otherwise the program is ill-formed. This restriction
also applies to class member declarations. That restriction is not applied to declarations of names
with no known size, such as extern declarations of arrays.

[Note: If alignment of a smaller entity is to be set to the alignment requirements of a larger type, the
alignof operator shall be used to turn the type-id of the large type into an alignment value:

int i alignof(double); // Ill-formed if sizeof(double)>sizeof(int)

int i alignof(alignof(double)); // Turned type-id into alignment value: valid

extern int ia[] alignof(double); // Allowed as long as the definition defines a large
 // enough array to store a double. Implementations may use the knowledge of
 // double-alignment to optimize access to the array.

end note]

The alignment-arguments-list of the alignment-specifier shall only contain alignment-values that
represent alignment requirements known compile time (see ?.?.?), or in other words only positive
alignment-values, otherwise the program is ill-formed.

Declarations that are not definitions (do not allocate storage to objects) may omit the alignment-
specifier as long as the definition contains it.

WG21/N1971 = J16/06-0041 page 7
Evolution WG Proposal

2.5 Runtime pointer alignment
The runtime pointer alignment functions forward-adjust (increase) the value of a pointer within a
buffer to the closest value that satisfies an alignment requirement specified by a given alignment
value. The alignment value may be runtime alignment (negative) value as well. The runtime pointer
alignment functions come in C and C++ flavors: the stdalign function in the <cstdlib>
headers; and the std::align function in the <memory> header.

2.5.1 The stdalign function
void *stdalign(size_t align_val, void **pptr, ptrdiff_t *pspace, size_t size);

Effects:

The value of the pointer pointed by pptr is increased by the minimum amount necessary for it to
satisfy the alignment requirements represented by align_val and the value pointed by pspace
is decreased by the amount of bytes used up during the pointer value increase plus the value of
the size argument; but only if it is possible to do so within the buffer denoted by the original value
of the pointer pointed by pptr and space in bytes pointed by the pspace argument.

If the alignment cannot be done within the mentioned buffer, or there would not remain at least
size bytes in the buffer after the alignment is done, calling the function has no effects.

If the value of the pointer pointed by pptr is the NULL pointer value, or the buffer denoted by it
and the value (as size in bytes) pointed by the pspace argument is not allocated to the application
the effect of the function are undefined.

Returns:

The modified value of the pointer pointed by pptr or the NULL pointer value if the function had no
effect.

2.5.2 The std::align functions
void *align(size_t align_val, void *&ptr, ptrdiff_t &space, size_t size);

Effects:

The value of the pointer referenced by ptr is increased by the minimum amount necessary for it to
satisfy the alignment requirements represented by align_val and the value referenced by space
is decreased by the amount of bytes used up during the pointer value increase plus the value of
the size argument; but only if it is possible to do so within the buffer denoted by the original value
of the pointer referenced by ptr and space in bytes referenced by the space argument.

If the alignment cannot be done within the mentioned buffer, or there would not remain at least
size bytes in the buffer after the alignment is done, calling the function has no effects.

If the value of the pointer referenced by ptr is the NULL pointer value, or the buffer denoted by it
and the value (as size in bytes) referenced by the space argument is not allocated to the
application the effect of the function are undefined.

Returns:

The modified value of the pointer referenced by ptr or the NULL pointer value if the function had
no effect.

