
Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 1 of 31

Document Number: N1851=05-0111

Date: 2005-08-25

Improving Usability and Performance of TR1 Smart
Pointers
Vladimir Kliatchko <vladimir@kliatchko.com>,
Ilougino Rocha <irocha@mac.com>,
August 25, 2005

Abstract
Over a period of two years we have accumulated significant experience in developing
and then using a family of C++ components implementing smart pointers. While similar
to the smart pointers described by TR1, our implementation has some important
distinctions. Our experience shows that these distinctions often resulted in both improved
usability and superior performance. In this paper we describe how our implementation
differs from TR1 and propose a number of corresponding changes to the C++ standard.

Copyright and Disclaimer
© 2005 Bloomberg L.P. Permission is granted to copy, distribute, and display this paper,
and to make derivative works and commercial use of it. The information in this paper is
provided “AS IS”, without warranty of any kind. Neither Bloomberg nor any employee
guarantees the correctness or completeness of such information. Bloomberg, its
employees, and its affiliated entities and persons shall not be liable, directly or indirectly,
in any way, for any inaccuracies, errors or omissions in such information. Nothing herein
should be interpreted as stating the opinions, policies, recommendations, or positions of
Bloomberg.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 2 of 31

Table of Contents
Introduction...3

Allocator Support ...4

Shared Pointer Aliasing ...8

Housing Shared Objects in Shared Pointers ...10

Smart Pointer with Destructive Copy Semantics (managed_ptr)..13

Conclusion ..24

Appendix A. Performance comparison with boost::shared_ptr ..25

Appendix B. Example ..30

References...31

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 3 of 31

Introduction

Over the last two years, we have accumulated significant experience in developing and
using a family of C++ components implementing smart pointers. These components have
been successfully used in the development of a number of mission-critical applications on
a variety of platforms (Sun Solaris, IBM AIX, HP HP-UX, Linux, and Windows). Our
implementation has proven to be reliable, portable, and highly efficient (see Appendix A
for performance comparison against Boost).

While our implementation of smart pointers is similar to that provided by Boost and
described by TR1, it provides a number of additional features not found in Boost/TR1:
allocator support, shared_ptr aliasing, housing of shared objects in shared_ptr, and
support for smart pointers having destructive copy semantics (managed_ptr). We found
these additional features to be essential for our applications, allowing for more
straightforward design and improved performance. Gains in performance and usability
were most noticeable in highly-optimized scalable multi-threaded applications. This class
of applications is a traditional domain of the C++ programming language; hence,
supporting such applications should be a priority, especially considering the rapidly
growing importance of multithreaded programming.

The remainder of this paper describes the distinguishing features of our implementation
of smart pointers and formulates corresponding proposals for the inclusion in the C++
standard.

The proposal is organized as follows:

Sections “Allocator Support”, “Shared Pointer Aliasing”, “Housing Shared objects
in shared pointers”, and “Smart Pointer with Destructive Copy Semantic
(managed_ptr)” each contain a proposal for inclusion in the standard of the
corresponding feature of our smart pointer implementation.

The “Conclusion” section summarizes our proposals.

Appendix A contains benchmarks comparing performance of our implementation with
that of Boost.

Appendix B contains a short sample program that illustrates both the motivation for and
the use of the proposed features.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 4 of 31

Allocator Support

Allocator support provided by our implementation of smart pointers allows the user of
our shared_ptr to control memory allocations performed by each shared_ptr
internally. More specifically, our shared_ptr’s interface includes two additional
constructors and two matching reset methods, each taking an additional allocator
argument. This allocator is used to supply memory for the reference count structure.
Once the reference count structure is allocated, a copy of the allocator is stored in the
structure to be used for the deallocation.

We can expect, and our experience confirms, that the ability to control memory allocation
in shared_ptr will be crucial in a number of common scenarios. For example:

• It may be necessary to place instances of shared_ptr in a special memory region
(e.g., shared memory).

• We may want to use a special pool to reduce contention and improve performance in
a multithreaded application that creates a large number of shared_ptr instances
concurrently.

It has been observed in [N1450] that using pools for reference count structures does not
provide significant benefits. However, our experience with pooling reference count
structures was radically different. The multithreaded applications that we built tended to
use shared_ptr extensively and in performance-critical areas. In general we expect
shared_ptr to be especially common in high-performance multithreaded applications
since keeping track of each individual object’s lifetime in these applications is
particularly difficult: object ownership passes from thread to thread and objects are bound
to asynchronous callbacks. In such applications we discovered that the allocation of the
reference count structure was a common cause of contention and the cost of such
allocation was prohibitive unless a special pool was used. High-performance lock-free
pools combined with an ability to supply distinct pools to different instances of
shared_ptr gave us the means necessary to reduce memory contention and significantly
improve performance.

When incorporating support for allocators into shared_ptr we made several design
decisions that are worth pointing out:

• Templatazing individual methods rather than the entire class.
Other components in the standard library that support custom allocators do so via
parameterizing the entire class on the type of the allocator. This approach results in
generating a new C++ type for each distinct type of allocator used. This class-wide
parameterization results in multiple incompatible types leading to interoperability
problems that we felt compelled to avoid. Our solution for achieving interoperability
with respect to allocator parallels that of Boost with respect to deleters. That is, we
have chosen to parameterize on allocator type only those individual methods that take
allocator parameters, thus avoiding the problem. The allocator type is then “baked”
into the reference count structure just as it is done with the type of the deleter object.

• Passing an allocator by value rather than by const reference or reference.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 5 of 31

TR1 specifies that a deleter is to be passed to shared_ptr constructors and reset
methods by value. Passing the deleter by value results in an additional ‘no throw’
requirement on the deleter’s copy constructor. Other alternatives are to pass the
deleter by reference or const reference. [N1450] explains the trade-offs among these
options. Passing the deleter by const reference would require the operator() to be
declared as const. Passing the deleter by modifiable reference is rejected because
that would prevent a caller from passing a temporary object. Given these
considerations, we made the same choice and decided to pass an allocator by value,
thus imposing a ‘no throw’ requirement on the allocator’s copy constructor. However,
to alleviate some of the pain associated with this requirement, we suggest that the
standard strengthens its guarantee on the function template bind by specifying that
bind shall not throw if the copy constructors of the arguments do not throw. Our
experience implementing bind indicates that this additional constraint is easy to
satisfy. On the other hand, this guarantee would allow such common idioms as
constructing a shared_ptr with a deleter expressed as a member function bound to
an object pointer.

• Requiring an explicit deleter to be supplied when a custom allocator is used.
Although, it is not uncommon (in our experience) that a shared_ptr needs to use a
custom allocator for internal memory, but does not require a custom deleter for the
shared object, we have chosen not to provide a separate constructor for this usage
case. Such a constructor would take two parameters – a pointer to a shared object and
an allocator. This constructor, however, would have a signature identical to the
constructor that takes a pointer to shared object and a deleter:

template<class Y, class D> shared_ptr(Y * p, D deleter);
template<class Y, class A> shared_ptr(Y * p, A allocator);

In both constructors the type of the second parameter is templatized and therefore we
cannot immediately distinguish between the constructor taking an allocator and the
constructor taking a deleter. It is possible to resolve the ambiguity between the
constructors by introducing a new trait (e.g., is_allocator) and requiring all the
allocator implementations (including std::allocator) to support this trait.
However, after considering the additional complexity that such a trait would
introduce, we decided against supporting custom allocators without explicit deleters.
Requiring an explicit deleter whenever an allocator is used will also help to eliminate
potential programmer’s errors when an allocator and a deleter might be confused. The
provided default_deleter (that simply invokes the delete operator) can be use
when only a custom allocator (and not a custom deleter) is required.

The following section describes the amendments to the C++ standard for allocator
support in shared_ptr.

Proposed Text

Additions to header <memory> synopsis ([std] 2.4, [tr1] 2.2.1)

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 6 of 31

namespace std {
namespace tr1 {
 struct default_deleter;
}
}

Class template default_deleter

namespace std {
namespace tr1 {
 struct default_deleter {
 template<class T> void operator () (T *p) const;
 };
}
}

template<class T> void operator () (T *p) const;

Effects

Equivalent to delete p.

Additions to shared_ptr constructors ([tr1] 2.2.3.1)

template<class Y, class D, class A> shared_ptr(Y * p, D d, A a);

Requires

p is convertible to T *. D is CopyConstructible. The copy constructor and
destructor of D shall not throw exceptions. The expression d(p) shall be well-
formed, shall have well-defined behavior, and shall not throw exceptions.

A is an allocator (see “allocator requirements”, [std] 20.1.5). The copy constructor
and destructor of A shall not throw exceptions.

Effects

Constructs a shared_ptr object that owns the pointer p and the deleter d.

Uses a copy of the allocator a to allocate memory for the shared_ptr’s internal
use.

Postconditions

use_count() == 1 && get() == p.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 7 of 31

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety:

If an exception is thrown, d(p) is called

template<class Y, class A> shared_ptr(auto_ptr<Y>& r, A a);

Requires

r.release() shall be convertible to T *. Y shall be a complete type. The
expression delete r.release() shall be well-formed, shall have well-defined
behavior, and shall not throw exceptions.

A is an allocator (see “allocator requirements”, [std] 20.1.5).

Effects

Constructs a shared_ptr object that owns r.release().

Uses a copy of the allocator a to allocate memory for the shared_ptr’s internal
use.

Postconditions

use_count() == 1 && r.get() == 0.

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

No effect ,if an exception is thrown.

Additions to shared_ptr modifiers ([tr1] 2.2.3.4)

template<class Y, class D, class A> void reset(Y * p, D d, A a);

Effects

Equivalent to shared_ptr(p, d, a).swap(*this).

template<class Y, class A> void reset(auto_ptr<Y>& r, A a);

Effects

Equivalent to shared_ptr(r, a).swap(*this).

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 8 of 31

Shared Pointer Aliasing

While using our smart pointer components on a variety of projects, we discovered that it
is often important to link the lifetime of one object with that of another. For example,
suppose that you have a shared pointer to an object (e.g., a container) and that you need
to obtain a shared pointer to some sub-object (e.g., an element of that container), say, to
provide to an existing interface. When the shared pointer to the sub-object is destroyed,
however, the shared pointer must not attempt to destroy the sub-object directly. The
reference to the sub-object is implicitly a reference to the parent object. Once no part of
the parent object is in use, the parent object should be destroyed instead.

This often useful feature, which we call smart pointer aliasing, lends itself to a simple and
efficient implementation. In order to create a share_ptr alias, one constructs a
shared_ptr that uses the same reference count structure as the original shared_ptr yet
points to different object. In our implementation, as in the Boost implementation, the
reference count structure retains the original pointer and a copy of the original deleter
(when supplied at construction) so that the object can still be destroyed using the original
pointer. This same mechanism is used in the implementation of various casting functions
(e.g., dynamic_pointer_cast). In fact, our original version of smart pointer components
(prior to the changes we made for compatibility with TR1) omitted the explicit cast
functions since identical results were achievable by first obtaining the underlining raw
pointer, performing the desired cast, and then aliasing that pointer with the original
shared_ptr.

In fairness, we acknowledge that aliasing does introduce additional opportunities for
misuse and programming errors. However, in our experience, such errors were not
common and almost always detectable at compile time. On the other hand, not having the
aliasing feature would have often resulted in complicated and error-prone work-around
code with inferior performance.

The following section describes the amendments to the C++ standard for shared_ptr
aliasing. Note, that our use of the term ownership when applied to an aliased shared
pointer is somewhat imprecise since an object returned from a shared_ptr’s get method
may be different from the one destroyed when its reference count reaches zero. This
imprecision is exacerbated in the presence of conversions to and from managed_ptr.
These conversions render our use of the term deleter imprecise as well. For consistency
with the TR1 specification, however, we will continue to use these terms. We describe
managed_ptr in the “Smart Pointer with Destructive Copy Semantic (managed_ptr)”
section below.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 9 of 31

Proposed Text

Additions to shared_ptr constructors ([tr1] 2.2.3.1)

template<class Y> shared_ptr(shared_ptr<Y> const& s, T *p);

Effects

Constructs a shared_ptr object that shares ownership with s. If s is empty,
requires p==0 and constructs an empty shared_ptr.

Postconditions

get() == p

Throws

Nothing

Additions to shared_ptr modifiers ([tr1] 2.2.3.4)

template<class Y> void reset(shared_ptr<Y> const& s, T *p);

Effects

Equivalent to shared_ptr(s, p).swap(*this).

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 10 of 31

Housing Shared Objects in Shared Pointers

We used the feature described in this section frequently in our applications for improving
performance. This feature allows an object whose lifetime is controlled by a shared_ptr
to be embedded directly within the reference count structure of the shared_ptr. This
collocation of the reference count with the object improves locality of reference, reduces
memory fragmentation, and, by avoiding an additional memory allocation, significantly
accelerates the construction of shared object and alleviates contention in multithreaded
applications. This feature, in combination with supplying shared_ptr with an efficient
allocator (see “Allocator Support”), often allowed us to improve the scalability of
multithreaded applications significantly.

Implementation of this feature is straightforward. We introduce four new free (non-
member) functions: make_shared_object, make_shared_object_with_alloc,
make_shared_array, and make_shared_array_with_alloc. These functions construct
shared_ptrs with reference count structures of appropriately increased size. The extra
room in the structure is then used to house an embedded object (or array of objects). Note
that any extra arguments supplied to the make_shared_object and
make_shared_object_with_alloc functions are automatically passed through to the
constructor of the embedded object.

Providing free (rather than member) functions simplifies usage since free functions (that
return a shared_ptr value) make it unnecessary to construct an instance of shared_ptr
before creating a collocated shared object. In one case a member function might have had
a slight performance advantage: when the result of one of the free functions is assigned to
an existing shared_ptr variable no temporary instance of shared_ptr would have had
to be created (and, thus, no additional updates to the reference would have been needed).
However, this performance advantage is not significant and can be eliminated completely
when rvalue-reference support is adopted into the language (see [N1377] for more
information on rvalue references).

The following section describes the make_shared_object,
make_shared_object_with_alloc, make_shared_array, and
make_shared_array_with_alloc functions.

Proposed Text

Housing shared object in shared_ptr

template<class X, class T1, class T2, …, class TN>
shared_ptr<X> make_shared_object (T1 t1, T2 t2, …, TN tn);

Requires

X is a complete type. The expression new ((void *)&s) X(t1, t2, …, tn),
where s is of type std::tr1::aligned_storage<size_of X,

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 11 of 31

std::tr1::alignment_of<X>::value>::type, shall be well-formed and shall have
well-defined behavior.

Returns

A newly constructed shared_ptr that houses an object of type X. The object of
type X is constructed in memory owned by the shared_ptr internally passing the
optional arguments t1, t2, … to the constructor of X. The shared_ptr owns this
object of type X and the appropriate deleter.

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

If an exception is thrown, has no effect.

template< class X, class A, class T1, class T2, …, class TN>
shared_ptr<X> make_shared_object_with_alloc (
 A a, T1 t1, T2 t2, …, TN tn);

Requires

X is a complete type. The expression new ((void *)&s) X(t1, t2, …, tn),
where s is of type std::tr1::aligned_storage<size_of X,
std::tr1::alignment_of<X>::value>::type, shall be well-formed and shall have
well-defined behavior.

A is an allocator (see “allocator requirements”, [std] 20.1.5).

Returns

A newly constructed shared_ptr that houses an object of type X. The object of
type X is constructed in memory owned by the shared_ptr internally passing the
optional arguments t1, t2, … to the constructor of X. The shared_ptr owns this
object of type X and the appropriate deleter.

Uses a copy of the allocator a to allocate memory for the shared_ptr’s internal
use.

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

If an exception is thrown, has no effect.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 12 of 31

template<class X>
shared_ptr<X> make_shared_array (std::size_t n);

Requires

X is a complete type. The expression new ((void *)&s) X, where s is of type
std::tr1::aligned_storage<size_of X,

std::tr1::alignment_of<X>::value>::type, shall be well-formed and shall have
well-defined behavior.

Returns

A newly constructed shared_ptr that houses an array of n object of type X. The
array is constructed in memory owned by the shared_ptr internally. The
shared_ptr owns this array and the appropriate deleter.

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

If an exception is thrown, has no effect.

template<class X, class A>
shared_ptr<X> make_shared_array_with_alloc (A a, std::size_t n);

Requires

X is a complete type. The expression new ((void *)&s) X, where s is of type
std::tr1::aligned_storage<size_of X,

std::tr1::alignment_of<X>::value>::type, shall be well-formed and shall have
well-defined behavior.

A is an allocator (see “allocator requirements”, [std] 20.1.5).

Returns

A newly constructed shared_ptr that houses an array of n object of type X. The
array is constructed in memory owned by the shared_ptr internally. The
shared_ptr owns this array and the appropriate deleter.

Uses a copy of the allocator a to allocate memory for the shared_ptr’s internal
use.

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

If an exception is thrown, has no effect.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 13 of 31

Smart Pointer with Destructive Copy Semantics (managed_ptr)

In our applications we discovered that it is common to employ object factories, object
pools, and various kinds of custom allocators for object construction. When an object, so
constructed, is no longer needed it should be either returned to the corresponding factory
or pool, or destroyed, with the object’s memory returned to the corresponding allocator.
Using a smart pointer to control the lifetime of such an object requires that the smart
pointer supports a custom deleter. While shared_ptr provides support for a custom
deleter our experience showed that the reference counting semantics of shared_ptr often
resulted in undesired overhead. A smart pointer with destructive copy semantics similar
to auto_ptr would often be sufficient and more appropriate. This observation motivated
us to construct a variant of auto_ptr with support for a custom deleter. We called this
new type of smart pointer managed_ptr.

Using our managed_ptr, we were able to improve both the performance and the clarity of
our application code. The performance benefits of managed_ptr come from its
significantly lower construction costs (no memory allocation is required) and copying
costs (no reference count needs updating) as compared with those of shared_ptr. The
performance improvements were most noticeable in multithread applications, where
memory allocation is a common cause of contention and reference count updates must be
serialized.

The design and clarity of application code benefited because the use of shared_ptr
where no actual sharing of ownership takes place would be misleading (and, therefore,
confusing). Replacing shared_ptr with managed_ptr in these cases resulted in more
straightforward easier to understand design.

In addition to destructive copying semantics, our implementation of managed_ptr has a
number of important features that are worth pointing out:

• Since managed_ptr’s constructor does not need to allocate any memory, the
constructor is able to provide a “no throw” guarantee. This guarantee made managed_ptr
a useful tool in the development of exception safe code.

• Our managed_ptr is convertible to and from shared_ptr. Support for these
conversions makes managed_ptr a more flexible and efficient “vocabulary” (interface)
type than shared_ptr. The conversions enable a caller to choose whether or not to
transfer ownership through an interface. If the caller of the interface wishes to transfer
ownership, a managed_ptr is passed and the performance benefits of destructive copy
semantics are realized. If the caller instead chooses to retain ownership, the caller passes
a shared_ptr and can rely on an efficient conversion from shared_ptr to managed_ptr.

• Similar to shared_ptr, managed_ptr supports aliasing. Aliasing occurs when a
managed_ptr is constructed from another managed_ptr and a new object different from
the one pointed to by the original managed_ptr is supplied. This new object is assumed
to have its lifetime linked to that of the original object. When an aliased managed_ptr is
destroyed, instead of destroying the object pointed to by the managed_ptr, the object
managed by the original manage_ptr is destroyed. The motivation for this important

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 14 of 31

feature is similar to the motivation for aliasing of shared_ptr instances (see section
“Shared Pointer Aliasing”).

The implementation of managed_ptr employs a number of techniques similar to those
used by the implementations of auto_ptr, shared_ptr, and tr1::function. Each
managed_ptr object is comprised of four data members:

• The “current” pointer: the pointer to be returned by the get method.

• The “original” pointer: the pointer to the original object to be destroyed when the
managed_ptr itself is destroyed (stored as void*). Note that this pointer may be different
from the “current” pointer due to conversions or aliasing.

• The pointer to the deleter (stored as void*).

• The pointer to a clean-up function that performs deletion using the original object
pointer and the deleter pointer. This function is generated by instantiating a template
function in the managed_ptr’s constructor so that this function is able to embed the
knowledge of the original types of the object pointer and the deleter.

Although the managed_ptr is four words long, our experience shows that moving four
words is significantly faster than the reference count change operation that would be
performed when copying of a shared_ptr. Also the four word footprint of a
managed_ptr instance is, in practice, much smaller than that of a shared_ptr instance.

Support for destructive copy semantics is implemented with the help of an auxiliary class
managed_ptr_ref using a method analogous to that employed by auto_ptr [N1128R1].

The conversion from shared_ptr is implemented by treating the reference count
structure as a special kind of deleter. That is, the reference count structure pointer is
stored in the deleter pointer data member and a suitable clean-up function is generated to
perform the same actions as the shared_ptr’s destructor.

The conversion to shared_ptr is implemented by housing a copy of the original
managed_ptr in the shared_ptr’s reference count structure and invoking the
managed_ptr’s destructor when the reference count (in the reference count structure)
reaches zero. This conversion is supported via a shared_ptr constructor that takes a
reference to a modifiable managed_ptr. Using a modifiable reference rather than a value
in this constructor allows for the strong exception safety guarantee. Though modifiable
references prevent rvalues from being passed to this constructor, once rvalue references
are adopted, an additional constructor taking an explicit rvalue reference can be
introduced to address this issue (see [N1377] for more information on rvalue references).
The decision to pass managed_ptr by reference is consistent with how auto_ptr is
passed to a shared_ptr constructor: auto_ptr is also passed by reference (also to
provide the strong guarantee). For more information on construction of shared_ptr from
auto_ptr see [N1450].

The conversion to shared_ptr from a managed_ptr that itself has been converted from a
shared_ptr is treated as a special case. When this relatively common “reverse”
conversion is performed, instead of constructing a new reference count structure housing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 15 of 31

a copy of the original manged_ptr, the original reference count structure is recovered,
thereby eliminating all runtime overhead.

The following section describes the amendments to the C++ standard for managed_ptr.

Proposed Text

Additions to header <memory> synopsis ([std] 2.4, [tr1] 2.2.1)

template<class T> class managed_ptr;

Class template managed_ptr

Template class managed_ptr stores a pointer to an object and a pointer to an
object’s manager. The manager is responsible for managing the lifetime of the
object. When the managed_ptr is destroyed, reclaim_managed_object function is
invoked with the manager pointer and the object pointer arguments, giving the
manager an opportunity to destroy or, in some other way, reclaim the object
(e.g., return the object into an object pool).

Template class managed_ptr_ref holds a reference to a managed_ptr. The
managed_ptr_ref class is used by the managed_ptr conversions to allow rvalues
of managed_ptr type to be passed to and returned from functions.

namespace std {
namespace tr1 {

template<class T> class managed_ptr {
 template<class Y> struct managed_ptr_ref {};

 public:
 typedef T element_type;

 // constructors
 managed_ptr();
 template<class Y> explicit managed_ptr(Y *p);
 template<class Y, class M> managed_ptr(Y *p, M *m);
 managed_ptr(managed_ptr& r);
 template<class Y> managed_ptr(managed_ptr<Y>& r);
 template<class Y> managed_ptr(auto_ptr<Y>& r);
 template<class Y> managed_ptr(T *p, managed_ptr<Y>& r);

 // destructor
 ~managed_ptr();

 // assignment
 managed_ptr& operator =(managed_ptr& r);
 template<class Y> managed_ptr& operator =(managed_ptr<Y>& r);
 template<class Y> managed_ptr& operator =(auto_ptr<Y>& r);

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 16 of 31

 // modifiers
 void swap(managed_ptr& r);
 void reset();
 template<class Y> void reset(Y *p);
 template<class Y, class M> void reset(Y *p, M *m);
 template<class Y> void reset(T *p, managed_ptr<Y>& r);

 // observers
 T& operator *() const;
 T* operator ->() const;
 T* get() const;

 // conversions
 managed_ptr(managed_ptr_ref<T> r);
 template<class Y> operator managed_ptr_ref<Y>();
 template<class Y> operator managed_ptr<Y>();
};

managed_ptr constructors

managed_ptr();

Effects

Constructs an empty managed_ptr.

Postconditions

get() == 0.

Throws

Nothing

template<class Y> explicit managed_ptr(Y *p);

Requires

P is convertible to T *. Y is complete. The expression delete p shall be well-
formed, shall have well-defined behavior, and shall not throw exceptions.

Effects

Constructs managed_ptr object that owns the pointer p.

Postconditions

get() == p

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 17 of 31

template<class Y, class M> managed_ptr(Y *p, M *m);

Requires

P is convertible to T *. Y is complete. The expression
reclaim_managed_object(m, p) shall be well-formed, shall have well-defined
behavior, and shall not throw exceptions.

Effects

Constructs managed_ptr object that owns the pointer p and the manager m.

Postconditions

get() == p

Throws

Nothing

managed_ptr(managed_ptr& r);

Effects

If r is an empty managed_ptr, constructs an empty managed_ptr. Otherwise,
makes r empty and constructs a managed_ptr that owns the pointer and, if r
owned a manager, the manager that was previously owned by r.

Postconditions

r.get() == 0

Throws

Nothing

template<class Y> managed_ptr(managed_ptr<Y>& r);

Requires

r.get() is convertible to T *.

Effects

If r is an empty managed_ptr, constructs an empty managed_ptr. Otherwise,
makes r empty and constructs a managed_ptr that owns the pointer and, if r
owned a manager, the manager that was previously owned by r.

Postconditions

r.get() == 0

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 18 of 31

template<class Y> managed_ptr(auto_ptr<Y>& r);

Requires

r.get() is convertible to T *.

Effects

If r is empty, constructs an empty managed_ptr. Otherwise, calls
r.release()and constructs a managed_ptr that owns the pointer returned by
release.

Postconditions

r.get() == 0

Throws

Nothing

template<class Y> managed_ptr(managed_ptr<Y>& r, T *p);

Effects

Constructs a managed_ptr object that owns the pointer previously owned by r. r
is made empty.

Postconditions

r.get() == 0 && get() == p

Throws

Nothing

managed_ptr destructor

~managed_ptr();

Effects

No effect if *this is empty. Otherwise, if *this owns a pointer p and a manager
m, reclaim_managed_object(m, p) is called. Otherwise, delete p is called.

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 19 of 31

managed_ptr assignment

managed_ptr& operator =(managed_ptr& r);

Effects

Equivalent to managed_ptr(r).swap(*this).

Throws

Nothing

template<class Y> managed_ptr& operator =(managed_ptr<Y>& r);

Effects

Equivalent to managed_ptr(r).swap(*this).

Throws

Nothing

template<class Y> managed_ptr& operator =(auto_ptr<Y>& r);

Effects

Equivalent to managed_ptr(r).swap(*this).

Throws

Nothing

managed_ptr modifiers

void swap(managed_ptr& r);

Effects

Exchanges contents of *this and r.

Throws

Nothing

void reset();

Effects

Equivalent to managed_ptr().swap(*this).

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 20 of 31

template<class Y> void reset(Y *p);

Effects

Equivalent to managed_ptr(p).swap(*this).

Throws

Nothing

template<class Y, class M> void reset(Y *p, M *m);

Effects

Equivalent to managed_ptr(p, m).swap(*this).

Throws

Nothing

template<class Y> void reset(managed_ptr<Y>& r, T *p);

Effects

Equivalent to managed_ptr(r, p).swap(*this).

Throws

Nothing

managed_ptr observers

T* get() const;

Returns

The stored pointer

Throws

Nothing

T* operator ->() const;

Returns

get()

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 21 of 31

T& operator *() const;

Requires

get() != 0

Returns

*get()

Throws

Nothing

managed_ptr conversions

managed_ptr(managed_ptr_ref<T> r);

Effects

Constructs a managed_ptr object from the reference that r holds.

Throws

Nothing

template<class Y> operator managed_ptr_ref<Y>();

Returns

A managed_ptr_ref<Y> that holds *this.

Throws

Nothing

template<class Y> operator managed_ptr<Y>();

Returns

A managed_ptr<Y> that is constructed from *this.

Effects

Makes *this empty.

Postconditions

get() == 0

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 22 of 31

Additions to shared_ptr constructors ([tr1] 2.2.3.1)

template<class Y> shared_ptr(managed_ptr<Y>& r);

Requires

r.get() is convertible to T *.

Effects

Makes r empty and constructs a shared_ptr that owns the pointer previously
owned by r.

Postconditions

r.get() == 0

Throws

bad_alloc, or an implementation-defined exception when a resource other than
memory could not be obtained.

Exception safety

If an exception is thrown, r is made empty.

Additions to shared_ptr assignment ([tr1] 2.2.3.1)

template<class Y> shared_ptr& operator=(managed_ptr<Y>& r);

Effects

Equivalent to shared_ptr (r).swap(*this).

Additions to shared_ptr observers ([tr1] 2.2.3.5)

template<class Y> operator managed_ptr<Y>() const;

Requires

T * is convertible to Y *.

Returns

If *this is empty, an empty managed_ptr<Y>. Otherwise, an instance of
managed_ptr<Y> that shares ownership with *this.

Postconditions

get() == 0 || use_count() > 1

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 23 of 31

Throws

Nothing

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 24 of 31

Conclusion

In this paper we have proposed several related features. The additional features are
mostly independent and can be considered for inclusion into the standard individually.
We hope that adopting these features will allow the greater C++ community to reap the
benefits we have enjoyed achieving enhanced performance and clearer design on a
variety of projects.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 25 of 31

Appendix A. Performance comparison with boost::shared_ptr

Purpose
In this appendix we compare performance benchmarks of our shared pointer to Boost
shared pointer for threaded builds on Sun and IBM/AIX platforms.

Summary Conclusions
We benchmarked Boost and our smart pointers on three platforms/configurations: (1)
Sun, using malloc, (2) Sun using SmartHeap, and (3) IBM/AIX (with no observed
difference for different allocation mechanisms). The overall results indicate that, when
Boost and our implementation are used in exactly the same way to construct a shared
pointer, there is no significant performance difference on Sun or IBM/AIX. However, our
design is richer, supporting in-place storage (avoiding allocation) and effective use of
pools. When either of these advantages can be exploited, our performance is between two
and 39 times faster, depending on the specific benchmark and the platform. Examples
include in-place payload storage (giving a two-fold improvement on Sun), in-place
payload storage using a non-threaded pool (giving a four-fold improvement on Sun and
AIX), and in-place payload storage using a threaded pool (giving a 39-fold improvement
on AIX).

Benchmark Details
We have run benchmarks comparing the performance of our implementation of shared
pointer and the Boost shared_ptr in several typical operations (e.g., basic
construction), each in a program employing a single thread and a program employing two
threads. In addition, our shared pointer tests were run using no pool, a non-threaded pool,
and a threaded pool.

• Each test was performed in a loop of 5 million iterations.

• Each test was performed on Sun using malloc, on Sun using SmartHeap, and on
IBM/AIX (there was no observed difference between allocation mechanisms on AIX).

• In all multi-threaded cases, two threads were used.

• In all cases, BOOST_SP_USE_QUICK_ALLOCATOR was defined prior to including boost
shared_ptr.h.

• BOOST_SP_ENABLE_DEBUG_HOOKS was not defined for any of the tests.

The following sixteen test functions were run. The names of the test functions serve to
document the test performed. For example, the function
boost_shared_ptr_Basic_ConstructorThreaded uses the Boost shared pointer
to benchmark the basic constructor in a program employing multiple threads.

• boost_shared_ptr_Basic_Constructor

• boost_shared_ptr_Deleter_Constructor

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 26 of 31

• our_shared_ptr_Basic_Constructor

• our_shared_ptr_Deleter_Constructor

• our_shared_ptr_Inplace

• our_shared_ptr_Basic_Constructor_With_Pool

• our_shared_ptr_Inplace_With_ThreadedPool

• our_shared_ptr_Basic_Constructor_With_NonThreadedPool

• our_shared_ptr_Inplace_With_NonThreadedPool

• boost_shared_ptr_Basic_ConstructorThreaded

• our_shared_ptr_Basic_ConstructorThreaded

• our_shared_ptr_Inplace_With_ThreadedPoolThreaded

Section “Graphical Summary” gives a graphical summary of the results on Sun using
SmartHeap, which is the least advantageous for our implementation. Still, our
implementation has clear advantages for all constructor tests that take advantage of in-
place construction and/or pools.

Section “Results” presents the full tabular results, expressed as execution times in
seconds, for the sixteen tests on three platforms/allocation configurations.

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 27 of 31

Graphical Summary
In this section we present the graphical results of the benchmarks discussed in the main
text. In all cases, the results are obtained on Sun using SmartHeap, which is the least
favorable configuration for our implementation with respect to Boost.

Pointer Instantiation, Applications Running a Single Thread

In applications running a single thread, our implementation’s performance is comparable
when not using in-place storage or pools. However, either for in-place storage or when
using pools, performance can be as much as four times better.

our_shared_ptr vs. boost::shared_ptr instantiation (Sun; multi-threaded build/single-
threaded test; SmartHeap)

11.21 11.12 11.28

9.90

4.80

9.58

4.62

7.79

2.78

0

2

4

6

8

10

12

bo
os

t s
ha

re
d_

pt
r

B
as

ic
 C

on
st

ru
ct

or

bo
os

t s
ha

re
d_

pt
r

D
el

et
er

 C
on

st
ru

ct
or

ou
r_

sh
ar

ed
_p

tr
B

as
ic

C
on

st
ru

ct
or

ou
r_

sh
ar

ed
_p

tr
D

el
et

er
 C

on
st

ru
ct

or

ou
r_

sh
ar

ed
_p

tr
In

pl
ac

e

ou
r_

sh
ar

ed
_p

tr
B

as
ic

C
on

st
ru

ct
or

 W
ith

 P
oo

l

ou
r_

sh
ar

ed
_p

tr
In

pl
ac

e
W

ith
Th

re
ad

ed
 P

oo
l

ou
r_

sh
ar

ed
_p

tr_
B

as
ic

C
on

st
ru

ct
or

 W
ith

N
on

-T
hr

ea
de

d
P

oo
l

ou
r_

sh
ar

ed
_p

tr
In

pl
ac

e
W

ith
N

on
Th

re
ad

ed
P

oo
l

Ti
m

e
in

 s
ec

o
nd

s
p

er
 5

 m
il

lio
n

 it
er

at
io

ns

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 28 of 31

Pointer Instantiation, Applications Running Two Threads

In applications running two threads, our implementation performance is comparable
when not using in-place storage or pools. However, for in-place storage and when using
pools, performance is 2.6 times better.

our_shared_ptr vs. boost::shared_ptr instantiation (Sun; multi-threaded build and test;
SmartHeap)

12.31 12.70

4.74

0

2

4

6

8

10

12

14

boost_shared_ptr_Basic
Constructor - Multi-threaded

our_shared_ptr_Basic
Constructor - Multi-threaded

our_shared_ptr_Inplace With
Threaded-pool-threaded

Ti
m

e
in

 s
ec

on
ds

 p
er

 5
 m

ill
io

n
ite

ra
tio

ns

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 29 of 31

Results
In this section we present the full tabulated results of the benchmarks discussed in the
main text.

Test Average Execution Time (sec)

Sun,
malloc

Sun,
SmartHeap AIX

Boost shared_ptr Basic Constructor 9.52 11.212 7.37

Boost shared_ptr Deleter Constructor 9.44 11.116 7.43

Our shared_ptr Basic Constructor 10.18 11.276 4.50

Our shared_ptr Deleter Constructor 9.80 9.897 4.21

Our shared_ptr Inplace 4.87 4.798 4.78

Our shared_ptr Basic Constructor With Pool 8.89 9.579 9.99

Our shared_ptr Inplace With Threaded Pool 4.48 4.623 6.04

Our shared_ptr Basic Constructor With Non-
Threaded Pool 5.63 7.786 5.71

Our shared_ptr Inplace With NonThreadedPool 2.49 2.781 2.02

Boost shared_ptr Basic Constructor – Multi-
threaded 57.96 12.314 321.15

Our shared_ptr Basic Constructor - Multi-threaded 56.71 12.705 199.95

Our shared_ptr Inplace With Threaded-pool-
threaded 4.57 4.745 8.17

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 30 of 31

Appendix B. Example

The following sample code illustrates both the motivation for and the use of the proposed
features. While this small example is deliberately constructed to employ all of the
features, it is, in our experience, a realistic demonstration of how these features interact.

class HighPerformanceThreadSafeAllocator;
class WorkItem;

class AsynchProcessor {
 void processWorkItem(managed_ptr<const WorkItem> workItem);
 // Process work item in a separate thread.
 // Note use of the managed_ptr in the
 // interface: AsynchProcessor requires
 // ownership of the item but does not make
 // any assumptions about sharing this
 // ownership with the caller.

};

HighPerformanceThreadSafeAllocator alloc;
AsynchProcessor processor

// performance critical item processing loop
while (keepGoing)
{
 shared_ptr<vector<WorkItem> > itemsPtr;
 // must be std::vector<WorkItem>
 // for performance and
 // "wire format compatibility"

 itemsPtr =
 make_shared_object_with_alloc< vector<WorkItem> >(alloc);
 // housing a vector in the shared_ptr
 // while also using the allocator to
 // optimize memory allocation
 // performance

 int numWorkItems;
 workStream >> numWorkItems;
 itemsPtr->reserve(numWorkItems);
 ReadWorkItems(workStream, *itemsPtr, numWorkItems);

 for (vector<WorkItem>::iterator i = itemsPtr->begin();
 i!=itemsPtr->end(); ++i)
 {
 shared_ptr<WorkItem> item(itemsPtr, &*i); // aliasing
 processor.processWorkItem(item); // share to managed conversion
 }
 // The vector held by itemsPtr is destroyed and deallocated when
 // when the last WorkItem has been processed asynchronously (and,
 // possibly, out of order).
}

Vladimir Kliatchko Improving Usability and Performance of TR1 Smart Pointers, N1851=05-0111
Ilougino Rocha

August 25, 2005 Page 31 of 31

References

[N1128R1] Bill Gibbons, Greg Colvin, Fixing auto_ptr, C++ committee document
J16/97-0090R1= WG21/N1128R1, November 1997

[N1377] Howard E. Hinnant, Peter Dimov, Dave Abrahams, A Proposal to Add Move
Semantics Support to the C++ Language, C++ committee document N1377=02-0035,
September 2002

[N1450] Peter Dimov, Beman Dawes, Greg Colvin, A Proposal to Add General Purpose
Smart Pointers to the Library Technical Report, C++ committee document N1450=03-
0033, 2003

[N1809] Library Extension Technical Report – Issues List, Revision 9: post-Lillehammer
mailing, C++ committee document N1809=05-0069, April 2005

