
Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 1 of 24

JTC1/SC22/WG21 N1850=05-0110
2005-08-25

Towards a Better Allocator Model
Pablo Halpern <phalpern@halpernwightsoftware.com>

ABSTRACT

In drafting the 1998 ISO C++ language standard, the standards committee did not
consider, or did not consider important, that the allocator type parameter used to
instantiate a container template affects the container’s type, thereby making it
incompatible with containers employing a different allocation policy, but which
otherwise have identical type. In our work, we have found it desirable, and often
necessary, to customize the memory allocation for our containers and strings on a
per-instance basis, without affecting the compile-time type of those containers or
strings. Proper control over memory also required that objects within a container
share an allocator with the container itself. Using an existing implementation of the
C++ standard library as a base, we made backward-compatible modifications to
enable such per-instance allocators. Our experience is that, once implemented,
these modifications allowed us to use allocators in a wide range of situations to
facilitate testing, efficient memory utilization, and even the prevention of memory
leaks. This paper describes our allocator model and proposes changes to the
upcoming revision of the standard library based on our experience.

Copyright and Disclaimer

© 2005 Bloomberg L.P. Permission is granted to copy, distribute, and display this paper, and to make
derivative works and commercial use of it. The information in this paper is provided “AS IS”, without
warranty of any kind. Neither Bloomberg nor any employee guarantees the correctness or completeness of
such information. Bloomberg, its employees, and its affiliated entities and persons shall not be liable, directly
or indirectly, in any way, for any inaccuracies, errors or omissions in such information. Nothing herein
should be interpreted as stating the opinions, policies, recommendations, or positions of Bloomberg.

Table of Contents

1 INTRODUCTION.. 2
1.1 HISTORY .. 2
1.2 TERMINOLOGY .. 3

2 THE LAKOS ALLOCATOR MODEL ... 3
2.1 THE BDE::ALLOCATOR CLASS HIERARCHY ... 3
2.2 PER-INSTANCE ALLOCATORS ... 4
2.3 CONTAINED-ELEMENT ALLOCATORS .. 5
2.4 ALLOCATORS AS AN EXTENSION OF STORAGE CLASS .. 6

3 THE 1998 STANDARD ALLOCATOR MODEL .. 7
3.1 ALLOCATOR CLASS TEMPLATES .. 7
3.2 REBIND .. 8

4 DIFFICULTIES WITH THE 1998 STANDARD ALLOCATOR MODEL... 8

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 2 of 24

4.1 THE INCOMPLETE STANDARD... 8
4.2 MEMORY MODELS .. 9
4.3 TEMPLATE IMPLEMENTATION POLICY ... 9
4.4 WHO’S GOT MY ALLOCATOR?... 11

5 THE BEST OF BOTH WORLDS ... 13
5.1 MERGING THE ALLOCATOR MODELS ... 13

5.1.1 Wrapping bde::Allocator.. 13
5.1.2 Modified Copy-Constructor Semantics .. 13
5.1.3 Container and Contained Elements Using the Same Allocator.. 14

5.2 MOVE-SEMANTIC OPERATIONS.. 15
5.2.1 Copying Values vs. Moving Objects... 15
5.2.2 Swap ... 15
5.2.3 Elided Copy Constructors... 17
5.2.4 Rvalue References ... 18

5.3 REAPING THE BENEFITS .. 18
6 FORMAL PROPOSAL... 19

7 CONCLUSION ... 23

8 BIBLIOGRAPHY .. 23

1 Introduction

1.1 History

Before the STL portion of the C++ Standard Library was adopted by our organization, we began
creating our own assortment of containers. Like the STL containers, our containers could be fitted
with allocators to customize their use of memory. At the most conceptual level, an allocator is an
object that supplies raw memory for use by other objects, especially containers. The specifics of our
container/design scheme, however, were different from STL’s design in a number of important
ways, as described in the succeeding sections of this paper.

As we moved to more modern compilers that were capable of handling the demands of STL
templates, we decided to migrate away from our proprietary containers and towards STL in order to
improve interoperability with other software libraries and avoid maintaining a redundant set of
classes. In the process of migrating, we discovered that we were unable to cleanly adapt our use of
allocators to the standard allocator scheme. In particular, we needed to be able to customize
memory allocation for a specific instance of a container or string without affecting the type of that
container or string (through an allocator template parameter). Our allocator semantics were simply
more powerful and flexible than the standard’s and were based on theoretical principles that we
believed to be more cohesive.

We seriously considered abandoning STL containers in order to retain the benefits of our allocator
design, but the benefits of interoperability and standard-compliance were too great to give up. In
the end, we decided to extend an existing implementation of the C++ Standard Library so that it
would support both the standard allocator semantics and our allocator semantics. Having
successfully accomplished this marriage and reaping the benefits, we believe that our extensions
deserve serious consideration for adoption into the next C++ standard.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 3 of 24

1.2 Terminology

Templates introduce a meta level into the C++ language. That is, they don’t describe run-time
constructs but rather describe classes and functions, which, in turn, describe run-time constructs. As
with all discussions of meta concepts, the terminology can get confusing. In this paper, I am
concerned mostly with containers and allocators. Yet the term, container is ambiguous; it might
refer to a class template, a specific instantiation of a class template, or an object created from such
an instantiation. I will attempt to avoid confusion by using the terms container template, container
instantiation, or container object whenever an ambiguity may arise. Similarly, I use the terms
allocator template, allocator instantiation, or allocator object whenever allocator alone might be
ambiguous. For example, in the following definition:

std::vector<int> v;
I will refer to the parts as follows:

std::vector is a container template,
std::vector<int> is a container ins tantiation, an d
v is a container ob j ect.

The standard introduces a second level of meta-concept in the form of requirements. Requirements
specify the interface for a family of templates, which can be used to create an unbounded set of
instantiations, which in turn can be used to construct an unbounded set of objects.

I use the term STL to refer to the containers and allocators section of the C++ Standard Library –
those portions that have their origins in the Standard Template Library created by Alexander
Stepanov et al. [Stepanov95]. Although character strings were not originally part of the STL, I
include them when I talk about STL because they share the qualities of STL containers.

2 The Lakos Allocator Model

The allocators and containers described in this section form part of a project known as BDE (Basic
Development Environment) at Bloomberg LP. The allocator model presented here was brought to
my attention by fellow Bloomberg employee John Lakos. Most of the work of unifying his allocator
model with the STL allocator model was performed by me at Bloomberg, and will be described
later in this paper.

2.1 The bde::Allocator Class Hierarchy

If you are already very familiar with the STL approach to allocators, I ask you to set that knowledge
aside for a moment as I discuss the way BDE allocators work. An allocator type in BDE is a class
derived from the bde::Al l ocator abstract base class, which has the following interface:

cl ass bde::Al l ocator {
 p u bl ic:
 virtu al void* al l ocate(siz e_ t by tes) = 0 ; virtu al void deal l ocate(void* p tr) = 0 ;
 virtu al ~ Al l ocator();
};

This allocator interface is similar to those defined by a number of different companies in the pre-
STL days and even today (for example, in the Xerces XML parser).

BDE supplies a number of allocator classes for various purposes:

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 4 of 24

New/delete allocator Allocates memory using op erator new and frees it using
op erator del ete.

Shared-memory allocator Allocates memory from a shared memory region.

Limit allocator Keeps track of the number of bytes that have been allocated
from the allocator. Throws an exception if too much memory is
used. Useful for preventing denial-of-service attacks that would
otherwise cause excessive memory consumption.

Buffer Allocator Allocates memory from a fixed-sized buffer provided at
construction.

Arena Allocator Very fast allocator in which allocate simply increments a
pointer within a large, contiguous block of memory and in
which deallocate is a no-op. This allocator saves time by
avoiding the bookkeeping needed to free individually-allocated
blocks of memory. The allocator’s destructor releases one or
more large blocks of memory to the heap all at once.

Test Allocator Keeps track of allocated bytes and blocks. Checks for memory
leaks. Can be configured to throw an exception on the nth
allocation attempt. Useful in unit-test drivers to compare actual
memory use against expected memory use and to test exception
safety of components that allocate memory.

Some of these allocator types can be chained together so that, for example, a limit allocator can
manage memory provided by a shared-memory allocator.

2.2 Per-instance Allocators

Every constructor declared in each container class template takes an optional allocator pointer
argument. For example, the bde::Array template, which is roughly equivalent to std::vector,
has constructors declared like this:

tem p l ate <ty p enam e T>
cl ass bde::Array {
 p u bl ic: Array (bde::Al l ocator* al l ocator = 0);
 Array (const Array & rh s, bde::Al l ocator* al l ocator = 0);
 / / . . . };

The container obtains the memory it needs for its internal data structures by calling the allocator’s
al l ocate function and releases it when it is done by calling the allocator’s deal l ocate function.
The default arguments allow the first constructor to be recognized as the default constructor and the
second constructor to be recognized as the copy constructor. If no allocator pointer is passed to the
constructor, the container uses the default allocator, which is the instance of the new/delete allocator
returned by a static singleton function.

With the exception of the new/delete allocator, all of the allocators listed above contain state
information that differs from instance to instance. This means, for example, that two buffer

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 5 of 24

allocator instances will manage memory from two different buffers. The BDE allocator mechanism
was designed to support per-instance allocators, whereby two container objects of the same type
can get their memory from different sources.

The allocator pointer, which is held (but not owned) by each container (or string), is an
implementation mechanism and is not part of the container’s value. Concretely, the allocator
pointers’ not being part of the value means that they are not tested as part of the container’s
operator==, nor copied in its copy constructor or assignment operator. This clean separation
between a container’s value and its allocation mechanism is key to effective use of allocators in
practice.

2.3 Contained-Element Allocators

A container will often contain other containers. One can have, for example, a vector of vectors,
or a set of string s (a string having all of the qualities of a container of ch ar). In general, we want
all of the parts of such compound containers to get their memory from a common source. Thus, a
critical feature of the Lakos allocator model is the automatic use of a container’s allocator to
construct its contained elements. When an object is inserted into a container, the address of the
container’s allocator is passed as a second argument to the object’s copy constructor (see
bde::Array example, previously). A bde::Array of bde::S tring (think vector of string) can
be visualized as in Figure 1.

Figure 1: A container and its contained objects use the same allocator

Container

allocator

Container uses
allocator to allocate
its internal data
structure

Allocator-managed memory

Allocator
manages memory

Strings also
allocate memory

Internal data
structure holds
strings

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 6 of 24

The challenge of this approach is that the container template must be able, at compile time, to
determine whether it is being instantiated with an element type that uses allocators. For example, a
bde::Array <int> cannot pass its allocator to the int constructor, whereas
bde::Array <bde::S tring > must pass its allocator to the bde::S tring constructor. In order to
give the container knowledge of its contained element type, we introduced a trait, similar in concept
to Boost traits [Maddock01] and TR1 traits [TR1]. The new trait is called
bde::U sesB deAl l ocator and applies to each class that takes an (optional) BDE-style allocator
pointer argument for both its default and copy constructors. Container types take advantage of
generic algorithms, which work differently depending on whether their argument does or does not
have this trait. For example, code to insert a new element into a container looks something like this:

tem p l ate <ty p enam e T> void bde::Array ::ap p end(const T& val u e) { / / . . .
 T* new E l em ent = el em ents + l eng th ();
 cop y C onstru ct(new E l em ent, val u e, g etAl l ocator()); }

The cop y C onstru ct algorithm is declared as follows:
tem p l ate <ty p enam e T>
void cop y C onstru ct(T* p , const T& orig , bde::Al l ocator* al l oc);

If type T has the bde::U sesB deAl l ocator trait, then this function’s implementation resolves to:
new (p) T(orig , al l oc);

Otherwise, it resolves to:
new (p) T(orig);

A def au l tC onstru ct function template works the same way, except without the orig argument.
The use of traits classes to selectively instantiate different algorithm implementations is covered in
depth in [Alexandrescu01].

2.4 Allocators as an Extension of Storage Class

When the C language was standardized in 1989, the standardization committee was careful to
distinguish the concept of storage duration (static, automatic, and dynamically-allocated) from the
concept of type qualifier (const and vol atil e). Although both concepts may be part of an object’s
definition (storage duration is sometimes explicitly specified via an ex tern, static, or au to
storage class specifier), a type qualifier alters the type of an object, whereas its storage duration
does not. There is no need to think twice before initializing an automatic object with the value of a
static object of the same type. There is no concern that objects might not be compatible because
they have different storage duration, nor is there a concern that the local copy of the object becomes
static simply because it was initialized from a static value.

A general principle that has emerged from our examination of allocators is that an allocator should
be more like a storage class than like a type qualifier. Specifically, the following principles hold for
Lakos-model allocators:

1. An object’s allocator (as supplied to its constructor) does not change during that
object’s lifetime.

2. The allocator supplied to an object does not affect that object’s type.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 7 of 24

3. Allocators are not transferred implicitly on copy-construction. Instead, an allocator can
be supplied explicitly to the copy. The copy uses the default (new/delete) allocator if one is
not supplied.

4. Containers supply their own allocator to the objects they contain. This principle
provides a clean semantic and is analogous to the C precept that array elements have the
same storage class as the array itself.

The overall allocator system used in BDE is consistent. The allocator is neither part of the type nor
part of the value of a container or string. The resulting system has proven itself in practice to be
extremely easy to use and to extend.

3 The 1998 Standard Allocator Model

3.1 Allocator Class Templates

The allocator model described in the C++ Standard is very different from the one I have just
described. All of the container templates described in the standard library have an optional template
parameter for specifying an optional allocator type. For example, the l ist class template is
declared like this:

tem p l ate <ty p enam e T, ty p enam e Al l oc = std::al l ocator<T> > cl ass l ist;
The standard sets forth allocator requirements and container requirements that describe minimal
interfaces for allocator templates and container templates. The standard also provides a specific
allocator template (std::al l ocator<T>), and a number of container templates
(std::vector<T, Al l oc>, std::set<T, C om p , Al l oc>, etc.) A programmer may supply his/her
own allocator template for use with the standard containers, provided it adheres to the allocator
requirements. Similarly, a programmer may create additional container templates that adhere to the
container requirements.

If we wish to control the way in which l ist uses memory, we can create our own allocator template
that meets the requirements set in the Standard:

tem p l ate <ty p enam e TY P E > cl ass M y Al l ocator
{ p u bl ic:
 ty p edef TY P E val u e_ ty p e;
 ty p edef TY P E * p ointer; ty p edef const TY P E * const_ p ointer;
 ty p edef TY P E & ref erence;
 ty p edef const TY P E & const_ ref erence; ty p edef std::siz e_ t siz e_ ty p e;
 ty p edef std::p trdif f _ t dif f erence_ ty p e;
 tem p l ate <ty p enam e U > cl ass rebind
 {
 ty p edef M y Al l ocator<U > oth er; };

 M y Al l ocator(); tem p l ate <ty p enam e U >
 M y Al l ocator(const M y Al l ocator<U >& y);
 ~ M y Al l ocator();

 p ointer address(ref erence x) const { retu rn & x ; }

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 8 of 24

 const_ p ointer address(const_ ref erence x) const { retu rn & x ; } TY P E * al l ocate(siz e_ ty p e n, const void* h int = 0);
 void deal l ocate(TY P E * p , siz e_ ty p e n);
 siz e_ ty p e m ax _ siz e() const;
 void constru ct(p ointer p ,
 const TY P E & t) const { new ((void*) p) TY P E (t); } void destroy (p ointer p) const { p ->~ TY P E (); }
}; tem p l ate <ty p enam e T1 , ty p enam e T2 >
bool op erator= = (const M y Al l ocator<T1 >& a1 , const M y Al l ocator<T2 >& a2);
tem p l ate <ty p enam e T1 , ty p enam e T2 > bool op erator! = (const M y Al l ocator<T1 >& a1 , const M y Al l ocator<T2 >& a2);

Although M y Al l ocator is not part of the standard, anybody intending to write a standard-compliant
allocator would do well to copy it, change its name, and implement those member functions whose
implementation is not already provided. The core of each allocator template – the thing that makes
it different from other allocator templates – is the al l ocate and deal l ocate functions. The
al l ocate and deal l ocate functions manage raw memory and do not call TY P E ’s constructor or
destructor. Even so, the n argument to both f u nctions is a count of objects being managed, not
the number of bytes. Instantiating l ist as std::l ist<int, M y Al l ocator<int> > will cause
l ist to use the custom allocator mechanism instead of the default one.

3.2 Rebind

Let me draw your attention to the rebind class and to the templated constructor in M y Al l ocator.
Most containers, with the possible exception of vector and deq u e, do not directly use the allocator
with which they are instantiated. The l ist template, for example, will typically be implemented as
a linked list of nodes, where each node is an instantiation of a template class that looks something
like this:

tem p l ate <ty p enam e T> stru ct L istN ode {
 L istN ode* p rev; L istN ode* nex t; T data;
};

A l ist of ints would not need to allocate objects of type int but rather L istN ode<int>.
Unfortunately, within our l ist instantiation, the name Al l oc is bound to M y Al l ocator<int> and
cannot be used directly to allocate L istN ode<int> objects. That is where rebind comes in. The
type, ty p enam e Al l oc::tem p l ate rebind<L istN ode<T> >::oth er, will resolve to
M y Al l ocator<L istN ode<T> >, which is exactly what is needed within l ist. The templated
constructor of M y Al l ocator lets us construct a M y Al l ocator<L istN ode<T> > object from a
M y Al l ocator<int> object. This clever trick has some interesting consequences, as we will see
later.

4 Difficulties with the 1998 Standard Allocator Model

4.1 The Incomplete Standard

According to the standard, two allocator objects of the same type may compare equal only if
memory allocated using one can be de-allocated using the other. Section 20.1.5, paragraph 4 of the
1998 standard states that an implementation may assume that all instances of a given allocator type

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 9 of 24

compare equal and are therefore interchangeable. (I refer to this as the equal-allocator assumption.)
The constant-time, semantics of sw ap and l ist::sp l ice pose a particular problem when allocators
have state and can compare unequal [Issue431]. A conforming program must assume that any
memory allocated with one allocator might be de-allocated using a different allocator of the same
type, making per-instance allocators effectively useless except perhaps as performance hints. By
including a normative note encouraging implementations to specify reasonable behavior in the
presence of unequal (per-instance) allocators, the members of the standards committee, to their
credit, effectively admitted that the allocator model was incomplete. Also to their credit, they chose
not to delay the standard while waiting for a more complete proposal.

At the time that the equal-allocator assumption was added to the 1998 standard, it was almost
certain that it would be removed in the next revision of the standard. In fact, even the 1998 standard
describes attributes of allocators (such as the meaning of op erator= = and the behavior of copying a
container) that have meaning only in the absence of the equal-allocator assumption. For the
remainder of this paper, I will take for granted that the equal-allocator assumption will be removed,
resulting in an allocator model does allow per-instance allocators, but with significant deficiencies,
as described in the next few sections.

4.2 Memory Models

Memory allocators were originally added into the Standard Template Library for the purpose of
supporting Intel x86 mixed-model (near and far) pointers and other non-flat memory models
[LoRusso01]. The theory was that memory could be allocated from either the local data segment,
producing a “near pointer”, or from a different memory segment, producing a “far pointer”. The
pointer type declared within the allocator would allow the container to use the results
appropriately. In practice, however, std::allocator<T>::pointer cannot be other than
T*, and this realization was codified in the standard itself (section 20.1.5, table 32). Most
compilers targeted for the Intel architecture have moved on to the flat memory model anyway.

4.3 Template Implementation Policy

The first problem most people see with the allocator mechanism as specified in the Standard is that
the choice of allocator affects the type of a container. Consider, for example, the following type
and object definitions:

ty p edef std::l ist<int, std::al l ocator<int> > N orm I ntL ist;
ty p edef std::l ist<int, M y Al l ocator<int> > M y I ntL ist;
N orm I ntL ist l ist1 (5 , 3);
M y I ntL ist l ist2 (5 , 3);

l ist1 and l ist2 are both lists of integers, and both contain five copies of the number 3. Most
people would say that they have the same value. Yet they belong to different types and you cannot
substitute one for the other. For example, assume we have a function that builds up a list:

int bu il d(std::l ist<int>& th eL ist);
Because we did not specify an allocator parameter for the argument type, the default,
std::al l ocator<int> is used. Thus, th eL ist is a reference to the same type as l ist1 . We can
use bu il d to put values into l ist1 , but we cannot use it to put values into l ist2 because
M y I ntL ist is not compatible with std::l ist<int>. The following operations are also not
supported:

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 10 of 24

l ist1 = = l ist2 l ist1 = l ist2 M y I ntL ist l ist3 (l ist1);
N orm I ntL ist* p = & l ist2 ;
/ / etc.

Now, some would argue that the solution to the build function problem is to templatize bu il d:
tem p l ate <ty p enam e Al l oc>
int bu il d(std::l ist<int, Al l oc>& th eL ist);

or, better yet:
tem p l ate <ty p enam e O u tp u tI terator>
int bu il d(O u tp u tI terator th eI ter);

Both of these templatized solutions have their place, but both add substantial complexity to the
development process. Templates, if overused, lead to long compile times and, sometimes, bloated
code. If bu il d were a template and passed its arguments on to other functions, those functions
would also need to be templates. This chained instantiation of templates produces a deep compile-
time dependency such that a change to any of those modules would result in a recompilation of a
significant part of the system. For thorough coverage of the benefits of reducing physical
dependencies, see [Lakos96].

Even if the templatization solution were acceptable, once a nested container (e.g. a list of strings) is
involved, even the simplest operations require many layers of code to bridge the type-
interoperablity gap. Consider trying to compare a shared list of shared strings with a regular list of
regular strings:

ty p edef std::basic_ string < ch ar,
 std::ch ar_ traits<ch ar>,
 sh ared_ al l oc<ch ar> > sh ared_ string ;
 std::l ist<sh ared_ string , sh ared_ al l oc<sh ared_ string > > S h aredL ist; std::l ist<std::string > TestL ist;

Not only will op erator= = fail to compile, but employing iterators and standard algorithms will not
work either:

bool sam e = std::rang e_ eq u al (S h aredL ist. beg in(), S h aredL ist. end(), TestL ist. beg in(), TestL ist. end());

The types to which the iterators refer are not equality-compatible (std::string vs.
sh ared_ string). The interoperability barrier caused by the use of template implementation policies
impedes the straightforward use of vocabulary types – ubiquitous types used throughout the internal
interfaces of a program. For example, to declare a string, s using M y Al l ocator we would need to
write

std::basic_ string <ch ar, std::ch ar_ traits<ch ar>, M y Al l ocator<ch ar> > s;
Many people find this hard to read, but the more important fact is that s is not an std::string
object and cannot be used wherever std::string is expected. Similar problems exist for other
common types like std::vector<int>. The use of a well-defined set of vocabulary types like
string and vector lends simplicity and clarity to a piece of code. Unfortunately, their use hinders
the effective use of STL-style allocators and vice-versa.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 11 of 24

Finally, template code is much harder to test than non-template code. Templates do not produce
executable machine code until instantiated. Since there are an unbounded number of possible
instantiations for any given template, the number of test cases needed to ensure that every path is
covered can grow by an order of magnitude for each template parameter. Subtle assumptions that
the template writer makes about the template’s parameters may not become apparent until someone
instantiates the template with an innocent-looking, but not-quite-compatible parameter, long after
the engineer who created the template has left the project.

Template implementation policies can be very useful when constructing mechanisms, as in the case
of a function object (functor) type being used to specify an implementation policy for a standard
algorithm template. Alexandrescu makes a compelling case for the use of template class policies in
situations where instantiations are not expected to interoperate. However, template implementation
policies are detrimental when used to control the memory allocation mechanisms of basic types that
could otherwise interoperate.

4.4 Who’s Got My Allocator?

When an allocator object is copied, the new object presumably compares equal to the original and
thus must refer to the same memory resource as the original. The rebind template described earlier
strengthens this requirement. Sometimes a single container will need to allocate memory for more
than one object type. Rather than keep multiple allocators around, the container will typically keep
one allocator member and rebind it each time a different allocator type is needed. For example, a
deq u e<T> will typically need to allocate arrays of T and an array of pointer-to-T. If it has a
member, al l oc, of type M y Al l oc<T>, then it may use the following statement to allocate an array
of pointers:

ty p enam e M y Al l oc::tem p l ate rebind<T* >::oth er p trAl l oc(al l oc);
p trArray = p trAl l oc. al l ocate(n);

The first line creates a pointer allocator from the non-pointer allocator. The second line actually
allocates the array. Presumably, p trAl l oc is a local variable that will go out of scope as soon the
block exits. However, the memory allocated in the second statement needs to be freed eventually,
say, using a similar sequence in the destructor:

ty p enam e M y Al l oc::tem p l ate rebind<T* >::oth er p trAl l oc(al l oc);
p trAl l oc. deal l ocate(p trArray);

In order for this allocation strategy to work, p trAl l oc must access the same memory resource in
both code fragments. Thus, we must be able to assume that constructing one allocator from another
produces the same results every time. If the allocator has per-instance state, then it would most
likely be implemented as a small class containing a single pointer to some data structure that is
shared across all allocator objects that are direct or indirect copies of one another. Thus, when
considering the impact of per-instance allocators, it is useful to think of each allocator object as if it
were a pointer.

In section 32.1 (container requirements) the 1998 standard says that two container objects, c1 and
c2 , of the same type, T, compare equal if the following expression returns tru e:

c1 . siz e() = = c2 . siz e() & & std::eq u al (c1 . beg in(), c1 . end(), c2 . beg in())
Notice that the allocator used to construct c1 and c2 is not mentioned. The allocator is, by
implication, an implementation detail and is not part of each container’s value. This is entirely
reasonable, but the standard is not consistent on this point. Although the assignment operation,

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 12 of 24

c1 = c2 ;
does not copy c2 ’s allocator to c1 , the copy constructor,

T c3 (c2);
does copy c2 ’s allocator to c3 ! This inconsistency plays havoc with the programmer’s choice of
allocator instance.

Consider the process of inserting elements into a vector of integer vectors. The inner vector type
uses a per-instance custom allocator, which is constructed using an enumerated value. Let’s start by
creating two such allocators and two integer vectors:

C u stom Al l oc<int> al l oc1 (S Y S TE M _ M E M);
C u stom Al l oc<int> al l oc2 (L O C AL _ M E M);
 ty p edef std::vector<int, C u stom Al l oc<int> > I ntV ecTy p e;

I ntV ecTy p e v1 (al l oc1); I ntV ecTy p e v2 (al l oc2);

Our first insertion into an empty vector of vectors is predictable:
std::vector<I ntV ecTy p e> vv;
vv. p u sh _ back (v1);

The p u sh _ back operation will copy construct vv[0] from v1 causing vv[0] to use the same
allocator as v1 (i.e. al l oc1), which by itself can be problematic. The al l oc1 object may be holding
on to resources that you want to release, but you cannot release them until vv goes out of scope. If
vv[0] is copied again, you can easily lose control over where the allocator is being used. The
problem is made worse if we use an insert operation:

vv. insert(vv. beg in(), v2);
The new first element, vv[0] , is a copy of v2 , but what allocator does it use? The answer is not
specified by the standard. Depending on the capacity of vv at the time of insert, the state of vv[0]
may have been set by either copy construction or by assignment and may thus use a copy of al l oc2
or of al l oc1 . We have lost control of our allocators and defeated the whole point of using
allocators in the first place: to maintain explicit control over memory.

Some people see allocators as a way to improve the efficiency of memory management within their
program and believe that per-instance allocators are not needed for this purpose. The theory is that,
by selecting an allocator type that is tuned to the type objects being allocated, substantial
performance improvements can be realized. Studies [Berger02] and personal experience have
shown, however, that such per-class allocators produce little gain in performance over state-of-the
art general-purpose allocators. The Berger study shows that consistent performance benefits are
seen only when using region (or arena) allocators – allocators that use memory from within one or
more large regions that allow all of the memory to be freed at once. Our own experience with large
multi-threaded applications showed that thread-specific allocators can also provide dramatic
performance benefits by reducing contention on the common heap (although not all multithreaded
allocators have contention problems). Both arena allocators and thread-specific allocators rely on
our ability to control what objects use the allocator and our ability to be able to determine reliably
when an allocator is no longer in use. Because the standard allocator model does not give us
sufficient control over per-instance allocators and because global allocators have limited utility,
there seems to be little benefit to using allocators according to the standard model.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 13 of 24

5 The Best of Both Worlds

5.1 Merging the Allocator Models

Our experience with BDE shows that per-instance allocators are much more useful than per-type
allocators. The effort that has gone into solving issue 431 indicates that we are not the only ones
who want to be able to use per-instance allocators. The challenge before us was to find a way to
extend the STL allocator mechanism to support BDE-style allocation semantics while retaining
compatibility with existing standard-compliant code. For our starting point, we chose an existing
implementation of the C++ Standard Library with good compliance with the standard and excellent
portability to all of our platforms. We then went about making changes to the library in such a way
that it remained compliant with the 1998 standard, but also supported the Lakos allocator model.

5.1.1 Wrapping bde::Al l ocator

The obvious first step in bringing the STL and BDE allocator worlds together was to create an STL
allocator template that was implemented as a simple wrapper around a bde::Al l ocator pointer.
We debated whether to modify std::al l ocator or to create an entirely separate allocator template.
In the end, the need for vocabulary types like string and vector<int> as well as our desire for the
new allocator to interoperate with existing third-party libraries convinced us that modifying the
implementation of std::al l ocator and retaining the type name was the preferred approach.

The resulting std::al l ocator template looks like the M y Al l ocator template described above. Its
default constructor has the following signature:

al l ocator(bde::Al l ocator * baseAl l ocator = 0);
Note that this constructor acts as a conversion operator, automatically converting a
bde::Al l ocator pointer to a std::al l ocator object. The bde::Al l ocator pointer is stored in a
member variable and the standard al l ocate and deal l ocate functions are implemented as simple
pass-through calls to the corresponding (virtual) functions in bde::Al l ocator. If no pointer is
specified, the constructor obtains a pointer to the new/delete allocator singleton, thus making the
behavior identical to the standard behavior for code that is unaware of this change.

5.1.2 Modified Copy-Constructor Semantics

Because our modified al l ocator template now carries state, we must concern ourselves with the
semantics of container copying. As described previously, the copy construction of a container
should not cause the allocator to be copied, but we want control over the new container’s allocator.
We accomplish this objective by defining two constructors that can be used to copy each container
(example is for std::vector.):

vector(const vector& orig inal , const al l ocator_ ty p e& al l oc); vector(const vector& orig inal);
The first constructor allows the caller to set the allocator explicitly. The second constructor uses
al l ocator_ ty p e(), i.e., the default value of the allocator. Neither constructor copies the allocator
from orig inal . Unfortunately, this modification is technically incompatible with existing code that
uses STL-style allocators. We remedied this incompatibility by specializing the second constructor
such that orig inal . g et_ al l ocator() is copied (as per the 1998 standard) for any old-style (non-

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 14 of 24

BDE) allocators. (See the proposal section for details on the traits-based declarations that make this
compile-time selection of behaviors possible.)

Note that our modified std::al l ocator is considered a BDE-style allocator and thus triggers the
new copy semantics. For existing (third-party) code that is ignorant of this enhancement, the
behavior will not appear to have changed, since such code would never explicitly pass an allocator
object to a container that uses std::al l ocator and would therefore always get the default
op erator new /op erator del ete behavior. Such code can also manipulate a container through a
pointer or reference, oblivious to whether or not the container is using the default allocator:

void u intToS tring (std::string * s, u nsig ned i); / / existing 3rd party function
ch ar bu f f er[2 0 0] ; / / Short-term memory for string
bde::B u f f erAl l ocator al l oc(bu f f er);
std::string s(& al l oc); / / string will allocate memory from bu f f er
u intToS tring (& s, 1 5); / / u intToS tring doesn’t care that s has a non-default allocator

In the example above, string s has allocator type std::al l ocator<ch ar>. However, there is an
automatic conversion from bde::Al l ocator* to std::al l ocator<T>, so the initialization of s is
equivalent to

std::string s(std::al l ocator<ch ar>(& al l oc));
In this way, we are able to supply, at construction time, a BDE-style allocator for any string or
container that was instantiated with the default allocator. The compile-time type of the string or
container is unaffected.

5.1.3 Container and Contained Elements Using the Same Allocator

We then set about changing the containers so that they share their allocators with their contained
elements using the same type traits system described previously. The new semantic was applied
only if both the container and the contained elements were instantiated using the same new style
allocator. For most container types, this transformation involved modifying only a few points in the
logic where the item’s copy constructor was being used. However, because of the way the library
was originally written, we had to completely rewrite vector and deq u e in order to get this piece of
functionality.

Ideally, any user-defined class that needs to allocate memory (directly or via a container member)
should use an allocator. We made it a habit to put an optional bde::Al l ocator* argument at the
end of the constructor arguments (including the copy constructor arguments) of any class that
allocates memory. This constructor argument can be used to initialize the allocator for any STL
container member. For example, a C al endar class might be declared like this:

cl ass C al endar {
 p rivate: std::vector<std::tim e_ t> h ol iday s; / / . . .
 p u bl ic: / / D ef au l t constru ctor:
 ex p l icit C al endar(bde::Al l ocator* basicAl l ocator = 0);
 / / C op y constru ctor:
 C al endar(const C al endar& oth er,
 bde::Al l ocator* basicAl l ocator = 0); / / Anoth er constru ctor
 C al endar(std::tim e_ t startD ate, std::tim e_ t endD ate, bde::Al l ocator* basicAl l ocator = 0);

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 15 of 24

};
The default constructor would pass the allocator through to its container member(s):

C al endar::C al endar(bde::Al l ocator* basicAl l ocator) : h ol iday s(basicAl l ocator) {
 / / . . .
}

This logic is the same for the other constructors. We take advantage of the automatic conversion
from bde::Al l ocator* to std::al l ocator<siz e_ t> and the fact that this conversion
automatically uses the new/delete allocator if it is passed a null pointer.

5.2 Move-Semantic Operations

5.2.1 Copying Values vs. Moving Objects

We say that a type has value semantics if it has a well-defined notion of value, typically defined
operationally by op erator= = , that is copied by the copy-constructor and assignment operator. STL
container types are value-semantic types, as are strings, built-in types, pointers and enumeration
types. Two containers compare equal if each of their elements compare equal – the containers’
allocators are not examined by op erator= = because the allocators are not part of the containers’
values.

Value semantic types are closely associated with copy-semantic operations – operations that copy
the value of an object without modifying the object being copied. However, the C++ language and
library define certain operations which have what we call move-semantics. A move-semantic
operation is an operation on an object that conceptually moves the entire object, including its non-
value attributes, to a new location. Examples of move-semantic operations are std::sw ap , copy-
avoidance optimizations (including the RVO), and some uses of the proposed rvalue reference
[N1690]. After a move operation, an object’s identity appears to have moved to a new address.
Most uses of move-semantic operations are optimizations to reduce the number of copy operations.

Move-semantic operations do not invalidate our allocator principles if our notion of “object” is
flexible enough to include the possibility that the object may be moved. We must be extra careful,
however, because the optimizations provided by move-semantic operations makes it tempting to
apply them where they could cause unintended effects. (Note that this issue is not limited to
allocators. There are other examples of non-value attributes that are not expected to be copied when
the value is copied: Imagine a mutex member of a thread-safe object.) The purpose of this section
is to explore the interaction between move semantics and non-value attributes (especially allocators)
and propose some algorithms and practices that can be applied to improve the chances of writing
correct code.

5.2.2 Swap

The 1998 standard requires that sw ap , when invoked on standard containers, must be a constant
time operation and must never throw. This is accomplished by re-assigning pointers within the
container data structure, without actually copying any elements. This becomes a problem when the
containers being swapped have different allocators, since it would separate allocated memory from

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 16 of 24

the allocator needed to de-allocate it, as described in issue number 431 of the Library Active Issues
List [Issue431].

Some favor resolving issue 431 by swapping the allocators along with the values when sw ap is
called to exchange the contents of two containers with unequal allocators [N1599]. This resolution
allows sw ap to remain an O(1) operation, retains the nothrow guarantee, and prevents invalidation
of iterators and references. An unstated consequence of this change is that sw ap becomes a move-
semantic operation for standard containers – the containers being swapped effectively trade places
rather than just trade values. This is reasonable behavior for most current uses of sw ap . For
example, it is probably appropriate for algorithms like std::sort and std::reverse, to
conceptually move elements around, and the performance benefit can be substantial.

Other uses of sw ap may require extra care. Swap is often used to provide a strong exception-safety
guarantee. For example, the following function uses sw ap to atomically replace the value of a string:

void u intToS tring (std::string * s, u nsig ned i)
{ std::string tem p ; do {
 tem p . insert(0 , 1 , i % 1 0 + ' 0 '); / / m ig h t th row i / = 1 0 ;
 } w h il e (i ! = 0);
 s-> sw a p (t e m p) ; / / n e v e r t h r o w s }

For this use of sw ap , the main criteria is that sw ap must not throw an exception. However, the sw ap
operation in the code above might change the allocator type used by * s, with undesirable
consequences. This problem is easily remedied by carefully choosing the allocator when
constructing the temporary variable:

void u intToS tring (std::string * s, u nsig ned i)
{ std::string tem p (s-> g e t _ a l l o c a t o r ());
 do {
 tem p . insert(0 , 1 , i % 1 0 + ' 0 '); i / = 1 0 ;
 } w h il e (i ! = 0);
 s-> sw a p (t e m p) ; }

With the above change, the sw ap operation is guaranteed to be invoked on two objects with the
same allocator, making the distinction between move semantics vs. copy semantics mute.
Explicitly setting the allocator of the object to be swapped is good practice, even if this proposal is
not accepted into the standard.

The most dangerous (and, fortunately, least common) use of sw ap is to exchange the values of two
unrelated objects. The user in this case would almost certainly be adversely affected by the allocator
change caused a move-semantic sw ap . Rather than leave this as a trap for the unsuspecting novice,
we propose to create a second algorithm, sw ap _ val u e which, by default, is implemented as the
standard three copy operations (temp = a, a = b, b = temp). The sw ap _ val u e algorithm has neither
the complexity guarantee nor the nothrow guarantee of sw ap . (Note that sw ap is only guaranteed
O(1) and nothrow for standard containers and other classes that make this guarantee explicitly.)
Trivial though it is, there are good reasons to make sw ap _ val u e a part of the standard:

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 17 of 24

• Having std::sw ap _ val u e along with (and alphabetically adjacent to) std::sw ap should cause
the casual user to ponder a moment before selecting the algorithm that is appropriate to the
situation.

• Containers can optimize sw ap _ val u e to be as fast as sw ap in the case of equal allocators, and to
use only two copies rather than three in the case of unequal allocators:

tem p l ate <ty p enam e T, ty p enam e Al l oc> void sw ap _ val u e(vector<T, Al l oc>& a, vector<T, Al l oc>& b) { if (a. g et_ al l ocator() = = b. g et_ al l ocator()) {
 a. sw ap (b); }
 el se {
 vector<T, Al l oc> tem p (a, b . g e t _ a l l o c a t o r ()); a = b;
 b . sw a p (t e m p) ; / / A v o i d t h i r d c o p y o p e r a t i o n
 } }

If one desires a copy-semantic swap operation with the strong exception safety guarantee, this can
be achieved at the cost of additional memory using the following algorithm (“Halpern’s
Algorithm”):

tem p l ate <ty p enam e T, ty p enam e Al l oc> void sw ap _ val u e_ atom ic(vector<T, Al l oc>& a, vector<T, Al l oc>& b) {
 / / E x cep tion-saf e sw ap of tw o vectors u sing H al p ern’ s Al g orith m if (a. g et_ al l ocator() = = b. g et_ al l ocator()) {
 a. sw ap (b);
 } el se {
 / / U neq u al al l ocators. C op y each vector u sing th e oth er
 / / one’ s al l ocator. An ex cep tion w il l l eave both a and b / / u nm odif ied. vector<T, Al l oc> tem p _ a(a, b. g et_ al l ocator()); / / m ig h t th row
 vector<T, Al l oc> tem p _ b(b, a. g et_ al l ocator()); / / m ig h t th row a. sw ap (tem p _ b); / / noth row
 b. sw ap (tem p _ a); / / noth row
 } }

At this time, we are not proposing sw ap _ val u e_ atom ic for inclusion in the standard.

5.2.3 Elided Copy Constructors

An implementation is permitted avoid calling a copy constructor for making a copy of a temporary
variable or for creating a temporary variable from the return value of a function (the return-value
optimization). In each of these cases, the original object and the would-be copy are treated as the
same object. These optimizations have the qualities of move-semantic operations; in particular, the
allocator and other non-value attributes are determined not by the new object’s copy constructor,
but by the constructor of a conceptually different object elsewhere in the program. The presence of
these optimizations are theoretically problematic, but the problems can be easily avoided with
simple programming conventions. To illustrate the problem, consider this function:

std::string tel l M e(int tim e) { ch ar bu f f er[2 0 0] ; / / tem p orary bu f f er
 bu f f er_ al l ocator al l oc(bu f f er, 2 0 0); / / tem p orary al l ocator
 std::string tem p (& al l oc); / / u ses tem p orary al l ocator tem p = " I ' m tel l ing y ou f or th e " ;
 sw itch (tim e) { case 1 : tem p + = " f irst" ; break ; case 2 : tem p + = " second" ; break ;

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 18 of 24

 case 3 : tem p + = " th ird" ; break ; } tem p + = " tim e! " ;
 r e t u r n t e m p ;
}
std::string tol d = tel l M e(2);

Section 12.8, paragraph 15 of the standard says that a copy constructor does not need to be invoked
to copy tem p to the return value of tel l M e, nor does a copy constructor need to be invoked to copy
the return of tel l M e into tol d. Instead, tem p can be constructed directly into tol d, avoiding two
copies. Unfortunately, this means that the allocator for tol d is determined not by the constructor
for tol d, but by the constructor for tem p . To make matters worse, tem p uses a temporary allocator
that goes out of scope before tol d is destroyed. The solution to this problem is to simply get into
the habit of always using the default allocator instance for any returned value, either by constructing
it that way:

std::string tem p ; / / u se def au l t al l ocator instance
or by an explicitly copying it (using the extended copy constructor) on return:

retu rn std::string (tem p , std::al l ocator());
5.2.4 Rvalue References

A proposal for rvalue references [N1690] provides a way to explicitly modify temporary variables,
often by “pilfering” their contents using sw ap . Once again, care must be taken to ensure that the
desired allocator semantics are preserved. For example, the optimization enabled by the rvalue
reference could be disabled for unequal allocators:

void m y cl ass::setV al u e(std::string & & v) {
 if (v. g et_ al l ocator() = = val u e. g et_ al l ocator())
 val u e. sw ap (v); / / p il f er tem p orary variabl e el se
 val u e = v; / / sl ow cop y , p reserve val u e’ s al l ocator
}

This logic can also be incorporated into an rvalue extended copy constructor:
tem p l ate <ty p enam e T, ty p enam e Al l oc>
X ::X (X & & oth er, al l ocator_ ty p e al l oc) { if (al l oc = = oth er. g et_ al l ocator) {
 / / p i lf er contents of oth er el se / / cop y th e contents of oth er
}

5.3 Reaping the Benefits

The BDE system of per-instance allocators has had a profound impact on the way we manage
memory. The original STL allocators were used only in very specialized corners of an application,
where per-type allocators did not pose a problem. The new allocators, conversely, are used
throughout our code to give us more control over memory use. Some of the ways we use allocators
are:

• In a very large system, we share objects across processes simply and efficiently using a shared-
memory allocator. Because containers propagate their allocators to their contained elements,
only the root of a complex data structure needs special treatment in order to be shared.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 19 of 24

• In a module that reads data from an external source, we use a limit allocator to prevent denial-
of-service attacks.

• In a messaging module, we build up a complex container-within-container data structure using a
very fast arena allocator (al l ocate simply returns the next sequential memory block,
deal l ocate does nothing). When the message is complete and has been transmitted, we delete
the allocator, releasing all memory at once, without ever calling a destructor. (This approach
requires that the objects in question not acquire any resources except for memory and that they
allocate all of their memory using the allocator. The destructors must not have any side effects.)

• Hundreds of unit-test drivers use a test allocator to ensure that the components under test neither
leak memory nor use it extravagantly. The test drivers also use the test allocator to simulate out-
of-memory conditions in order to prove that the components under test are robust in the face of
exceptions.

6 Formal Proposal

Everything I’ve written up to this point constitutes the motivation for a proposed change to the
containers and allocators section in the emerging revision of the C++ standard. What follows is a
preliminary draft of a formal proposal for enhancements to the C++ standard library for C++0x.
This proposal basically promotes the BDE modifications to the STL allocator mechanism (with
names and other details changed to be more standard-like). The BDE project, as described above,
provides an example of an existing implementation and invaluable source of experience.

1. Add a new abstract class al l ocator_ im p l em entation to the <m em ory > header and a concrete
derived class new del ete_ al l ocator_ im p l em entation as follows:

cl ass al l ocator_ im p l em entation {
 p u bl ic: ty p edef siz e_ t siz e_ ty p e;

 virtu al void* al l ocate(siz e_ ty p e n, void* h int = 0) = 0 ; virtu al void deal l ocate(void* p) = 0 ;
 virtu al ~ al l ocator_ im p l em entation();
}; cl ass new del ete_ al l ocator_ im p l em entation
 : p u bl ic al l ocator_ im p l em entation { p u bl ic:
 static new del ete_ al l ocator_ im p l em entation* sing l eton();
 void* al l ocate(siz e_ ty p e n, void* h int = 0);
 void deal l ocate(void* p);
};

To make these classes easier to use, overload placement new and del ete operators for the base
class:

V oid* op erator new (al l ocator_ im p l em entation& a, siz e_ t by tes);
V oid op erator del ete(al l ocator_ im p l em entation a, void* p);

Effects: op erator new returns a->al l ocate(by tes, 0).
op erator del ete calls a->deal l ocate(p).

Note: The placement-style op erator del ete described here is called only when an exception
is thrown from a constructor while using the corresponding placement-style op erator new .

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 20 of 24

Our proposal does not present a one-step method for destroying and de-allocating an object that
was successfully created using the op erator new described here.

2. Modify the constructor and add members to the default allocator template as follows:
tem p l ate <ty p enam e TY P E >
cl ass al l ocator {
 al l ocator_ im p l em entation* im p ; / / ex p os i ti on only p u bl ic: al l ocator(al l ocator_ im p l em entation* i = 0);
 al l ocator_ im p l em entation g et_ im p l em entation() const; void sw ap (al l ocator& oth er) th row ();
 / / res t of tem p late rem ai ns th e s am e
};
Constructor effects: If i is non-zero, initialize imp to i, otherwise initialize imp to
new del ete_ al l ocator_ im p l em entation::sing l eton().

Allocate effects: Returns im p ->al l ocate(n * siz eof (val u e_ ty p e)).

Deallocate effects: Calls im p ->deal l ocate(p).

Swap effects: sw ap (th is->im p , oth er. im p).

3. Add to the allocator requirements that for any allocator type, A, there must be a function
sw ap (A& , A&) th row () to exchange the mechanisms of two allocators such that after the call
each allocator controls the memory previously controlled by the other. Add the following
definition to <m em ory >:

tem p l ate <ty p enam e Ty p e>
void sw ap (al l ocator<Ty p e>& a, al l ocator<Ty p e>& b) th row ();

Effects: a. sw ap (b).

4. Declare two traits classes (see TR1 traits) as follows. [The library working group may choose a
better name than new_allocator to describe the Lakos allocator model.] These traits allow
container classes to share their allocators with their contained elements automatically:

tem p l ate <ty p enam e Al l oc> stru ct is_ new _ al l ocator : f al se_ ty p e;
tem p l ate <ty p enam e Ty p e> stru ct u ses_ new _ al l ocator : f al se_ ty p e;

With partial specializations as follows:
tem p l ate <ty p enam e Ty p e>
stru ct is_ new _ al l ocator<al l ocator<Ty p e> > : tru e_ ty p e { };
tem p l ate <ty p enam e Ty p e, ty p enam e Al l oc>
stru ct u ses_ new _ al l ocator<vector<Ty p e, Al l oc> > : is_ new _ al l ocator<Al l oc> { };

Specialize similarly for other container and string class templates.

In general, a class should specialize u ses_ new _ al l ocator to evaluate to tru e_ ty p e if it uses
an allocator for which is_ new _ al l ocator<al l ocator_ ty p e>::val u e is true and if it has a
copy constructor that takes an (optional) allocator. A class should specialize
is_ new _ al l ocator if it is an allocator that is intended to be used with the semantics described
in this paper (i.e., propagated to contained elements and not copied when container is copied).

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 21 of 24

Note: If the concepts proposal [N1758] is accepted into the standard, these traits could be
expressed as concepts instead.

5. For each standard container, container adaptor, or string template class, C ontainer, add an
“extended copy constructor”:

C ontainer(const C ontainer& c, const al l ocator_ ty p e& al l oc);
The allocator, al l oc, is used by the container for internal memory allocations.

6. For each standard container, container adaptor, or string template class, C ontainer, change the
meaning of the normal copy constructor (C ontainer(const C ontainer& c)) as follows:’

If is_ new _ al l ocator<al l ocator_ ty p e>::val u e is true, then construct the container as
though it were constructed with C ontainer(c, al l ocator_ ty p e()). I.e., the allocator from c
is not copied.

Otherwise, construct the container as though it were constructed with C ontainer(c,
c. g et_ al l ocator()). This behavior conforms to the 1998 standard.

7. For each standard container or container adaptor, C ontainer, add an “extended default
constructor”:

ex p l icit C ontainer(const al l ocator_ ty p e& a);
(vector, deq u e, and l ist already have a constructor like this.) Since this proposal is intended
to make per-instance allocators more useful, this constructor is intended to make them more
convenient as well. In addition, for stack , q u eu e and other container adaptors, it is necessary
to provide a way to specify an allocator in the first place, since the allocator is not necessarily
copied from the underlying container.

8. Each non-container class defined in the standard, T, that is copy-constructible and assignable
and which allocates memory (e.g., TR 1 ::f u nction) must use an allocator. The trait
u ses_ new _ al l ocator<T>::val u e must be true. The semantics of T’s copy constructor must
match the description in item 6. T must also have an extended copy constructor as described in
item 5. If T has a default constructor, then it must also have an extended default constructor as
described in item 7.

9. For each standard container, C ontainer, enhance the meaning of insert, p u sh _ back , and
other functions that construct new elements within the container as follows:

If u ses_ new _ al l ocator<val u e_ ty p e>::val u e is true and if
is_ new _ al l ocator<al l ocator_ ty p e>::val u e is true and if al l ocator_ ty p e is convertible
to val u e_ ty p e::al l ocator_ ty p e, then construct a new element with value v by calling the
constructor val u e_ ty p e(v, g et_ al l ocator()). This logic propagates the container’s
allocator to each contained element.

Otherwise (if the above conditions are not all true), then construct the new element with
val u e_ ty p e(v). This behavior conforms to the original 1998 standard.

10. Enhance p air<T1 , T2 > in a manner similar to containers:

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 22 of 24

If u ses_ new _ al l ocator<T1 >::val u e is true or u ses_ new _ al l ocator<T2 >::val u e is true,
then u ses_ new _ al l ocator<p air<T1 , T2 > >::val u e shall also be true and the following
members will be added to the p air class (in addition to the members already defined in the
current standard):

ty p edef s ee below al l ocator_ ty p e;
p air(const T1 & v1 , const T2 & v2 , const al l ocator_ ty p e& al l oc); p air(const p air& p , const al l ocator_ ty p e& al l oc);

For both of these constructors, al l oc is used as the second argument of the extended copy
constructor for f irst or second or both. The allocator type is either ty p enam e
T1 ::al l ocator_ ty p e::rebind<void>::oth er or ty p enam e
T2 ::al l ocator_ ty p e::rebind<void>::oth er, depending on which parameter has the
u ses_ new _ al l ocator trait. If both T1 and T2 have the trait, then T1 is chosen. If both have the
trait but T1 ::al l ocator_ ty p e is not convertible to T2 ::al l ocator_ ty p e then the program is
ill-formed.

Note: this change is important for implementing the allocator semantics in m ap and m u l tim ap .

11. Add overloaded versions of the u ninitial iz ed_ cop y , u ninitial iz ed_ f il l , and
u ninitial iz ed_ f il l _ n algorithms to make constructing contained elements easier:

tem p l ate <ty p enam e I np u tI terator, ty p enam e F orw ardI terator,
 ty p enam e Al l ocator> u ninitial iz ed_ cop y (I np u tI terator f irst, I np u tI terator l ast,
 F orw arditerator resu l t, const Al l ocator& al l oc);
 tem p l ate <ty p enam e F orw ardI terator, ty p enam e T, ty p enam e Al l ocator> u ninitial iz ed_ f il l (F orw ardI terator f irst, F orw ardI terator l ast,
 const T& x , const Al l ocator& al l oc);
tem p l ate <ty p enam e F orw ardI terator, ty p enam e S iz e, ty p enam e T,
 ty p enam e Al l ocator> u ninitial iz ed_ f il l _ n(F orw ardI terator f irst, S iz e n,
 const T& x , const Al l ocator& al l oc);

In all of these functions, the meaning is the same as the corresponding algorithm without the
allocator argument except that if u ses_ new _ al l ocator<ty p enam e
F orw ardI terator::val u e_ ty p e>::val u e is true and Al l oc is convertible to ty p enam e
F orw ardI terator::val u e_ ty p e::al l ocator_ ty p e then F orw ardI terator::val u e_ ty p e is
constructed using allocator al l oc.

12. Add an allocator argument to the constructors of string bu f , string stream ,
istring stream , and ostring stream . (If any replacement is created for strstream , it, too,
must have an allocator argument.)

13. Add a mutating algorithm:
tem p l ate <ty p enam e T> void sw ap _ val u e(T& a, T& b);

Effects: temp = a; a = b; b = temp

14. sw ap _ val u e shall be overloaded for each standard container and string class template:
tem p l ate <ty p enam e T> void sw ap _ val u e(C ontainer<T>& a, C ontainer<T>& b);

Effects: exchange the elements, but not the allocators of a and b.

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 23 of 24

Complexity: constant time if a. g et_ al l ocator() = = b. g et_ al l ocator(),
a. siz e() + b. siz e() copy operations on T (each element is copied once) if
a. g et_ al l ocator() ! = b. g et_ al l ocator().
Throws: nothing unless copy operation on a or b or one of their elements throw. a and b will
have indeterminate (but valid) values in case an exception is thrown

[Note: we could also add a sw ap _ val u e_ atom ic(C ontainer& , C ontainer&) function that
would have no default declaration but would be defined for each standard container type. It
would add the guarantee that a and b would be unmodified in case of exception (e.g. using
Halpern’s algorithm).]

7 Conclusion

The 1998 C++ standard defines an allocator model in which allocation policy is specified as a
template parameter to container class templates. We found the standard’s allocator model deficient
in a number of respects: container types instantiated with one allocator do not interoperate with
otherwise identical container types instantiated with different allocators. Even when this is not an
issue, the semantics of copying allocators causes one to lose control over his/her allocator objects,
making per-instance allocators impractical.

The BDE project uses a powerful model, developed by John Lakos, of per-instance allocators that
cleanly separate a container’s memory allocation policy from its type and value. BDE containers
automatically share their allocator with their contained elements, producing a single memory
allocation domain for each complex object. This mechanism proved very powerful, easy to use and
easy to extend. We were able to use it extensively to achieve data sharing, increase efficiency, and
facilitate testing.

Merging Lakos’s allocator model into an existing implementation of the C++ standard library, we
were able to get the best of both worlds. Our new STL continues to comply with the 1998 standard,
but we were able to get the benefits of per-instance allocators on which we had come to rely. In
addition, we implemented a solution to an outstanding standard library issue 431 (Swapping
containers with unequal allocators) that is consistent with our allocator philosophy. Our experience
provides an existing implementation and points the way to a general approach that can be
incorporated into the emerging revision of the standard.

8 Bibliography

[Alexandrescu01] Alexandrescu, Andrei, Modern C++ Design, Addison-Wesley 2001

[Berger02] Berger, Emery, McKinley, Kathryn and Zorn, Bengamin, Reconsidering
Custom Memory Allocation, ACM OOPSLA’02 2002.
http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf

[Issue226] Abrahams, Dave (submitter), C++ Standard Library Active Issues List: User
supplied specializations or overloads of namespace std function templates.
ISO/IEC 2000.
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#226

Pablo Halpern Towards a Better Allocator Model N1850=05-0110

8/25/2005 Page 24 of 24

[Issue431] Austern, Matt (submitter), C++ Standard Library Active Issues List:
Swapping containers with unequal allocators. ISO/IEC 2003.
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#431

[Lakos96] Lakos, John, Large-Scale C++ Software Design, Addison-Wesley 1996

[LoRusso01] Lo Russo, Graziano, An Interview with A. Stepanov, Edizioni Infomedia srl.,
2001
http://www.stlport.org/resources/StepanovUSA.html

[N1599] Hinnant, Howard, Issue 431: Swapping containers with unequal allocators
JTC1/SC22/WG21 N1599=04-0039, 2004
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1599.html

[N1690] Hinnant, Howard, Abrahams, Dave and Dimov, Peter, A Proposal to Add
Rvalue Reference to the C+ Language. ISO/IEC JTC1/SC22/WG21
N1690=04-0130, 2004.
http://www.open-std.org/jtc1/sc22/wg21/docs/2004/n1690.html

[N1758] Jeremy Siek et al, Concepts for C++0x. ISO/IEC JTC1/SC22/WG21
N1758=05-0018, 2005.
http://www.open-std.org/jtc1/sc22/wg21/docs/2004/n1690.html

 [Maddock01] Maddock, John, Cleary, Steve, et al., Type Traits, boost.org 2001.
http://www.boost.org/libs/type_traits/index.html

[Stepanov95] Stepanov, Alexander and Lee, Meng, HP Labs Technical Reports: The
Standard Template Library, Hewlett-Packard Laboratories 1995.
http://www.hpl.hp.com/techreports/95/HPL-95-11.html

[TR1] Austern, Matt (editor), Proposed Draft Technical Report on C++ Library
Extensions, ISO/IEC 2005.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1745.pdf

