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Abstract

In this paper, we develop a general formalism for describing
the C++ programming language, and regular enough to cope
with proposed extensions (such as concepts) for C++0x that af-
fect its type system. Concepts are a mechanism for checking
template arguments currently being developed to help cope
with the massive use of templates in modern C++. The main
challenges in developing a formalism for C++ are scoping,
overriding, overloading, templates, specialization, and the C
heritage exposed in the built-in types. Here, we primarily
focus on templates and overloading.

1 Introduction

Over the last two decades, the C++ programming language
[ISO98, ISO03, Str00] has been adopted in wide and diverse
application areas [Str]. Beside traditional applications of gen-
eral purpose programming languages, it is being used in em-
bedded systems, safety-critical missions, air-plane and air-
traffic controls, space explorations, etc. Consequently, the
demand for static analysis and advanced semantics-based
transformations of C++ programs is becoming pressing. The
language supports various mainstream programming styles,
all based on static type checking. In particular, it directly sup-
ports generic programming through the notion of template for
capturing commonalities in abstractions while retaining opti-
mal efficiency. It directly supports object-oriented program-
ming through inheritance and virtual functions. It also offers
function overloading. Various extension proposals for C++0x,
the next version of ISO Standard C++, are under active dis-
cussions. The major ones affect its type system.

To analyse and precisely specify existing and proposed fea-
tures, we need a formal framework for describing the static
semantics of ISO C++. Such a formalism must be general
enough to accommodate the many proposed language exten-
sions and be a convenient tool for their evaluations. We are

building such a framework as part of The Pivot project, an in-
frastructure for C++ program analysis and semantics-based
transformations. One early aim is to provide theoretical and
experimental support concepts, a typing mechanism for tem-
plate arguments; basically, a concept is the type of a type. In
this paper, we will focus on ISO C++’s type and template sys-
tem.

1.1 Our contributions

Our main contribution is a formalism capable of describing
the ISO C++ semantics (especially its template system) and
likely new features, such as concepts for C++0x [DRS05]. In
particular, the formalism allows us to clearly distinguish con-
cepts from Haskell type classes [WB89, HHPJW96]. Further-
more, we use the formalism to clarify the distinctions and in-
teractions between overloading, template partial specialization,
and overriding; three distinctive features that have often been
confused in the literature. We developed this formalism side-
by-side with a complete, minimal representation of C++ code
so we are confident that the formalism has direct practical
implications for the specification of C++ analysis and trans-
formation tools. As an indication of the inherent simplicity of
the formalism, we can mention that our library for efficiently
representing all of ISO C++ according to the rules defined by
the formalism is just 2,500 lines of C++ source code (includ-
ing all memory management and type unification).

1.2 Outline

This paper is structured as follows. The next section provides
a background on the ISO C++ programming language. In §3
we describe an internal form that is suitable for use in compil-
ers (type checking, code generation) and more generally for
semantics-based program transformations. Then we move
on the description of an external form (§4), followed by a dis-
cussion of the template system (§5). We give in §6 a brief out-
line of application of the formalism developed in this paper
to the specification of a type system for templates. §7 dis-
cusses related works, and we conclude in §8 with directions
for future work.

2 Background

A formal description of the static semantics of C++ is a chal-
lenging task. Part of the challenge comes from the fact that
C++ is based on the C programming language, whose static
semantics has resisted formal approaches [Set80, GH93]. An-
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other part of the challenge has its root in the language de-
sign principle that C++ should not be just a collection of neat
features. That is, C++ language functionalities strongly in-
teract with each other to sustain sound programming styles.
The features are designed to be used in combination. Con-
sequently, it is hard to describe a feature completely, in iso-
lation from other features. For example, function templates
can be overloaded and a class template can have member
functions that override virtual functions from base class tem-
plates, etc. supporting a wide range of useful, sound pro-
gramming styles and techniques. In particular, the Standard
Template Library [SL94] critically relies on templates and
overloading. Consider the function template declarations:

template<class RandomAccessIterator>
void sort(RandomAccessIterator first,

RandomAccessIterator last);

template<class Container>
void sort(Container& c);

The first declaration is quite standard [SL94, Aus98, Str00,
ISO03]. Its classical meaning is: given a sequence delim-
ited by the interval [p,q), the call sort(p, q) will perform
an in-place sorting assuming p and q have the properties of
random access iterators. The second declaration is less stan-
dard, but is part of some library extensions and has been
used as an example [Str00]. It is that of a sorting function
that takes a whole container argument instead of parts of
it. From standard C++ point of view, the function template
sort() is overloaded. Note that, contrary to systems like type
classes [WB89, Tha94, HHPJW96, PJ03], there is no require-
ment for the declaration of a global repository and explicit
registration of members of that repository forming the over-
load set. It should also be noted that members of the overload
set need not have the same number of arguments, nor have
any generic instance relationship. Furthermore, unlike the
language discussed in the work of Peter Stuckey and Martin
Sulzmann [SS02] no keyword overload is needed to intro-
duce a function declaration as overloaded. In fact, the key-
word overload was required in early (pre-release, internal to
AT&T) versions of C++, but experience and and experiments
were quite negative. The conclusion was that such schemes
do not scale to programming in the large as they seriously
inhibit composability of independently developed libraries
[Str94, §11.2.4].

The IOStream [LK00] component relies on overloading, tem-
plates and virtual functions (thus overriding) to offer an ex-
tensible, type safe, efficient input/output library. For exam-
ple, consider the fragment

double x = 3.9;
//...
cout << "x = " << x << ’\n’;

The references to the insertion operator («) are to a func-
tion that is overloaded for various types, including char-
acter strings, double precision floating point types, charac-
ter types. Overload resolution, in C++, considers only the
static types of the operands. That mechanism supports exten-
sions of the IOStream component to user-defined types and
input/output schemes. Furthermore, the input and output
streams, as well as the stream buffers and localization helper
classes are statically parameterized by the character type ma-

nipulated by the streams. This makes it possible for users
to instantiate the framework with their own character types,
such as Unicode characters. Finally, the stream classes and
helper classes use overriding of virtual functions to provide
hooks for dynamic customization points for input and out-
put processing. The IOStream component is just an example
of many successful C++ libraries that combine overloading,
templates and overriding to provide efficient, flexible, type
safe and extensible framework.

The rest of this paper focuses on a formal description of two
of the key functionalities of the ISO standard C++ program-
ming language: overloading and templates (including partial
specialization).

3 The internal language

C++ is an explicitly typed language. However, the source
language requires annotations only on declarations. Tem-
plate instantiations are usually implicit and overloading is
resolved by matching argument list with the types of visi-
ble function declarations. A given call may involve template-
argument deduction (§5.1), followed by function overloading
resolution (§4.2), which in turn is followed by template in-
stantiation. The outcome is a fully typed intrinsic language.
This section describes the internal form of C++. We start with
a description of the core of its type system, necessary to dis-
cuss the main ideas behind templates and overloading.

3.1 The type system

The abstract syntax for types is given in Figure 1 and judg-
ment rules for type expressions are displayed in Figure 2.

Sentences of the form Γ
type
⊢ t ∈ T means “the type expression

t has property T .” Similarly, sentence like Γ
decl
⊢ x ∈ X means

“the declaration of x has property X”.

Type constants include built-in types such as void, int, etc.,
as well as user-defined types (classes, unions, enums, etc.)
For generality and uniformity, we also include “generalized
types” such as class, enum , union and namespace . They describe
the type of user-defined types. For instance, in the fragment

namespace ast {
enum token {

// ...
};

class expr {
// ...

};
}

the namespace ast is considered a user-defined type, with
type namespace . Similarly ast::token and ast::expr are user-
defined types with types enum and class, respectively.

Type variables are generally introduced as type template-
parameters. We will see in §5.5 that they can also arise as syn-
thesized types in abstract typing of templates definitions. A
reference type is constructed with ref (−), and a pointer type
is constructed with ptr (−).

Types constructed with the keywords const and volatile
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τ ::= types

t type constants

| α type variables

| ref (τ) reference types

| ptr (τ) pointer types

| const (τ) const-qualified types

| volatile (τ) volatile-qualified types

| array (τ,c) array types with known bound

| array (τ,ε) array types with unknown bound

| (τ1, · · · ,τn)→ τ function types

|ΠJ~p :TnK _ τ type template

| χ[γ1,··· ,γn] type template instantiations

T ::= generalized types

τ ordinary type

| ♮ type of ordinary type

|T1×·· ·×Tn _T template type

γ ::= compile-time entities

c constant expressions

| τ types

| χ named type templates

Figure 1: Abstract syntax of the type system

are represented as const (−) and volatile (−). Array types, con-
structed with array , may have unknown bounds or must have
bounds that are integral constant expressions. Functions de-
clared to take n ≥ 0 arguments and with return type τ have
types denoted by (τ1, · · · ,τn)→ τ. When n = 0, that is when
the function takes no arguments, the notation reduces to
()→ τ. A type template is a mapping from compile-time en-
tities (type, values, named templates) to types. Types can
also be constructed as instantiations of type templates with
arguments that are compile-time entities. Type templates are
structured by the form of their template-parameters (type,
non-type and template). Finally, the collection of template-
arguments consists of C++ constant expressions, types and
named type templates. The structure of constant expressions
is precisely defined by the ISO standard rules [ISO03, §5.19].
For the purpose of this paper, it would suffice to say that they
are the sort of values that can be computed at translation-time
as part of type-checking.

Types in T are rather “enthusiastic” extensions of the ISO
C++ type system in the sense that we tolerate some types ex-
pression, e.g. pointer to reference or array of references, that
are considered invalid by ISO C++ rules. This allows us to
provide a significantly smaller and more regular description.
However, to remain close to those rules, we use T to denote
the collection of ISO C++ well-formed types. All types in T

have kind ♮. They consist of the type constant void and the
three categories of types:

1. value and object types O ;

2. function types F ;

3. reference types R;

Γ
type
⊢ T ∈ ♮

Γ
type
⊢ t ∈T

where t ::= void | bool | int | double | . . .

Γ
type
⊢ τ ∈O ∪F

Γ
type
⊢ ref (τ) ∈R

Γ
type
⊢ τ ∈T ×

Γ
type
⊢ const (τ) ∈T ×

Γ
type
⊢ τ ∈O

Γ
type
⊢ array (τ,_) ∈O

Γ
decl
⊢ υ ∈ {class,union , enum}

Γ
type
⊢ υ ∈O

Γ
type
⊢ τ ∈T ×

Γ
type
⊢ ptr (τ) ∈ O

Γ
type
⊢ τ ∈T ×

Γ
type
⊢ volatile (τ) ∈ T ×

∀i Γ
type
⊢ τi ∈P τ ∈ T +

Γ
type
⊢ (τ1, · · · ,τn)→ τ ∈F

Γ
decl
⊢ α ∈ typename

Γ
type
⊢ α ∈ T

Γ
decl
⊢ χ ∈T1×·· ·×Tn _ τ ∀i γi ∈Ti, τ ∈T

Γ
type
⊢ χ[γ1,··· ,γn] ∈ τ

Figure 2: Typing judgment for type expressions

We single out the sub-collection T + = T \F composed of
all well-formed types except function types. Types in T +

are those that can serve as function return type. Similarly,
the collection P = T + \ {void} is that of function parame-
ter types. This is a slight extension of ISO C++ types that
can be used as function return type and parameter types. In-
deed, they include array types. The traditional and standard
rules say that the return type of a function cannot be an ar-
ray type. However, there is no fundamental intrinsic reasons
why that should be the case; that is an instance of historical
accidents. Similarly, the standard rules say that a function
parameter cannot have an array type. Or rather, if it is de-
clared to have an array type then it is implicitly adjusted to a
pointer type. This particular aspect is no source of departure
from ISO C++ standard semantics because it is expected that
where enforcing ISO C++ rules, the program translation will
make the appropriate adjustment during conversion from the
external to the internal forms, as is done in C++ compilers.
However, the formalism is capable to dealing with such ex-
tensions did the need arise. The result is a type system that
is more regular, yet not compromising C++ standard seman-
tics. We also use the sub-collection T × = T \R, which is the
collection of types from which an ISO C++ pointer type can
be constructed.

The collection O consists of types that describes objects, e.g.
representation of values in memory. At the exception of void,
all built-in types are object types. Classes, enums and unions
are also object types. Figure 2 displays the semantics of the
types in T . A reference type can be constructed only out of
an object or function type. A pointer type can be constructed
only out of void, or an object type, or a function type. In
particular, there is no pointer to reference type or pointer to
namespaces (though the latter may be considered in the spec-
ification of some form of module systems).
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Cv-qualification, e.g. construction with const or volatile, pre-
serves categories. That is, a cv-qualification of an object type
is an object type, and a cv-qualification of a function type is a
function type. There is no notion of cv-qualification of refer-
ence type. The standard rules do not allow cv-qualification
of function types, except in very limited occasions. How-
ever, it turns out that the general precise formulation of
template-argument deduction process becomes quite com-
plicated. Consequently, we have decided to include cv-
qualification in our framework and reject programs that ef-
fectively use them in way that contradicts ISO C++ semantics.

Array types are object types, and are constructed only out of
object types. A function type may have any well-formed type
as return type, and its parameter-type list consists of either
object types or reference types. A symbol declared to name a
class, a union or an enumeration designates an object type. In
a template declaration, a name introduced with the keyword
typename designates a type. A symbol introduced to name
a type template is interpreted as a type template. Finally, a
type template instantiated with the appropriate template ar-
guments has a result which is of the category indicated in its
signature.

3.2 Declarations

As a general C++ rule, a name can be used to form expres-
sions only if it has a prior visible declaration stating its type.
Declarations are collected in look-up tables (e.g. scopes) that
record type assumptions associated with names. Declara-
tions are categorized into various sorts, depending on the
type and the scope where they appear. There are six sorts
of scopes:

1. namesapce-scope associated with namespaces;

2. class-scope associated with classes;

3. function-scope a curiosity associated with labels;

4. template-scope, associated with template-parameters;

5. prototype-scope, associated with function parameters in
function declarations (not definitions);

6. local-scope associated with blocks.

The abstract syntax and the typing judgment rules are dis-
played in Figure 3 and Figure 4, respectively. The general
principle is that a declaration is a tuple n : (Γ,τ,σ) with an
optional initializer where

• Γ is the scope into which the name n is introduced;

• τ is the type of the declaration;

• and σ is the set of specifiers.

For example consider:

int abs(int);

class Var {
public:

const string& name() const;
const Type& type() const;
const Expr& initializer() const;
//...

};

d ::= declarations

n : (Γ,τ,σ) declaration without initializer

n : (Γ,τ,σ)← e declaration with initializer

σ ::= specifiers

auto | register

| static | extern

| mutable | export

| inline | virtual

| explicit | pure

| public | private

| protected

Figure 3: Abstract syntax of C++ declarations

template<typename T, int N> struct buffer {
T data[N];

};

The first declaration has name abs and type (int)→ int with
no initializer. The class declaration for Var has type class and
the initializer is the class-body. The third declaration has
name buffer, has type ♮× int _ class and the class-body as
initializer.

The operation of retrieving the set of declarations for a name
n in a given scope Γ is called name lookup, and will be de-
noted L (Γ,n). We will assume that operation to be given for
the purpose of this paper. The reader interested in the exact
details of ISO C++ name lookup rules might consult [ISO03,
§3.4] for the standard specifications. Name lookup applies
uniformly to all names.

A variable is a declaration that binds a name to an object type
at a non-class scope. A reference is a binding of a name to a
reference type at a non-class scope. Declarations appearing
at class-scope are member declarations. A declaration of a
name with object type or reference type at a class-scope is a
data-member (or field) provided it has no static specifier. A
function declaration binds a name to a function type. A dec-
laration that appears at template-scope or prototype-scope
are parameters.

3.3 Statements

Initializers for function definitions are executable blocks, e.g.
sequence of statements.

Most statements consist mainly of expressions that are evalu-
ated for their effects. The internal language does not make
a distinction between a case labeled-statement and an or-
dinary labeled-statement that may be subject of a goto-
statement. The label can be any constant expression, not just
integral constant expressions as in ISO C++. A block is a se-
quence of statements with an optional sequence of exception
handlers. In particular, there is no distinction between a try-
block and other blocks as is done in the concrete syntax of
ISO C++. As in ISO C++, the “condition” of a do, while, or
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Σ = Σnamespace| Σclass| Σfunction | Σtemplate| Σlocal | Σprototype

n : (Γ,τ,_) τ ∈ O Γ ∈ Σnamespace∪Σlocal

Γ
decl
⊢ n ∈Varτ

n : (Γ,τ,σ) τ ∈ O Γ ∈ Σclass σ ∋ static

Γ
decl
⊢ n ∈Varτ

n : (Γ,τ,_) τ ∈O ∪R Γ ∈ Σclass σ 6∋ static

Γ
decl
⊢ n ∈Dataτ

n : (Γ,τ,_) τ ∈T Γ ∈ Σtemplate∪Σprototype

Γ
decl
⊢ n ∈ Paramτ

n : (Γ,τ,_) τ ∈R Γ ∈ Σ

Γ
decl
⊢ n ∈ Re f τ

n : (Γ,τ,_) τ ∈F

Γ
decl
⊢ n ∈ Funτ

n : (Γ,τ,_) Γ ∈ Σclass

Γ
decl
⊢ n ∈Memberτ

χ : (Γ,ΠJp1 :T1, . . . ,×pn :TnK _ e) e ∈ τ

Γ
decl
⊢ χ ∈T1×·· ·×Tn _ τ

Figure 4: Typing judgment rules for declarations

s ::= statements

break | continue

| Return (e) jump statement

| Goto (n)

| ExprStmt (e) expression-statement

| LabeledStmt (e,s) labeled-statement

| Block
(

sseq,hseq
)

compound statement

| If (e | d,s,s) selection statement

| Sw icth (e | d,s)

|While (e | d,s) iteration statement

| Do (e | d,s)

| For (e | d,e | d,e,s)

| d block-declaration

h ::= catch-block

Catch (d,s)

Figure 5: Statements

for-loop can be a declaration, as long as that declaration has
an expression value convertible to the ISO C++ boolean type
bool. Such constructs happen for example in codes like

if (ast::call* c = dynamic_cast<ast::call*>(x)) {
// x is a ast::call, use as c.

}
else {

// x is not a ast::call.
}

And finally, “simple” declarations are considered statements.
The operational semantics of statements will be reported
elsewhere; for the purpose of this paper — especially for the
illustration of abstract typing of templates — it is sufficient to
know that selection and iteration statements accept declara-
tions in the “condition” place, as long as they have expression
value convertible to bool.

3.4 Expressions

The rules for the abstract syntax of C++ expressions is given
in Figure 6. C++ expressions are constructed out of literals,
declared identifiers, with unary, binary and ternary operators
(see Figure 6). For generality and uniformity, we consider
type expressions (§3.1) and statements (§3.3) also as expres-
sions.

The requirement that a name used in an expression must
have a prior declaration obviously translate to the fact that
set L (Γ,n) must not be empty. If the set L (Γ,n) has more than
one element then the name n is said overloaded. Only func-
tion names can be overloaded. Overload resolution (§4.2) de-
cides on the particular declaration of a name used in a call.
Furthermore, the category of C++ expressions with function

e ::= expressions

l literals

| n names

| uop(e) unary expression

| binop(e,e) binary expressions

| terop (e,e,e) binary expressions

| τ type expressions

| s statements

unop : PostInc, PostD ec, PreInc, PreD ec, Deref, Address, Not, . . .

binop : Plus, M inus, Times, Div, Eq, Neq, ScopeRef, . . .

terop : New , Conditional

Figure 6: Abstract syntax of C++ expressions

or object types is in turn divided into two sub-categories:
lvalue and rvalue expressions. For all practical purposes, an
lvalue expression is defined as a valid operand of the built-
in address-of (&) operator. An rvalue expression is one that
is not an lvalue expression. Many important ISO C++ rules
are curiously expressed in terms of that distinction. Conse-
quently, our extended type system include the attribute lvalue
to indicate lvalueness.

The type of C++ expressions are controlled by precise lan-
guage rules [ISO03, Clause 5]. The typing rules are summa-
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rized in in Figure 7. A sentence of the form Γ
exp
⊢ e ∈ E means

“the expression e has property E in the typing environment

Γ.” A sentence of the form Γ
exp
⊢ e 1 τ means “in the typing

environment Γ, the expression e has synthesized type τ.” The
synthesis is done for symbols by looking up the declaration
in the environment.

Literals have types dictated by ISO C++ rules [ISO03, §2.13].
Those type assumptions are part of all initial typing environ-
ments. Identifiers need to be visible before use. A variable,
a reference, a function parameter name, or a function name
evaluates to an lvalue. Function application follows the usual
rule: if a call has signature (τ1, . . . ,τn) and each of the ar-
guments (e1, . . . ,en) is convertible to expected type, then the
call is well formed and has the type specified. Note that the
conversions considered in the internal form are those nec-
essary to implement the standard call-by-value and call-by-
reference semantics. More elaborated notions of conversion
will be considered in §4.1 for the external language.

l ∈ literal

Γ
exp
⊢ l 1 τl

Γ
decl
⊢ x ∈Varτ τ ∈O

Γ
exp
⊢ x 1 τ∩ lvalue

L (Γ,x) = /0

Γ
exp
⊢ x ∈⊥

Γ
decl
⊢ x ∈ Re f ref(τ) τ ∈O ∪F

Γ
exp
⊢ x 1 τ∩ lvalue

Γ
decl
⊢ x ∈ Paramτ Γ

type
⊢ τ ∈O

Γ
exp
⊢ x 1 τ∩ lvalue

Γ
decl
⊢ _ (x,τ)

Γ
exp
⊢ x ∈ τ

Γ
type
⊢ f 1 (τ1, . . . ,τn)→ τ ∀i ei % τi

f (e1, . . . ,en) ∈ τ

Γ
type
⊢ e 1 τ∩ lvalue

Γ
type
⊢ e % ref (τ)

Γ
type
⊢ e 1 τ∩ lvalue

Γ
type
⊢ e % τ

Γ
decl
⊢ x ∈Varτ x ∈ fv(e) Γ

decl
⊢ y ∈ Re f τ

Γ ⊢ e≍ [y/x]e

Γ
decl
⊢ x ∈ Re f τ x ∈ fv(e) Γ

decl
⊢ y ∈Varτ̌

Γ ⊢ e≍ [y/x]e

Figure 7: Typing rules for expressions

The attentive reader may wonder why we have given only
the rules for function application and not for other opera-
tors. Conceptually, C++ operators are just functions the im-
plementation of which can come from two sources: built-in
or user-defined. So, the typing rules for built-in operators
are essentially no different from those of user-defined opera-
tors, which are the rules for function application. The types
for operators with built-in meanings are specified in [ISO03,
§13.6]. Finally, substituting a variable for a free reference in
an expression does not change the type or meaning of that
expression. And vice versa. That property is just for the im-
plementation of call-by-reference. Concretely, it means that

there is no distinction exists between the use of a variable of
type τ and the use of a reference of type ref (τ).

4 The external language

As stated previously, C++ is an explicitly typed language in
its intrinsic form. However, programming languages that re-
quire explicit type annotation on just about every expression
are impractical for real-world programming because they put
an annotation burden on the programmers that ultimately
leads to unreadable, unmanageable programs [PT98]. The ex-
ternal form of C++ makes essential use of program contexts
to relieve the programmer from the burden of most annota-
tions.

4.1 Conversions

A fundamental ideal of C++ is to provide equal support for
user-defined types and built-in types.

Implicit conversions play an essential rôle in the interpreta-
tion of expressions. They happen essentially in assignment
operations and initializations (definitions, calls or return-
statements).

In addition of standard built-in conversions (e.g. integer pro-
motion, floating point promotion, etc.), a programmer can
define conversions between user-defined types and between
user-defined types and built-in types. The set of standard
conversions is precisely defined in [ISO03, §4], the exact de-
tails of which are not important for the discussion that will
follow. The most relevant information from there are:

• conversions are ranked;

• a standard conversion sequence is a finite sequence of stan-
dard conversion where the conversions are sequenced
in a specific order.

A user-defined conversion sequence is a triple (Si,U,St) where
both Si and St are standard conversion sequences and U is a
user-defined conversion. An implicit conversion is either a
standard conversion sequence or a user-defined conversion
sequence. The ISO C++ standard has a detailed set of rules
[ISO03, Clause 4 and §13.3.3] that describes the computation
of implicit conversions. For the purpose of this paper, we
will assume a given operation, Convertible, such that for an
expression e and a type τ in a typing environement Γ the term
ConvertibleΓ (e,τ) yields

1. either ⊥ (failure), when the expression is not implicitly
convertible to τ; or

2. (a) a typing environment Γ′ ⊇Γ and a rewrite rule e 
e′ such that

Γ′
exp
⊢ e′ ∈ τ.

(b) a conversion rank that describes the rewrite from
e to e′.

The new environment Γ′ may contain new bindings or dec-
larations necessary to make the typing well-formed. This
is the case when the implicit conversion involves a user-
defined conversion, obtained from implicit instantiation of a
converting constructor or conversion function. Where there
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is no confusion about the type environments, we just write
e % e′ ∈ τ to say that the expression converts implicitly to e′

with type τ; or even more succintly, e % τ to mean that the
expression e is implicitly convertible to τ.

For a given type τ, the set % τ of expressions implicitly con-
vertible to τ, can be interpreted as a type. That view, which
is complementary to conventional type-checking, was devel-
oped in [Str03] and carried on in the specification of con-
cepts [DRS05]. In C++ compilers, the concrete manifestation
of ConvertibleΓ (e,τ) =⊥ is usually in form of diagnostic mes-
sages.

4.2 Overload resolution

When name-lookup L (Γ,n) finds more than one declarations
specifying different types, the name n is said to be over-
loaded. ISO C++ allows only overloading for function or op-
erator names. However, our framework can describe over-
loading for general symbols and values too.

Function overloading is fundamental to programming in
C++. In syntactic contexts where an operator is involved or
a function is called, the compiler infers a set of matching or
viable functions, i.e. set of function declarations that have
enough parameters and such that each argument is convert-
ible to the corresponding parameter type. Given an expres-
sion list (a1, . . .an), a function declaration

f ∈ (τ1, . . . ,τm)→ τ

is a match if

• n ≤ m, and for i > n, the parameter at position i has a
default argument;

• for 1≤ i ≤ n, the expression ei is implicitly convertible
(§4.1) to τi.

The ranking of implicit conversions (§4.1) and the partial or-
dering of function templates (§5.2) induce a partial ordering
on matching functions. Given two such functions f and g, we
say that f is a better match than g, if:

• the conversion ranks for f are no worse that those of g,
then there is at least one argument for which f realises a
better conversion. Otherwise,

• f is a non-template function and g is generated from a
template; otherwise

• both f and g are generated from templates F and G, and
the function template F is more specialized than G (see
§5.2).

The set of viable or matching functions is ordered as stated
above, and the best viable function — if it exists — is chosen.
See [ISO03, §13.3.3] for the ISO C++ formulation of the rules.

For the purpose of this article, we’ll asume given a primitive
operation, named resolve, such that: given a symbol f , an ar-
gument list (a1, . . . ,an), and a typing environment Γ the term
resolveΓ ( f ,(a1, . . . ,an)) yields:

1. either⊥ (failure) when L (Γ, f ) = /0 or no best viable can-
didate exists; or

2. a collection of rewrite rules ai  a′i, a new typing envi-
ronment Γ′ ⊇ Γ, and a substitution f 7→ δ f prescribing

which declaration of the symbol f is to be chosen.

Contrary to the type class mechanism in Haskell, C++ does
not require users to declare a global repository where mem-
bers of an overload set should be manually registered. The
members of an overload set need not share a “generic in-
stance” relationship. While the common source of overload-
ing is multiple declarations for a name with different types
in the same scope, function declarations may also be over-
loaded as the result of argument-dependent name lookup
whereby the name of a function is also looked in scopes asso-
ciated with the arguments. Such look-up mechanism defeats
a repository-based overloading scheme.

A difference between overloading and overriding, is that
the function selected by the overload resolution is the actual
function that will be executed, not a different function de-
clared after the point of call that may probably have been a
better match. From that, it must be clear that overloading
relies purely on static type information available at the call
site.

4.3 Typing rules

This section extends the core typing judgment rules, dis-
played in Figure 7, to account for implicit conversions and
function overloading.

resolveΓ ( f ,(e1, . . . ,en)) = {δ f } Γ
exp
⊢ δ f 1 (τ1, . . . ,τn)→ τ

Γ
exp
⊢ f (e1, . . . ,en) 1 τ

Γ
exp
⊢ e 1 τ∩ lvalue

Γ
exp
⊢ e % p ∈ Paramref(const(τ))

Figure 8: Typing rules for calls

The first rule is a summary of the overload resolution pro-
cess. Note that in the formulation of synthesized type, the
function need not have the exact number of parameters as
there are arguments. It could have more, but in that case, the
extraneous parameters are required to have default values.
Since those default values do not participate in the overload
resolution process, we can safely ignore their existence dur-
ing the type elaboration. The last rule says that an lvalue
expression of type τ can be implicitly bound to a parameter
of type ref (const (τ)).

5 Templates

Over the last decade templates have emerged as a key lan-
guage feature for building efficient, extensible, and modu-
lar mainstream systems and libraries. The efficiency and ex-
pressive power offered by templates is based on two factors.
First, template instantiations combine information available
at both definition and instantiation contexts. Second, tem-
plates are typically implicitly instantiated. A template is im-
plicitly instantiated if and only if it is used in a way that is
essential to the program semantics.
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A particularity of the C++ template system, both source of
expressivity and weakness, is the coupling between template
definitions and their uses. For instance, consider the follow-
ing function template definition part of the standard library:

template<class InIter, class OutIter>
OutIter copy(InIter first, InIter last, OutIter out)
{
for (; first != last; ++first, ++out)

*out = *first;
return out;

}

A call copy(begin, end, dst) will copy the sequence delim-
ited by the interval [begin,end) to a sequence starting from
dst; it is assumed that the destination sequence has enough
room to receive the input sequence.

The call leads to successful instantiation only if the deduced
type arguments ι and ω for the type parameters InIter and
OutIter have the following properties:

1. instances of ι must be copy-initializable, so that they can
be used as function arguments in calls to copy();

2. two such instances must be equality comparable in
the sense that the expression first != second must be
valid and its value convertible to the boolean type bool;

3. an expression of type ι must support the pre-
incrementation operation; similar assumption for ex-
pression of type ω;

4. the expression *out = *first must be valid (which im-
plies that every sub-expression must also be valid).

For example, it can be used to copy list elements to a vector

list<int> l(768);
// ...
vector<int> v(l.size());
copy(l.begin(), l.end(), v.begin());

Note that the function template copy() does not concern it-
self with memory management; it assumes that the destina-
tion has enough room. But what if it does not? Instead of
writing a new function copy′() that tries to deal with memory
management, it suffices to make sure that the output iterator
does the right thing. That is, the output iterator should make
room for the new element it is about to receive. Standard it-
erator adapters are provided for that:

list<int> l(768);
// ...
vector<int> v;
copy(l.begin(), l.end(), back_insert(v));

Here, back_insert(v) constructs an outpout iterator out of
v such that each time it receives a datum x, it automatically
sends it to v with v.push_back(x), thus handing off memory
management to the vector v which knows best how to accom-
plish such tasks for its internals.

The same function copy() can also be used to print out the
content of a sequence:

list<int> l(768);
// ...
copy(l.begin(), l.end(), ostream_iterator<int>(cout, " "));

The function template copy() can be used with any combina-
tion of iterators that satisfies the assumptions we list above.
This versatility of templates is key to their success in main-
stream libraries and systems. However, that versatility also
causes problems. We propose a solution, a type system for
template arguments, called concepts in [DRS05], based on the
formalism we report in this paper.

5.1 Template argument deduction

In the previous examples, copy is a template. Therefore,
copy needs values for its template parameters for instanti-
ation purpose. However, we specified none. The external
form of C++ has a machinery for deducing template argu-
ments in almost all cases. That is, a C++ compiler is required,
in many cases, to deduce values for the template parameters
of a function by looking only at the type of the arguments in
the call.

The formal process of argument deduction can be framed in
terms of constraints solving. Consider a function template
declaration

Γ
exp
⊢ f ∈ΠJp1 :T1, · · · , pm :TmK _ (τ1, . . . ,τn)→ τ

where the function parameter types τi and return type τ use
the template paramaters p j. Deducing values for p j when f
is presented with a call argument list (a1, . . . ,an) is equivalent
to solving in parallel the system of constraints

∀i, τi ≃ αi where Γ
exp
⊢ ai 1 αi.

The relation ≃ is an almost type equality relation. The exact
details of that almost type equality are spelled out in [ISO03,
§14.8.2]. The constraints can be solved either with unification
algorithms or any other constraint solving system, yielding a
substitution S the domain of which consists of paramters p j.

The deduction process fails

• if there is no unique solution, or

• if not all template parameters have deduced values, or

• if the substituted type S [(τ1, . . . ,τn) → τ] is not well-
formed, i.e. not a member of T .

The requirement that the constraints are solved in parallel,
make parameters play symmetrical rôle like in algorithmW ′

of Bruce McAdam [McA98], which does not have the left-to-
right bias of the classical algorithm W of Damas and Mil-
ner [DM82]. That also implies that call in the fragment

template<class T>
void foo(const T*, const T*);

f("hello", 0);

will fail whereas it would succeed in

void foo(const char*, const char*);
f("hello", 0);

Such failing constructs are mostly regarded as curiosities by
C++ programmers. However, the error message a compiler
produces varies greatly from the most obscure to the most
informative.
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Recall that C++ template parameters are not restricted to be
type parameters. They can be any compile-time values. For
example the following is well known among C++ program-
mers:

template<class T, int N>
int size(const T (&)[N])
{
return N;

}

template<class T, int N>
T* begin(T (&a)[N])
{
return &a[0];

}

template<class T, int N>
T* end(T (&a)[N])
{
begin(a) + size(a);

}

The function template size can deduce the number of ele-
ments in a C-array. It is a far more type safe alternative to
C-preprocessor macro-based tricks that are sometimes used.
The function templates begin and end provide functionali-
ties similar to those of the standard containers, so that we
can simply write

string options[] = { // bound computed by the compiler
// ...

};

copy(begin(options), end(options),
ostream_iterator<string>(cout, "\n"));

Please note that integer template arguments are not some ob-
scure minor language feature; widely used libraries rely on
them and their use is an essential part of what is often called
template meta-programming.

5.2 Partial ordering of templates

There are various circumstances (usually in overload resolu-
tion) where the need arises to locate from a set of function
templates the best match for a given template argument list.
This is accomplished through the notion of partial ordering of
function templates.

Given two template declarations

Γ
exp
⊢ f ∈ΠJp1 :T1, · · · , pm :TmK _ (τ1, . . . ,τn)→ τ

Γ
exp
⊢ f ′ ∈ΠJp′1 :T′1, · · · , p′m :T′mK _

(

τ′1, . . . ,τ
′
n
)

→ τ′

the template f is said to be at least as specialized as the tem-
plate f ′, writtem f 4 f ′, if template argument deduction for
f ′ against the parameter-type list (τ1, . . . ,τn) succeeds with
type equality, instead of almost type equality (§5.1). Note
that the requirement is not that there exist an arbitrary sub-
stitution S that makes

(

τ′1, . . . ,τ
′
n
)

identical to (τ1, . . . ,τn). The
requirement is that template argument deduction succeeds,
which is a more stringent requirement.

The function template f is said more specialized than f ′ if we
have the simultaneous conditions

f 4 f ′ and f ′ 64 f .

In which case, we simply write f ≺ f ′.

During overload resolution, if two functions compete with
similar conversion ranks, and both come from templates,
then the function coming from the most specialized template
— when it exists — is prefered. We emphasize that in select-
ing the most specialized template, it is not just a matter of
pattern matching where the first match or the most recently
defined specilization is taken. Rather, there is a global partial
ordering and an attempt is made to chose the best when it
exists. Consider the fragment:

template<typenamem T>
void swap(T&, T&); // #1

template<typename U>
void swap(vector<U>&, vector<U>&); // #2

int main() {
vector<int> v;
vector<int> w;
// ...
swap(v, w); // calls #2

}

Both declarations of swap are part of the C++ standard library.
They are overloaded declarations. Both produce instantia-
tions that are viable functions for the call to exchange v and
w, with exact match. Partial ordering of templates ranks the
second declaration as more specialized than the first declara-
tion. For, no value can be deduced for the template parameter
U such that the parameter list (vector<U>&, vector<U>&) be-
come identical to (T&, T&). On the other hand, it is obvious
that T = vector<U> is a deduction that makes (T&, T&) equal
to (vector<U>&, vector<U>&).

5.3 Template specializations

Unlike Standard ML [MTHM97], or Haskell [PJ03] C++ allow
partial and full specializations of templates. Such language
features come from consideration of practical systems. They
are used to cope with irregularities of the semantics of lan-
guage features inherited from C (notably pointers and arrays)
and to provide more efficient implementations of general al-
gorithms for specific template argument types (e.g. pointers
where general iterators are allowed). Specializations are sup-
plied by users for the system to use when an instantiation is
requested; they do not take part in overload resolution. For
instance, consider the general class template from [Str00]

template<typename T>
class Vector {
public:
// ...
};

One can easily see that on a computing environment where
all pointer to objects have same representation, every instan-
tiation Vector<A*> where A is an object type will lead to a sep-
arate, different instantiation, thsu duplication of essentially
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the same representation. C++ programmers have learnt to
factorize such duplicates as

template<> // specialized for void*
class Vector<void*> {
public:
// ...
};

template<typename T> // then for all other pointers
class Vector<T*> : private Vector<void*> {
public:
// forward functions to Vector<void*>
// ...
};

The class Vector<void*> is called an explicit of full special-
ization of the template Vector. When an instantiation is re-
quested for Vector with template-argument list <void*>, this
implementation is used instead of generating a class out of
the primary template. The second declaration, on the other
hand, is still a class template. It is a class template that pro-
vide implementations for arguments to Vector that are of the
form <T*> where T is a type.

Partial specialization may be conceived of as a form of over-
riding, but it is not overriding as commonly used. Indeed,
first, a class template is not a function between objects. It is
only a function that maps compile-time entities to declara-
tions. Secondly, the choice of a specializations is based on the
set of templates availabe at the point of instantiation, while
overriding in the ordinary sense takes into account the object
dynamic type and the executed function need not be present
at the call site. For instance, the following fragment is invalid
according to ISO C++ rules

template<class T>
struct X {
// ...

};

X<int*> x; // use primary template X, T=int*

template<class T>
struct X<T*> { // specialize primary X. This is

// invalid, for it would have been
// chosen, did it come before X<int*>.

// ...
};

A request of an instantiation of a template χ with template-
argument list results in chosing the most specialized tem-
plate, when it exists. Otherwise, the program is in error.

5.4 Templates and conventional type sys-
tems

Several programming languages that support generic pro-
gramming also offer some forms of separate checking. So,
why are the solutions adopted by those languages are not
good enough for C++?

C++ template-arguments are not restricted to types.
Compile-time constants (e.g. values) can be template argu-
ments too. A useful type system for template cannot not

just be a variation of kind systems as found in some modern
programming languages. Indeed, in such systems, a kind is
the type of all types. A kind system define some structures in
the space of type constructors. Kind expressions are usually
given by the grammar

κ ::= ♮ | κ→ κ.

C++ templates are not (just) type generators. They are dec-
laration generators. So, copy generates function declarations
when given appropriate type arguments. If we were to carry
traditional kind systems to C++ templates, then the type of
the template copy would have kind ♮× ♮ → ♮ which obvi-
ously is insufficient to describe expectations on its template-
arguments. The reason being that it only says what sorts of
arguments the template type expects and what the type of its
instantiation is. It does not say anything about the actual as-
sumptions made on the type parameters InIter and OutIter.

Furthermore, a type system for template parameters cannot
just be a dependent type system [Aug98, XP99] as no check-
ing is done at runtime and not every value can be template
arguments. Only compile time constants can be template ar-
guments. Moreover, in such dependent type systems fill
would have type

(InIter : ♮,OutIter : ♮,

first : InIter,last : InIter,out : OutIter)→ OutIter

which still is insufficient to describe the assumptions on the
template-arguments. While the dependent type here cap-
tures some aspects of the dependencies of the parameters, it
also says nothing about the crucial assumptions on FwdIter
and T.

Finally, since expressions inside template definitions involve
intricate combination of properties of template arguments,
templates challenge most of the advanced dependent type
systems currently used as basis for research programming
languages.

5.5 Abstract typing of template definitions

The previous formalism developed for conversion and over-
loading can be deployed to annotate the body of template
definitions. Most C++ compilers usually do not annotate ex-
pressions in template definitions (except where the language
rules require it) because they don’t know actual types of func-
tion parameters and such, thus defering the annotation to in-
stantiation time.

One can do better than that. Indeed, most of the rules in
fig:expr:typing and Figure 8 can be applied to expressions
in template definitions, by introducing local type variables.
When faced with a call

f (e1, . . . ,en)

where the argument list contains expressions whose type de-
pende on template parameters, the compiler can synthesized
a type for the call:

1. Introduce type variables to type f :

Γ
exp
⊢ f 1 (τ1, . . . ,τn)→ τ where τ1, . . .τn,τ are fresh,
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2. generate the constraints

ei % τi ∀i,

3. then synthesize a type for the call

Γ
exp
⊢ f (e1, . . . ,en) 1 τ.

The approach sketched above can be the basis of systematic
constraint set generation out of template definition, than can
be separately used to implement enforcement of conceptual
requirements on template parameters in template definitions.

6 A concept system

The abstract typing exemplified in the preceeding section is
taken as the basis of the template systems we propose in
[DRS05]. However, it should be noted that concepts are not
just set of constraints, as they can used as predicates e.g.
types, therefore constitute a fondation for improved over-
loading of function templates and partial specializations.

7 Related work

There have been several contributions to describe the seman-
tics of the C or C++ programming languages. The work of
Ravi Sethi [Set80] appears to be among the the earliest for-
malizing C. Yuri Gurevich and James Huggins [GH93] pro-
posed a denotational semantics for C; C++ was not consid-
ered. Charles Wallace [Wal95] considered pre-ISO Standard
C++; his work did not provide a uniform and general de-
scription. In contrast to this paper, templates were not rec-
ognized as central part of C++. Kathleen Fischer and John
Mitchell [FM94, FM95] considered formal models of object-
oriented languages features that could account for inheri-
tance and overriding in C++. However, their work did not
contain a formalization of the C++ template system and over-
loading. They suggested a form of F-bounded or higher-
order quantification to constrain template arguments. Such
constraints do not appear to conveniently cope with contem-
porary C++ template usage in mainstream libraries as dis-
cussed in the concept work [DRS05].

There has been a large body of work in the functional
programming community to support overloading. We
will briefly mention the contributions of Stephan Kaes
[Kae88, Kae92], Philip Wadler and Stephen Blott [WB89],
Tobias Nipkow and Christian Prehofer [NP93], Mark Jones
[Jon94], Satish Thatté [Tha94], Cordelia Hall and collabora-
tors [HHPJW96], Simon Peyton Jones et al. [PJJM97], Peter
Stuckey and Martin Sulzman [SS02]. They have mostly fo-
cused on extending the classical Hindley-Milner type sys-
tems with some notions of constraints. A characteristic of
systems with overloading is that the members of the overload
set share a relationship of generic instances which makes them
much closer to the notion of overriding and template spe-
cializations than overloading in C++. Manuel Chakravarty
and collaborators [CKPJM05, CKPJ05] recently proposed to
extend Haskell with associated types, thus moving closer to
C++ notion of template specialization and usage in building
efficient libraries and systems.

8 Conclusion and future work

We can formally describe ISO C++ in a way that has proven
useful for defining an exceptionally simple complete typed
abstract syntax tree representation of C++ codes and can be
used to precisely reason about existing and proposed lan-
guage features. This description appears to be new. Contrary
to previous works that confined themselves to small subsets
of C++, our aim has been a system that is a superset of ISO
C++, general enough to account for proposed extensions for
C++0x. We have also linked to and drawn constrast some ap-
proaches to the notion of overloading, e.g. type classes, no-
tably in the functional programming languages like Haskell
and extensions to Hindley-Milner type systems. The formal
description has also served as basis for the design of a type
system for templates. The low-level parts and the C heritage
will be subject of future work.
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