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Abstract 
 

This paper proposes additional forms of literals using modified constructor syntax 
and semantics to provide extensible user-defined literals.  Extensible literals allow user-
defined classes to provide new literal syntaxes and / or data representations, capabilities 
previously available only for basic types.  It increases compatibility with C99 and with 
future C enhancements. 

An extensible literal constructor defines the literal syntax it accepts, and translates 
that to the data representation. 

The proposal requires a fairly simple change to the core language. 
 
 
The Problem 
 

C++ recognizes literals for its basic data types.  For those, the syntax of the literal 
(e.g., the presence of a decimal point, exponent or alphabetic suffix) identifies the type.  
The magnitude further specializes the exact type.  The type and implementation 
determine the data representation. 

To add a new data type to a non-extensible language such as C [C99], the 
language syntax and semantics must be modified by adding the type's name, the type's 
operations, and where appropriate the type's literal syntax. 

To add a new data type to an extensible language such as C++ [C++03], the 
preferred approach is to leave the language unchanged and define a new class 
implementing the type's operations.  Defining new literal syntax can be a problem, and 
providing compatibility with C is a problem. 

This paper draws on two basic principles of C++ design: 
• User-defined types should have all the same support facilities as built-in 

types, and currently that facility is not extended to user-defined literals 
[12] 

mailto:ianm@ca.ibm.com
mailto:michaelw@ca.ibm.com
mailto:michaelw@ca.ibm.com


• C compatibility should be maintained as far as possible and currently, we 
cannot accept certain C literals [9,10,11,16] 

The existing mechanisms work well when existing literals (integers, floating-point 
and string literals) are suitable.  Other proposals [1,2] would extend that to classes which 
are aggregates of existing types by adding user-defined literals formed by grouping basic 
data type literals; e.g., complex(1,2).  This proposal allows additional forms of non-
standard literals and uses modified constructor syntax and semantics to provide 
extensible user-defined literals. 

C++ already has extensible data types using classes and templates and overloaded 
operations on them.  What it also needs is extensible literals to match the robustness that 
extensible types deliver. 
 
The Solution:  The Basic Idea 
 

The basic idea is that when the compiler recognizes that a token is a literal but not 
a valid literal in phase 7 [lex.phases] of translation for a basic data type, it checks 
whether it matches the syntax accepted by any declared extensible literal constructor.  If 
it does, the literal's characters in the source program are used to construct a string literal 
parameter and passed to the matching extensible literal constructor; e.g., 12.34d would 
become parameter "12.34d" and passed to the constructor for literals ending with "d". 
 An extensible literal constructor contains one or more statements to be executed 
to parse the literal string parameter and construct the desired object.  In general the 
constructor body would be executed just before main ( ) is, so extensible literals would 
not be compile time constant expressions (although a compiler might be able to execute 
some at compile time). 
 
Goals 
 

The main goal for literal suffixes is to handle every suffix currently in or proposed 
for C.  A second goal is to handle every suffix in common extensions to C.  A third goal 
is to handle every string literal and character literal prefix. 

The goal for data representation is to be able to produce data for every existing, 
proposed or future numeric or string data format, including integer, binary floating-point 
and decimal floating-point, in any reasonable size or precision and representation. 
 
Extensible Literal Syntax 
 

An extensible literal is either an extensible numeric literal or an extensible string 
literal. 

An extensible numeric literal must start with a digit and may contain any 
characters that would be allowed in an integer or floating-point literal, followed by an 
alphanumeric extensible literal suffix ("d" in the example above) accepted by some 
extensible literal constructor; for example: 

1234d 
12.34df 



12.34e5dd 
12.34e-10dq 
1_I 
12345678901234567890123456789012345678901234567890verylong 
12.34.56p 

The length may exceed the maximum for basic types, and the character sequence need 
not match their syntax. 
 An extensible string literal consists of a prefix (the extensible literal prefix) 
followed by a quoted character string; e.g.: 
 utf16"abc" 
 
Extensible Literal Pattern Syntax 
 

An extensible literal constructor needs to specify the extensible literal pattern for 
the extensible literals it accepts so that matching of the literal can occur.  Several options 
in the constructor syntax could be considered.  (Note:  In the following, the character 
sequence in bold is to be added as additional syntax to the constructor.  The exact syntax 
of these character sequences within a constructor declaration will be discussed later.) 

 
1. Specify just the single suffix or prefix string; e.g.: 

      "df" 
      "DQ" 
      "utf32" 
Often that would require writing two otherwise identical constructors. 

2. Specify a list of synonymous strings; e.g.: 
      "df", "DF" 
That allows one constructor to handle multiple suffixes or prefixes, but 
complicates the syntax. 
Neither of these lets the compiler do any syntax checking for the constructor. 

3. Specify a basic typename and the suffix or prefix string(s); e.g.: 
      double "dd", "DD" 
      int "long128" 
For extensible numeric literals, this allows the compiler to check that the 
syntax matches the specified type except for the suffix, number of digits and 
exponent range.  
For numeric literals the typename describes the syntax not the size.  
Typenames int and double accept any literal in integer or floating-point 
syntax with only the specified suffix(es).  Typename unsigned long accepts 
any integer literal with a u or U suffix followed by the specified suffix(es), 
and float accepts a floating-point literal with an f or F suffix then the specified 
one(s). 
For extensible string and character literals it allows the base character type to 
be specified; e.g.: 
      w_char "utf_16" 

4. Instead of a type followed by a quoted string, specify a literal keyword.  This 
literal keyword would identify the literals in the C Standard that are known to 



be missing from the C++ standard.  This is somewhat less robust but is easier 
to describe.  For example we can use the keyword FLOATING_LITERAL to 
signify the character sequence before the suffix to be a floating literal, and 
then write the suffix character sequence after it.  (Also, we can omit the quotes 
in these syntaxes.)  e.g.: 

FLOATING_LITERAL_i 
5. Specify a regular expression describing the type; e.g.: 

      "[0-9]{1-28}long128" 
That allows much better checking.  The extra programming effort is small for 
the benefit, especially if a sample floating-point regular expression is 
available. 
This would also allow patterns to match literals like 
      1234d5 
by accepting a numeric string, "d", and another numeric string. 

6. Some combination of those.  There are good reasons to allow both regular 
expressions and suffix / prefix strings with optional type names. 
 

The exact syntax chosen is open for suggestion and is dependent on how much 
compile-time error checking is desired. 

In many cases the constructor must be able to report other errors such as a value 
that is too large or an exponent that is out of range.  The Extensible Literal Errors section 
below deals with that. 
 
Extensible Literal Constructor Syntax 
 

An extensible literal constructor constructs an object of its class, so its syntax 
should resemble other constructors.  It must differ, though, because in addition to the 
string parameter by which the compiler provides the specific literal, it needs to specify 
the extensible literal pattern it matches. 

An extensible literal constructor would be declared similarly to a standard 
constructor with a const char* or const w_char* parameter which contains the literal 
string, and the extensible literal pattern parameter(s).  Unless the pattern is specified as a 
regular expression, the parameter order indicates whether a prefix or suffix is involved; 
e.g.: 
 class DecimalFloat { 
 public: 
  DecimalFloat (const char* literalString,  double "df", "DF")  { .  .  . } 
 } 

// The above specifies an extensible numeric literal. 
// literalString passes the character sequence of the literal in the source code. 
// double specifies the type of the literal formed by the character sequence if 
//   the suffix were ignored.  This information permits the compiler to 
//   do some verifications. 
// “df”, “DF” is the list of recognized suffixes. 
 

and e.g.: 



 class Unicode { 
 public: 
  Unicode (w_char "unicode",  const char* literalString)  { .  .  . } 
 } 
 // The above specifies an extensible string literal. 
 
Writing extensible literal constructors is simplified by having the literal pattern prefix or 
suffix characters removed before the literal string is passed to the constructor; e.g.: 
 class Imaginary { 
  double imaginary_value; 
 public: 
  Imaginary (const char* literalString,  double "j"): 
   imaginary (atod (literalString))  { } 
  .  .  . } 
 
 // The literal 12.34j would invoke the constructor with the parameter literalString  
 // passing the string “12.34”, without the j suffix. 
 
Extensible Literal Errors 
 
The compiler reports an error if a standard literal is invalid.  For extensible literals that is 
not always possible.  If the literal pattern includes a type name as in Option 1, 2 and 3 
above on the section Extensible Literal Pattern Syntax, then the compiler can detect 
deviations from that type's literal syntax.  These three options form the most visually 
understandable syntax.  On the other hand, a type name may create other issues.  For 
example, if in a constructor declaration we have: 

float  “j” 
the constructor would recognize the literal 12.34fj. 12.34f is the sequence of characters 
forming a float type floating-point literal.  “j” is the suffix, and the string passed to the 
constructor is "12.34f".  An alternative would be to treat float as if it were double, and 
accept 12.34fj only if the literal pattern suffix was "fj".  

We can avoid using the type name by using a literal keyword, as described in 
Option 4 above.  We can also use a regular expression as in Option 5.  A literal deviating 
from the specification would mean the match fails for that particular constructor; and if 
the literal did not match any extensible literal pattern, the program is not well-formed. 

In any case the constructor may find other errors.  A way to report errors (e.g., an 
exponent out of range) is needed.  Since literal constructors execute before main ( ), they 
are always executed so the detection of an error would require a single execution test and 
would not depend in any way on input data. 
 The proposed solution is for the constructor to call a function which would write 
the message (including the literal string, source filename and line number) to standard 
error.  That implies that iostreams or some other output mechanism must be initialized 
before extensible literals. 
 
Performance 
 



Like static initialization, some extensible literals can be handled at compile time 
but some would be processed just before main ( ). 

The number of extensible literals will be small, the performance difference should 
not be significant, and existing alternatives would also require execution time 
conversions, but it would be preferable to completely handle all literals at compile time 
instead of executing extensible literal constructors at run time. 
 In fact some extensible literal constructors can be handled at compile time, using 
the proposed Generalized Constant Expressions.  The _Imaginary example above 
requires only that the compiler consider atof ( ) with a constant parameter as a constant 
expression and that it interprets it to do a conversion it already knows how to do. 
 
Restrictions 
 

Because literal constructors will not necessarily be executed at compile time, the 
literals they construct are not constant expressions and cannot be put into ROMs to 
protect them from modification or for use in embedded systems. 

The author of a class can and should write appropriate << and >> iostream 
operators for it, but like any other new class there are restrictions on using printf ( ) and 
scanf ( ).  A type like Imaginary can be cast to floating-point and printfed with "%fj", 
but types like _Decimal32 have new internal representations so could only be printfed 
by first converting to a string. 
 
Usage Examples 
 

We will use the syntax in Option 3 above to demonstrate some use cases. 
 
Imaginary and Complex 

C99 [C99] added the _Imaginary and _Complex groups of types.  There are no 
actual _Imaginary literals – they are formed by multiplying I by a float, double or long 
double literal.  The complex value with real and imaginary parts 2 and 3 respectively is 
written as 2. + I*3. (I is the value of the imaginary unit).  But Imaginary literals could be 
supported.  With suffixes fj, j and lj (or their upper case variants), the constructors 

Float_Imaginary (const char* literalString,  float "j", "J") 
   : imaginary_value (atof (literalString))  { } 
Double_Imaginary (const char* literalString,  double "j", "J") 
   : imaginary_value (atod (literalString))  { } 
LongDouble_Imaginary (const char* literalString,  long double "j", "J") 
   : imaginary_value (atold (literalString))  { } 

would recognize literals like 
 1.j 

12.34fj 
3e-9LJ 

With the compiler removing the suffix, it just needs to call atof / atod / atold ( ) and 
initialize the data member. 
 Once _Imaginary types are available, the _Complex types can be built on them. 
 



Decimal Floating-Point 
A C proposal [7, 8] would add the _Decimal32, _Decimal64 and _Decimal128 

decimal floating-point types, and a C++ proposal [5] would add corresponding classes.  
The C literals would resemble float, double and long double ones, but with different 
suffixes, somewhat different operations, different functions, and significantly different 
representations (although the representation is not finalized yet).  The constructors 

_Decimal32 (const char* literalString,  double "df", "DF")  { .  .  . } 
_Decimal64 (const char* literalString,  double "dd", "DD")  { .  .  . } 
_Decimal128 (const char* literalString,  double "dq", "DQ") { .  .  . } 

would recognize these. 
Note:  The literal patterns all specify double instead of float, double and long double to 
avoid recognizing the standard float "f" and long double "ld" suffixes prior to the 
decimal floating-point ones. 
 
Alternate Floating-Point Formats 

Today most computers implement IEEE floating-point, but some [15, 17] have 
alternate formats or both IEEE and others.  IEEE allows either single precision or double 
precision to be extended.  C99 "Future language directions" suggests longer floating-
point types.  The constructors 

FloatExtended (const char* literalString,  double "fe")  { . . . } 
 CrayDouble (const char* literalString, double "cray")  { . . . }  
 IBMHexFloat (const char* literalString,  float "hex")  { . . . } 
 LongLongDouble (const char* literalString,  double "lld")  { . . . } 
would recognize literals like 

12345.67fe 
1234567890.1234567890e6cray 
12345.6e20fhex (Note the "f" because the pattern type is float.) 
12345678901234567890.12345678901234567890e-3lld 

 
Longer Integers 

Some application programs need larger integer types.  The IEEE 754R [13] draft 
standard requires that every implementation provide an integer type (not necessarily built 
in) the same size as the largest floating-point type supported, so supporting quad 
precision floating-point requires supporting 128-bit integers.  The constructors 
 int128 (const char* literalString,  int "lll", "LLL")  { . . . } 
 uint128 (const char* literalString,  unsigned int "ulll", "ULLL")  { . . . } 
would recognize literals like 
 0lll 

123LLL 
100ulll 

 
C++ does not yet include C99's long long int and unsigned long long int until the 
C++0X proposal on Long Long int [6] is accepted; however, even that proposal does not 
allow scalability with larger integer literals which may come in the future.  Numeric 
literal constructors can allow arbitrarily larger literal types with a growth path for the 
future. 



 
Scaled Fixed-Point 

Some languages include scaled fixed-point types.  One example is IBM's C/370 
[14] decimal types.  These are from 1 to 31 digits, with an optional decimal point at either 
end or any position between digits, and the suffix d; e.g., 1234d, 12.3456d, or .07d.  
These are stored as scaled integers, with the internal representation being packed decimal 
[17].  Other languages have similar types but with other representations including various 
forms of zoned decimal or binary integer. 

If this were to be handled, distinguishing the many (about a thousand) different 
types would need regular expression literal patterns, with for example 

"[0-9]{5}.[0-9]{2}d" 
matching 7 digit numbers with 5 before the decimal point and 2 after, using the 
constructor 

_Decimal_7_2 (const char* literalString,  "[0-9]{5}.[0-9]{2}d")  { . . . } 
 
Alternate String and Character Literals 

Alternate character sets or representations can use extensible string literal 
constructors.  The parameter order is reversed, to indicate the use of representation name 
prefixes instead of suffixes (that would not be necessary if patterns were always 
described using regular expressions).  Prefixes imply that the literal is a quoted string. 
 The compiler needs to know how big the resulting literal string will be, or more 
precisely the maximum size it could be, so that space can be reserved for it.  By default 
that would be the same size as the input literal string (including the terminator).  If the 
literal pattern includes a type, the maximum size would be multiplied by the size of the 
base type of the type specified.  Using a base type wchar_t would not imply that the 
prefix would automatically include "L".  The constructors 
 Italian ("Italian", "italian",  const char* literalString)  { . . . } 
 EBCDIC ("EBCDIC", "Ebcdic", "ebcdic",  const char* literalString)  { . . . } 
 Unicode (wchar_t "Unicode", "unicode", "U", "u", 

    const wchar_t* literalString)  { . . . } 
would recognize literals like 
 Italian"caio" 

ebcdic"abc" 
u"universal" 

 
The constructor could of course define its own \ or other escape sequences; e.g., 

an ASCII class could recognize escape sequences for the ASCII control characters with 
literals containing things like {HT}, {FF}, or {ESC}. 
 The same approach should apply to character literals, using ' instead of ".  The 
type specified as part of the literal pattern is used to distinguish literal constructors 
accepting a single character or a string.  Types like char or wchar_t or int would mean a 
character literal, while char* or wchar_t* or int* would mean a string literal.  Another 
possibility is that a regular expression pattern should make it obvious, based on it 
containing two single quotes or two double quotes 
 
Demonstration of a Simple Implementation  



 
We now examine a possible way to implement this.  For our purpose here we 

avoid adding new syntax in the constructor as proposed above.  New syntax needs more 
careful study.  We are interested in finding out the basic steps required to translate an 
extensible literal, and the part of the standard that is affected.  A more elaborate syntax 
can be added later and bridge on essentially the same mechanism, but with more 
comprehensive handling of searches for the correct literal constructor. 

Preprocessing tokens are formed in translation phase 3.  This includes pp-number  
and string-literal (2.4).  After macro expansions, character set mapping, and string 
concatenation, we reach phase 7 where preprocessing tokens are converted into tokens 
and meanings attached.  The basic idea is to insert a mechanism at the end of phase 7 of 
translation, where preprocessing tokens are converted to literals.  

 
White-space characters separating tokens are no longer significant.  Each preprocessing token is 
converted into a token (2.6).  The resulting tokens are syntactically and semantically analyzed and 
translated. 
[Note:  Source files, translation units and translated translation units need not necessarily be 
stored as files, nor need there be any one-to-one correspondence between these entities 
and any external representation.  The description is conceptual only, and does not 
specify any particular implementation.] 
 
When a pp-number cannot be converted, and before it is flagged as invalid, we 

give it a second chance to see if it is an extensible literal.  If a pp-number suffix sequence 
cannot be converted into a token, we replace it with the macro invocation 

__EXTENSIBLE_NUMERIC_LITERAL_suffix ("pp-number") 
and repeat phase 4.  

The macro is an easy way to handle the mapping of suffixes to constructors.  In 
the full solution, this would be replaced by a searching algorithm which determines the 
constructor to invoke.  The full solution can provide better checking and diagnostic 
capability. 

The program then defines the corresponding macro as follows: 
#define  __EXTENSIBLE_NUMERIC_LITERAL_DF(t)  DecimalFloat (#t) 

which maps the suffix to the class. 
We can treat suffixes for base types as if the compiler has predefined macros for 

them: 
#define  __EXTENSIBLE_NUMERIC_LITERAL_L(t)  ... 
 
For classes which are known by the implementation (as the dfp classes could be), 

the compiler can either intercept the macro and do its own magic, or intercept the 
constructor and do special optimization.  The user can override the macro, expanding to 
something other than a constructor.  We can also use an __extensible_literal class as 
described below to provide a way for the compiler to recognize the constructor.  We may 
be able to further restrict the body of such constructors to be empty. 

Extensible string and character literals can be handled similarly. 
 
 
Changes required for this simple implementation 
 



As an illustration, we provide the suggested changes below to the C++ Standard. 
 

Add after 2.13.3: 
 
2.13.3a  Extensible literals 
 
extensible-literal : extensible-numeric-literal 

extensible-string-literal 
extensible-character-literal 

 
extensible-numeric-literal :  pp-number-first-part   suffix 
 
extensible-string-literal :  prefix string-literal 
 
extensible-character-literal : prefix  character-literal 
 
 
An extensible numeric literal is formed from a preprocessing number.  It is neither an 
integer literal nor a floating literal.  It is a preprocessing number consisting of two parts:  
the first part shall be the longest sequence of characters which have the lexical form of an 
integer literal or a floating literal; the second part shall be a non-empty sequence of 
characters called the suffix. 
 
If the first part begins with the sequence 0x or 0X, the suffix shall be the sequence of 
characters satisfying the following: 
 
suffix :  nonhexdigit 
             suffix  nondigit 
             suffix  digit 
 
nonhexdigit :  { nondigit excluding a-f, A-F } 
 
Note: nondigit is defined in 2.10. 
 
If the first part does not begin with the sequence 0x or 0X, the suffix shall be the 
sequence of characters satisfying the following: 
 
suffix :  nondigit 
              suffix  nondigit 
              suffix  digit 
 
During translation phase 7 when preprocessing numbers are converted to tokens, if an 
extensible numeric literal is encountered, it is replaced with the following macro 
invocation: 

__EXTENSIBLE_NUMERIC_LITERAL_suffix ( pp-number-first-part  ) 



and then translation phase 4 is repeated.  The program is not well-formed if the function 
like macro __EXTENSIBLE_NUMERIC_LITERAL_suffix is not defined at this point of 
the translation. 
 
An extensible-string-literal consists of two parts: the first part is a prefix and the second a 
string-literal.  The prefix shall be the longest non-empty sequence of characters so that 
the second part is still a valid string-literal. 
 
An extensible-character-literal consists of two parts: the first part is the prefix and the 
second a character-literal.  The prefix shall be the longest non-empty sequence of 
characters so that the second part is still a valid character-literal. 
 
During translation phase 7 when an extensible string literal or an extensible character 
literal is encountered, it is replaced with the following macro invocations respectively: 

__EXTENSIBLE_STRING_LITERAL_prefix ( string-literal  ) 
__EXTENSIBLE_CHARACTER_LITERAL_prefix ( character-literal ) 

and then translation phase 4 is repeated.  The program is not well-formed if the function-
like macro 

__EXTENSIBLE_STRING_LITERAL_prefix 
or 

__EXTENSIBLE_CHARACTER_LITERAL_prefix, 
respectively, is not defined at this point of the translation. 
 
Recommended practice 
 
If the extensible numeric literal has the type of class T, it is recommended that T provides 
a constructor with the following prototype: 

class  __extensible_literal; 
T ( const char *,  __extensible_literal ); 

where __extensible_literal is a class defined by the implementation.  It is used in a 
constructor prototype to signify an extensible literal constructor.  It need not be used in 
the constructor.  The macro is defined by: 

#define  __EXTENSIBLE_NUMERIC_LITERAL_suffix( t )  T( #t,  __ext_lit ) 
where __ext_lit is a global object of type __extensible_literal defined by the 
implementation.  The class __extensible_literal and the object __ext_lit can be defined in 
an implementation-provided header.  The class __extensible_literal can also encapsulate 
machinery to output diagnostics.  It can be done through the standard streams or some 
other means in the case of embedded systems. 
 
A similar recommendation applies to extensible string and character literals.  The same 
__extensible_literal class can be used in all three cases. 
 
End  2.13.3a 
 
 



Instead of using macros, we can use class definitions directly.  The specification 
of suffixes can be done through special class names defined under a standard namespace.  
For example, the literal suffix DF for the DecimalFloat class can be specified as follows: 

 
namespace std_extensible_literal { 
    class DF_t; 
} 
 
class DecimalFloat { 
   public: 
      // The DF_t* parameter allows the presence of another constructor 
      //  which takes a const char* parameter for other purpose. 
      //  DF_t* is not actually used by the constructor. 
      DecimalFloat( const char*,  std_extensible_literal::DF_t*) { /*  … */ }; 
 
      // … 
}; 
 
namespace std_extensible_literal { 
    class DF_t {  // maps suffix DF to class DecimalFloat 
       public: 
          DecimalFloat make_literal(const char* s)  
             { return DecimalFloat(s, (std_extensible_literal::DF_t*)0); } 
    } DF; 
} 
 
The above definitions are to be provided by the implementer of the DecimalFloat 

class.  The compiler follows the similar processing steps as described in 2.13.3a, but 
instead of replacing an extensible literal with a macro, the compiler replaces it with the 
following sequence of tokens (suppose the literal is 12.34DF): 

 
std_extensible_literal::DF.make_literal(“12.34”) 
 
The implementation for the complete solution would require additional lookup 

searches relating to selecting the right constructor, and there would be new syntax in the 
constructor.  In this section of the paper we have demonstrated in principle how a simple 
implementation could be done with changes only in translation phase 7 when tokens are 
formed.  The changes do not affect existing valid programs. 

 
Related papers 
 

This is compatible with and orthogonal to other proposals including literals for 
user-defined types [1], generalized initializer lists [2] , and braces initialization 
overloading [4], and would be improved by the generalized constant expressions proposal 
[3].  



These other papers primarily propose grouping literals using existing known 
literals.  [1] in particular identifies the possibility of a unique syntax using the literal 
keyword as a constructor, and limits what can be placed inside the constructor so that it 
can achieve ROMability. 
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