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1 Changes from N1758

This section summarizes the major changes this document makes to our previous proposal, N1758 [SGG+05].

• We have produced a prototype implementation, called ConceptGCC, that is described in more detail in N1848 [GS05b].

• We have added structural concepts, for which models can be implicitly generated.

• We have tightened the specification of concepts, including a summary of the grammar and more complete
specification of semantics, including:

– Name lookup in constrained templates

– Partial ordering of templates based onwhere clauses

– Verifying model correctness

• We have introduced several syntactic changes, to reduce the number of keywords (re)used and simplify the use
of concepts.

• We have provided a discussion of the background research we have conducted on language support for generic
programming, comparing the features of several other programming languages.
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2 Overview

This proposal describes language extensions that provide direct language support forconceptsin C++. Concepts are
at the core of generic programming and are used to specify the abstractions that facilitate generic libraries such as
the C++ standard library. Despite their importance, concepts are not explicitly supported in C++. Rather, they exist
primarily as documentation (e.g., the requirements tables in the standard) in conjunction with a loose set of program-
ming conventions. The extensions in this proposal allow concepts to be expressed directly in C++ and incorporate
the features of current best practice in generic programming. First-class concepts will provide enhanced quality and
usability of generic libraries and of generic programming in general.

The advantages of adding direct support for concepts to C++ include:

1. Improved error messageswhen using generic libraries. Error messages due to the incorrect use of function
and class templates are notoriously poor. By expressing constraints on templates via concepts the situation can
be improved: the compiler will issue a concise and clear diagnostic if the requirements of a template are not
satisfied by the user.

2. Improved type checking for template definitions. Currently, compilers delay full type checking of template
definitions until instantiation. This makes debugging more difficult for library authors, especially with respect
to verifying whether the documented constraints provide enough functionality for the template definition to type
check. With this proposal, the compiler immediately type checks some definitions, based just on the constraints
(and of course the context of the definition) but without knowledge of any instantiations.

3. Lowering barriers to entry for programmers wishing to write generic libraries. Writing a generic library now
requires a deep understanding of C++ and a plethora of template tricks—including type traits, tag dispatching,
and SFINAE—that emulate basic generic programming constructs. This proposal replaces this grab bag of tricks
with a single, coherent model for generic programming.

N1758 [SGG+05] provides an overview of generic programming terminology that will be used throughout this
proposal. A short review of this terminology follows. Section3 discusses the rationale behind the design of the
proposed extension. Section4 details the proposed language features while Section5 discusses their impact on users,
the standard library, and compiler vendors. AppendixA discusses the implementation of a concept-enabled C++
standard library.

Terminology review The key terms of generic programming are:

• A conceptis a set of requirements on types.

• A conceptrefinesanother concept if it adds new requirements to the original concept.

• A set of typesmodel (or area model of) a concept if they meet its requirements.

• Concept operationsare syntactic requirements that certain functions or operators be defined by a model.

• Associated typesare part of a concept’s specification and name the types that must be accessible via types that
model the concept. They often denote parameter or return types of concept operations.

• Concept-based partial ordering involves selecting the most specific implementation of a component from a
set of possibilities, based on the most refined concepts used in the component’s specification.

3 Design rationale

We consider the following language features vital to support generic programming:

1. A way to define concepts, including associated types, concept operations, and concept refinement.

2. A syntax to explicitly declare how a set of types models a concept.
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3. A way to express constraints on template parameters using concepts.

4. A way to order (partial) specializations and perform function selection based on the concept refinement rela-
tionships.

The features we enumerate above yield a large design space for generic programming facilities, much of which is
explored in [SGG+05, SDR03a, Str03, SDR03b]. The following set of goals directed our extended evaluation of the
viable design points and ultimately shaped the extensions we propose:

1. Earlier and more complete checking of template definitions.

2. Earlier and more complete checking of template uses.

3. Clearer and more helpful error messages.

4. Selection of template specialization/generic algorithm implementations based on attributes of template argu-
ments.

5. Zero abstraction penalty.

6. Implementable in existing compilers.

7. No C++03 programs become ill-formed, unless those programs only work due to defects in C++03.

8. Ability to express a new, concept-aware standard library that is easier to use.

9. A simple migration path from the old standard library to the new.

10. A simple migration path for template library authors that want to add concepts.

11. Simple but powerful expression of constraints, including composition of constraints.

This section describes and motivates some of the key design decisions we reached in light of the above language
requirements and goals. We discuss the compilation model for templates and the form of language features needed to
support generic programming.

3.1 Background research

This proposal is the result of extensive research on applying the ideas of generic programming in several programming
languages, experimentation on language features for generic programming within research languages, and formally
analyzing language features relevant to generic programming.

In a comparative study between several programming languages, we evaluated the level of support for generic
programming in eight languages [GJL+03, GJL+05]. The study involved a partial implementation of the Boost Graph
Library [SLL02, SLL01] in each of these languages. The goals of the study were to understand which language features
are necessary to support generic programming; to understand the extent to which specific languages support generic
programming; and to provide guidance for development of language support for generics. Tables1 and2 collect the
results of the comparative study, listing the language features found crucial or useful for generic programming, and
the level of support for each feature within the studied languages. The last row, and the two rightmost columns, are
not based on the study. Regarding the chart in Table1, we point out the following:

• The “ConceptC++” column reflects our understanding on how C++, enhanced with concepts as described in this
proposal, would be evaluated according to the criteria used.

• The “G” column describes the support for generic programming of the research languageG [Sie05, SL05a].
This language implements the core features necessary for generic programming in a pure form, which has
allowed us to model their semantics formally, enabling a thorough study of the language mechanisms for generic
programming. The current proposal draws from the design ofG and experimentation with the language, such as
implementing the analog of the STL inG [SL05b].
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C++ SML OCaml Haskell Eiffel Java C# Cecil G ConceptC++
Multi-type concepts -  #  ∗ # # #

IH

  
Multiple constraints -

IH IH

 #†      
Associated type access   

IH IH ‡ IH IH IH IH

  
Constraints on assoc. types -    

IH IH IH

   
Retroactive modeling -    # #

IH

   
Type aliases     # # # #   
Separate compilation #  

IH

    

IH

 

IH

Implicit arg. deduction  #   #  

IH IH
  

Concept-based overloading

IH

# # # #

IH IH

 

IH

 
∗Using the multi-parameter type class extension to Haskell 98 [PJM97]. †Planned language additions.‡We did not evaluate the
recently proposed extensions to Haskell to support associated types [CKPM05, CKP05]

Table 1: The level of support for language features important for generic programming within several programming
languages. A black circle indicates full support, a white circle indicates poor support, and a half-filled circle indicates
partial support. The rating of “-” in the C++ column indicates that C++ does not explicitly support the feature, but
one can still program as if the feature were supported due to the permissiveness of C++ templates. The table is
based on the results of an experimental study reported in [GJL+03, GJL+05], with the addition of columns forG and
ConceptC++and row for concept-based overloading.

• The last row with the additional criterion ofconcept-based overloading, was added to clarify additional capa-
bilities that concepts can bring to C++. In C++, overloading, or dispatching, based on which concepts a type
models can be arranged bytag dispatchingor using theenable if template [JWHL03]. The Standard library uses
tag dispatching, for example, in the implementations of theadvance anddistance functions. With concepts, such
overloading can be implemented directly and naturally, without resorting to trickery.

• ConceptC++ has partial support for separate compilation. The C++ compilation model of templates (instantia-
tion) does not need to change with the introduction of concepts, but generic definitions can be type checked sep-
arately from their uses. There is a small caveat in type-checking, though. As specified currently, type-checking
does not guarantee that certain kinds of overloads would not result in errors at instantiation time. These cases are
known (see Section4.4.2and [JWL04]), and represent a fundamental tension between separate type checking
and the ability to specialize algorithms using concept-based overloading. Note that the evaluations for separate
compilation and concept-based overloading forG are reversed, compared to the evaluations for ConceptC++;
the design choice made in languageG is the opposite to what we propose for C++. G favors full separate type
checking and compilation for concept-based overloading and algorithm specialization.

3.2 Template compilation model

Adding concepts to C++ leaves the template compilation model largely unchanged. The language retains the in-
stantiation model, where templates are in essence “patterns” that are stamped out for each combination of template
parameters. Instantiations are still compiled in the same way, e.g., via the inclusion model or link-time instantiation,
and the semantics of exported templates are likewise unchanged. However, see N1848 [GS05b] for a discussion of the
various alternative compilation models and how they can be implemented with concepts. Most importantly, existing
templates will continue to work as expected, and can interact with the proposed extensions both at the language level
and at the object code level.

This proposal introduces facilities for improved type checking of both template uses and definitions. The new
type checking does not affect existing templates, and therefore cannot break backward compatibility. Rather, we
introduce additional interface checking for templates and new non-dependent template parameters that bring with
them additional type safety and eliminate many of the confusing aspects of templates.

Improved type checking for uses of templates solves one of the most frustrating aspects of using generic libraries
in C++03: errors in the use of function templates are reported deep within the library implementation and typically
refer to library implementation details. With the proposed extensions, a generic library can publish its requirements in



Doc. no: N1849=05-0109 6

Criterion Definition
Multi-type concepts Multiple types can be simultaneously constrained.
Multiple constraints More than one constraint can be placed on a type pa-

rameter.
Associated type access Types can be mapped to other types within the context

of a generic function.
Constraints on associated types Concepts may include constraints on associated types.
Retroactive modeling Indicates the ability to add new modeling relationships

after a type has been defined.
Type aliases A mechanism for creating shorter names for types is

provided.
Separate compilation Generic functions can be type checked and compiled

independent of calls to them.
Implicit argument deduction Indicates that the arguments for the type parameters of

a generic function can be deduced and do not need to
be explicitly provided by the programmer.

Concept-based overloading Generic functions can be overloaded on the concepts
that their type parameters are required to model.

Table 2: Glossary of Evaluation Criteria

the function interface, so that the compiler will check these requirements at the call site. Then, the user will receive
an error messageat the call siteand it will refer to an interface violation, e.g., “the typeT does not model the required
conceptC”.

Improved type checking for template definitions also simplifies the task of writing correct function and class
templates. Since a function template’s interface expresses the constraints on its parameters, the compiler can check
that the definition does not require functionality beyond what is guaranteed by the constraints. For instance, if the
constraints state that the input typeIter must model theBidirectional Iterator concept but the definition uses the<
operator, the compiler will produce an error message at template definition time. With existing C++03 templates, this
error would go undetected until a user attempts to instantiate the template with a type that does not support<. For
instance, the following function uses operations not provided byInputIterator, but the error will not be detected until it
is instantiated with an iterator that does not provideoperator <:

template <typename InputIterator, typename OutputIterator, typename Pred>
OutputIterator
copy if(InputIterator first, InputIterator last, OutputIterator out, Pred pred) {

while (first < last) {
if (pred(∗first)) ∗out++ = ∗first;
++first;

}
return out;

}

We can rewrite this unsafe algorithm using concept constraints. By introducing requirements on the template parame-
ters (renamed toInIter, OutIter, andPred, respectively), both in the template header and thewhere clause, the compiler
can verify that the template is correctat definition time. Here is the type-safe version of the template:

template <InputIterator InIter, typename OutIter, typename Pred>
where { Predicate<Pred, reference>, OutputIterator<OutIter, reference> }
OutIter
copy if(InIter first, InIter last, OutIter out, Pred pred) {

while (first < last) {
if (pred(∗first)) ∗out++ = ∗first;
++first;

}
return out;

}
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ConceptGCC produces the following diagnostic, indicating that there is no match for the< operator on input iterators.
The second part of the error message indicates that the only non-built-in operator< known to the compiler is for the
difference type of the input iterator.

copy if bad.C: In function ’OutIter copy if(InIter, InIter, OutIter, Pred)’:
copy if bad.C:9: error: no match for ’operator<’ in ’first < last’
<path>/include/c++/4.0.1/bits/concepts.h:150: note: candidates are:bool std::SignedIntegral<typename std::Iterator
AssociatedTypes< Iter>::difference type>::operator <(const typename std::IteratorAssociatedTypes< Iter>
::difference type&, const typename std::IteratorAssociatedTypes< Iter>::difference type&)

3.3 Specific language features in the design space

The decisions above still leave a large design space. Here we illuminate some points of that space and justify our
choices. Rationale for other design decisions is provided in N1758 [SGG+05].

3.3.1 Named conformance vs. structural conformance

In general, there are two basic approaches to establishing that a set of types models a concept: structural and named
conformance. Structural conformance relies only on the signatures within a concept, ignoring the name of the concept
itself. With structural conformance, a set of types models a concept if all of the syntactic requirements of that concept
are met; any semantics required by the concept are implied by the structure. Named conformance, on the other hand,
means that the name of a concept is significant: two concepts with identical structure but with different names are
considered different. With named conformance, a set of types models a concept only if the user has explicitly declared
that the semantics of the concept are met; the syntactic requirements are checked when this declaration is made.
Systems based on named conformance often allow the syntax to be adapted within the model declaration.

Both structural conformance and named conformance are important for the design of generic libraries. Some
concepts are “purely structural”, in the sense that they have little or no semantics and therefore should not require
explicit model declarations. For these concepts, structural conformance is important. Other concepts, however, have
many semantic requirements that users must consider before concluding that a set of types does model a concept.
Particularly in the case where two concepts are structurally similar but semantically different (e.g.,InputIterator and
ForwardIterator), structural conformance can lead to run-time errors whereas named conformance would not [GS05a].

This proposal provides support for both named and structural conformance. Concepts use named conformance by
default (because it is safer in general). However, so-calledstruct concept s use structural conformance, but still permit
explicit model declarations.

N1782 [SD05] also supports both structural and named conformance. In that proposal, structural conformance is
the default but the use of “negative asserts” can emulate named conformance.

3.3.2 Pseudo-signatures vs. valid expressions

There are several ways to express the syntactic requirements of concepts. The two most feasible options arepseudo-
signaturesandvalid expressions(sometimes calledusage patterns). N1782 [SDR03a] presents other potential solu-
tions and give solid reasons to discount all but these two. Both approaches are equivalent, in the sense that they can
express the same constraints [JWL04], and each can emulate the other.

The pseudo-signature approach describes the syntax via a set of function declarations, as illustrated on the left
side of Figure1 (we describe the full syntax of concept definitions in Section4.1). In a simple signatures approach, a
typeT would have to have functions that match those signaturesexactly. A pseudo-signature approach, on the other
hand, treats these declarations more loosely. For instance, the declaration ofoperator < requires the existence of a
< operator, either built in, as a free function, or as a member function, that can be passed two values convertible
to type T and returns a value convertible tobool . Note that pseudo-signatures differ from the abstract signatures
described by N1782 [SD05], because abstract signatures do not permit conversions of the argument and result types.
Pseudo-signatures do permit these conversions.

The valid-expression approach describes the valid syntax by writing it directly. The right side of Figure1 illustrates
the description ofLess Than Comparable using the syntax of N1782 [SD05].
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template <typename T>
concept LessThanComparable { concept LessThanComparable<typename T> {

bool operator <(const T& x, const T& y); T x, y;
bool operator >(const T& x, const T& y); (bool )(x < y);
bool operator <=(const T& x, const T& y); (bool )(x > y);
bool operator >=(const T& x, const T& y); (bool )(x <= y);

}; (bool )(x >= y);
};

Figure 1:Less Than Comparable concept expressed via pseudo-signatures (left) and valid expressions (right).

We have opted to use pseudo-signatures for several reasons. First, they match closely with the declarations of op-
erations that fulfill these requirements, e.g., theoperator < on an STLvector has essentially the same declaration as the
pseudo-signature foroperator < in Figure1. Second, pseudo-signatures can appear both as requirements in concepts
and as implementations of those requirements in models, simplifying the task of writing a complete model for a con-
cept. Third, the implementation of pseudo-signatures matches so long as one can forward from the pseudo-signature
to the corresponding implementation and back. Finally, pseudo-signatures are more precise than valid expressions,
specifying precisely how arguments are passed and the exact return types, which is crucial for type-checking of tem-
plates.

3.3.3 Associated types

In C++03, associated types are typically expressed using traits classes [Mye95], but checking of template definitions
precludes the use of traits in type-safe templates because traits can be specialized in relatively unconstrained ways.
First-class support for associated types would replace traits and permit checking of template definitions.

Associated types can be represented directly as types inside the concept. For example, theForward Iterator con-
cept’s associated types are expressed as follows:

template <typename Iter>
concept ForwardIterator {

typename value type;
typename difference type;
typename reference;
typename pointer;

// more requirements...
};

Associated types can be accessed like member types of the concept, e.g.,ForwardIterator<X>::value type whereX
is a model ofForward Iterator. This usage is very similar to traits (e.g.,iterator traits) and reflects existing practice.
References to associated types in generic functions do not require thetypename keyword because the concept states
that the member (e.g.,value type) must be a type1. Alternatively, associated types are looked up in the scope of the
where clause. Thus, ifForwardIterator<X> is in thewhere clause,value type will find ForwardIterator<X>::value type.

An alternative to placing associated types in the concept definition is to make them nested types of one of the type
parameters. For instance, N1782 places the associated types of an iterator inside the iterator type itself, e.g.,

concept ForwardIterator<class Iter> {
Value type Iter::value type;
SignedIntegral Iter::difference type;
// more requirements...

};

1ForwardIterator<X> is not a dependent type, because it refers to a concept.
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Then, if typeX is aForwardIterator, X::value type refers to thevalue type of the iterator. This formulation ties associated
types to a particular type in the concept. While this may work well for single-parameter concepts, it can cause
ambiguities and confusion. Consider the following concept, which states that the typeF can be called with a parameter
of typeT1, and the identity function object:2

template <typename F, typename T1>
struct concept Callable1
{

CopyConstructible F::result type;
F::result type operator ()(F&, const T1&);

};

struct identity t
{

template <typename T> T operator ()(T t) { return t; }
};

There are modelsCallable1<identity t, T> for everyT that isCopyConstructible, and the type returned byoperator ()
will always beT. Thus,F::result type in the following function will beint whenforward<identity t, int > is instantiated
andfloat whenforward<identity t, float > is instantiated, even thoughF=identity t in both cases:

template <typename F, typename T1> where {Callable1<F, T1>}
F::result type forward(F& f, const T1& t1)
{

return f(t1);
}

That F::result type can take on different types even whenF is fixed to identity t is somewhat surprising. It indicates
that theresult type isn’t really a property ofF; rather, it’s a property of the conceptCallable1<F, T1>. This fact can
cause some interesting ambiguities when the same nested typeF::result type can get different definitions from different
concepts, as in the following example:

template <typename F, typename T1, typename T2>
where {Callable1<F, T1>, Callable1<F, T2>}
F::result type forward(F& f, const T1& t1, const T2& t2)
{

F::result type r1 = f(t1);
F::result type r2 = f(t2);

}

In this example,F::result type can refer to either theF::result type from Callable1<F, T1> or F::result type from
Callable1<F, T2>, which may be different. With associated types as part of the concept, this ambiguity does not
occur, because the associated type is part of the concept, not part of a specific type.

We have opted to express associated types as nested types within concepts, because it closely matches existing
practice (traits), provides convenient access to associated types, and eliminates the problems of ambiguities.

3.3.4 Same-type constraints

A generic function that accepts several type parameters often requires that two types (often associated types) be equal.
For instance, several standard library algorithms require the value types of different iterator types to be the same. To
support such requirements, awhere clause may containsame-type constraints, which assert that two types are always
the same. Same-type constraints are written using the equality operator==. For example, consider the following
concept-enabled standard library algorithm declaration:

template <InputIterator InputIterator1, InputIterator InputIterator2>
where { InputIterator<InputIterator1>::value type == InputIterator<InputIterator2>::value type,

2We have invented this syntax just for this example. It does not reflect the proposed syntax.
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where { LessThanComparable<InputIterator<InputIterator1>::value type> }
bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2 first2, InputIterator2 last2);

In this declaration, the typesInputIterator1 andInputIterator2 are required to model the conceptInput Iterator. The value
types of these concepts must be equivalent, and model theLess Than Comparable concept.

Same-type constraints cannot be emulated with aSameType concept, because their use in type-checking templates
requires nontrivial changes to a compiler. Section4.4.3describes same-type constraints and type equality issues in
more detail; implementation details and strategies are discussed in a separate document [GS05b].

4 Proposed language features

This proposal introduces three new kinds of entities into the C++ language: concepts, models, andwhere clauses. It
also changes the nature of type-checking in templates, by introducing non-dependent template parameters for which
all type checking occurs when the template is parsed. We will cover the syntactic entities (and their semantics) first,
then discuss type-checking of constrained templates, and finish with potential extensions to these features.

4.1 Concepts

template-declaration:
template < template-argument-list> structopt concept identifier concept-definitionopt ;

concept-definition:
refinement-clauseopt concept-body

concept-body:
{ requirement-specificationopt }

requirement-specification:
pseudo-signature-req requirement-specificationopt

associated-type-req requirement-specificationopt

nested-req requirement-specificationopt

Concepts are namespace-level entities that bundle together a set of requirements. When thestruct keyword pre-
cedesconcept , the concept is a structural concept. The syntax of concepts closely mimics class templates. Concepts
consist of an (optional) refinement clause and three kinds of members: pseudo-signatures, associated types, and nested
requirements.

The following code defines a concept namedForwardIterator with a single template parameter,Iter:

template <typename Iter>
concept ForwardIterator { ... };

4.1.1 Refinements

refinement-clause:
: refinement-specifier-list

refinement-specifier-list:
refinement-specifier
refinement-specifier, refinement-specifier-list

refinement-specifier:
model-id

The refinement clause contains a list ofrefinement-specifiers that indicate which concepts are refined by the concept
being defined and how parameter substitutions affect this refinement relationship. Amodel-idis a template-idwhose
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template-namerefers to a concept. Concept refinements shall not be recursive. The intuition is that a refinement adds
the requirements of the refined concept to the refining concept. Thus, the requirements in the refining concept are a
superset of those in the refined concept, and any set of types that models the refining concept also models the refined
concept.

The following code defines a conceptBidirectionalIterator that refinesForwardIterator:

template <typename Iter>
concept BidirectionalIterator : ForwardIterator<Iter> { ... };

In addition to organizing and aggregating requirements, refinements affect the implicit generation of models (Sec-
tion 4.2.3) and partial ordering based onwhere clauses (Section4.3).

4.1.2 Pseudo-signatures

pseudo-signature-req:
simple-declaration
function-definition
template-declaration

Pseudo-signatures express concept operations. During type checking, they serve two purposes. When checking a
model definition, pseudo-signatures specify the operations required of the model. When checking a template definition,
pseudo-signatures specify some of the operations that may be legally used in its body.

Syntactically, a pseudo-signature is a function declaration or definition. A pseudo-signature may be followed by a
function body, providing a default implementation to be used if a model does not define the function (see Section4.2
for more details and an example).

The following definition of theEqualityComparable concept includes two pseudo-signatures and provides a default
implementation for the second.

template <typename T>
concept EqualityComparable {

bool operator ==(const T&, const T&);
bool operator !=(const T& x, const T& y) { return !(x == y); }

};

Operators should always be written like free functions within a concept, even if those operators may only be defined
as members within a class. For instance, theConvertible concept is written as a free function, even though conversions
can be built-in, performed through constructors, or written as member operators in a class.

template <typename T, typename U>
struct concept Convertible {

operator U(const T&);
};

The requirement that a modeling type have a member function is expressed with a pseudo-signature qualified by the
type. The following excerpt from theContainer concept shows the pseudo-signature for theempty() member.

template <typename X>
concept Container {

bool X::empty() const ;
...

};

A concept may require a constructor by using a type for the function name. The modeling typeT need not be a class
type: any type that may be constructed with the given signature is permitted. TheDefaultConstructible concept includes
a requirement for a constructor.

template <typename T>
concept DefaultConstructible {
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T::T();
};

A concept may require a function template via a pseudo-signature template. The following is an example of a pseudo-
signature template:

template <typename G>
concept MutableGraph : Graph<G> {

...
template <typename P> where { Predicate<P, edge> }
void remove edge if(P p, G& g);
...

};

Similarly, a concept may require a member function template by qualifying the pseudo-signature template with the
model type, such as the constructor template for theSequence concept.

template <typename X>
concept Sequence : Container<X> {

template <typename Iter> where { InputIterator<Iter> }
X::X(Iter first, Iter last);
...

};

4.1.3 Associated types

associated-type-req:
typename identifier;
typename identifier= type-specifier;

A concept may require that a model provide a type definition for a particular type name via atypedef . These
requirements are calledassociated typerequirements. For example, the followingGraph concept requires that a model
declaration forGraph specify a type foredge andvertex.

template <typename G>
concept Graph {

typename edge;
typename vertex;
...

};

The type name introduced by an associated type requirement may be used in the concept body and in refining concepts.
Consider the following example.

template <typename T>
concept A {

typename s;
};
template <typename U>
concept B : A<U> {

void foo(s);
};

The use of type names in conceptB is valid becauseB refinesA, which requires the associated types.
A concept may provide a default for an associated type. If a model does not specify a type definition for that type,

then the model uses the default. The default type need not be well-formed if the model provides the type definition.
The following InputIterator concept requires four associated types that default to nested type definitions in the iterator.
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template <typename Iter>
concept InputIterator

: CopyConstructible<Iter>, Assignable<Iter>, EqualityComparable<Iter> {
typename value type = Iter::value type;
typename reference = Iter::reference;
typename pointer = Iter::pointer;
typename difference type = Iter::difference type;
...

};

4.1.4 Nested requirements

nested-req:
where requirement-list;

Nested requirements are additional requirements that a concept places on its type parameters, associated types,
etc. For instance, a concept may require certain types to model another concept with a nestedwhere clause that names
the requiredmodel-id. The Container concept requires that the associated typeiterator satisfy the requirements of
InputIterator, which is written as:

template <typename X>
concept Container {

...
typename iterator;
where InputIterator<iterator>;
...

};

Nested requirements may contain the same kinds of requirements as awhere clause; see Section4.3.

4.2 Models

template-declaration:
template < template-argument-listopt > where-clauseopt concept model-id model-bodyopt ;

model-body:
{ model-member-specificationopt }

model-member-specification:
pseudo-signature model-member-specificationopt

associated-type model-member-specificationopt

A model definition establishes that a set of types meets the requirements of a concept. Syntactically, a model is
like a (partial) specialization of a concept. Consider the following example:

class student record {
public :

string id;
string name;
string address;

};

template <>
concept EqualityComparable<student record> {

bool operator ==(const student record& a, const student record& b)
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{ return a.id == b.id; }
};

A model of theEqualityComparable concept (from Section4.1.2) is defined forstudent record. The
EqualityComparable concept has two requirements; this model satisfies the requirement foroperator ==, and then uses
the default defined inEqualityComparable for operator !=, whose implementation invokes thisoperator ==.

4.2.1 Verifying model correctness

All of the requirements of the modeled concept, and the concepts it refines (transitively, according to the refinement
relation) must be satisfied according to the following rules, otherwise a diagnostic is required.

Pseudo-signatures

pseudo-signature:
pseudo-signature-req

A pseudo-signature requirement in a concept may be satisfied by a model according to the following rules. A
pseudo-signature may contain occurrences of the concept template parameters and associated types. To obtain the
pseudo-signature that must be satisfied by the model the template arguments and associated types provided by the
model are substituted for the concept’s parameters and associated types. To illustrate, suppose the following definition
of conceptA and modelA<int >.

template <typename T>
concept A {

typename s;
s foo(T);

};

template <>
concept A<int > {

typedef char s;
...

};

The modelA<int > must satisfy the requirement for a function with the signature

char foo(int );

This requirement may be satisfied according to the following rules.

1. A model may satisfy the pseudo-signature requirement with a function definition in the model body.

template <>
concept A<int > {

typedef char s;
char foo(int x) { return ’a’; }

};

Similarly, the pseudo-signature may be declared inside the model definition but defined outside:

template <>
concept A<int > {

typedef char s;
char foo(int x);

};

char A<int >::foo(int x)
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{
return ’a’;

}

2. If the pseudo-signature is from a refinement, and there is a model definition for the refinement, then the model
need not (and may not) provide a definition for the function.

template <typename U>
concept B : A<T> { };

template <>
concept B<int > { }; // no definition of foo() needed, because it is provided by model A<int>

3. If the pseudo-signature is not satisfied by one of the above rules (a declaration or definition in the model body or
by a model of a refinement), then the pseudo-signature shall be implicitly defined. For details, see Section4.2.2.

Associated types

associated-type:
typedef type-specifier identifier;

A requirement for an associated type may be satisfied in one of the following ways.

1. A type definition in the body of the model will satisfy an associated type requirement. For example, the following
conceptA requires an associated typet. The model provides a typedef withbool for t.

template <typename T>
concept A {

typename t;
};

template <>
concept A<float > {

typedef bool t;
};

2. If the associated type is from a refinement, and there is a model definition for the refinement, then the model
need not (and may not) provide a typedef for that associated type. In the following example, conceptB refines
the conceptA defined above. The model declaration forB<float > does not include a typedef fort since there is
one in modelA<float >.

template <typename T>
concept B : A<T> { };

template <>
concept B<float > { }

The following definition of modelB<float > is ill-formed, since it tries to redefinet.

template <>
concept B<float > {

typedef char t; // Error, A<float> is already defined.
};
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3. If the associated type is from a refinement, and there is not yet a model definition for the refinement, then the
model must satisfy the requirement by providing a type definition. For example, below we define a model
B<double > and assume there is no previous definition for modelA<double >. The requirement for the associ-
ated typet from conceptA is satisfied by the typedef in modelB<double >.

template <>
concept B<double > {

typedef long t;
};

4. If there is a default for the associated type in the concept, then the model need not provide a type definition. In
the example below, the associated typet for modelC<float > will be int .

template <typename T>
concept C {

typename t = int ;
};

template <>
concept C<float > { };

Nested requirements Once a model has been defined, the nested requirements of the corresponding concept (and
its refined concepts) must be verified to be true. This verification is the same as verifying that thewhere clause of a
template is satisfied (Sections4.3.1–4.3.3).

For instance, a nested model requirement must be satisfied by a previous model definition. Consider the following
example.

template <typename T>
concept A { };

template <typename U>
concept B {

where A<U>;
};

template <>
concept A<int > { };

template <>
concept B<int > { };

ConceptB contains the nested requirement forA<U>. The modelB<int > is valid because there is a previous model
definition forA<int >. Note that occurrences of template parameters and associated types in the nested requirement,
such asU in where A<U>;, are replaced by the arguments and type definitions in the model, soU is replaced byint .

4.2.2 Implicit model member definitions

Since every model must contain precisely the same members (pseudo-signatures, associated types, etc.) as the concept
it is associated with, members not explicitly defined by the user will be defined implicitly by the implementation. This
behavior is very similar to the handling of implicitly-defined default constructors, copy constructors, and assignment
operators.

This section describes how the implicitly-generated model members shall be defined.
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Pseudo-signatures Implicitly-defined pseudo-signatures are implemented by creating a forwarding function whose
signature exactly matches the pseudo-signature. The body of this function consists of a function call to the result of
the function lookup (for function pseudo-signatures) or uses the operator in the least restrictive manner (for operator
pseudo-signatures). The normal C++ lookup rules are applied when compiling this function. In the following example,
the requirement foroperator + is satisfied byX::operator +.

template <typename T>
concept C {

bool operator +(const T&, const T&);
};
class X {

int operator +(const X&) const { return false ; }
};

template <>
concept C<X> { };

The definition of the implicitly-generated pseudo-signature looks like this:

bool C<X>::operator +(const X& x, const Y& y) {
return x + y;

}

When compiling this function, the+ operation resolves toX::operator +, and theint result ofX::operator + is implicitly
converted to thebool result type required by the concept. Free functions are translated to unqualified calls. For
instance, consider the following example for the conceptSwappable:

template <typename T>
concept Swappable {

void swap(T& x, T& y);
};

template <typename T> where { CopyConstructible<T>, Assignable<T> }
void swap(T& x, T& y) { // #1

T tmp(x);
x = y;
y = x;

}

template <>
concept Swappable<int > { };

// implicitly−generated!
void Swappable<int >::swap(int & x, int & y) {

swap(x, y); // ignores Swappable<int>::swap but finds #1
}

For a more precise formulation of implementations for these synthesized pseudo-signatures, see our paper “Imple-
menting Concepts” [GS05b].

If the implicitly-generated definition fails to type-check and the pseudo-signature requirement in the concept con-
tains a default implementation, that default implementation will be used instead. The example at the beginning of
Section4.1.2, with the modelEqualityComparable<student record>, demonstrates the use of default implementations
in concepts.

If the implicitly-generated definition fails to type-check and there is no default implementation, the compiler shall
produce a diagnostic indicating that the model is invalid.
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Associated types If a model definition does not provide atypedef for an associated type, the default type value will
be used if provided in the concept. For instance, the following model ofInputIterator retrieves thedifference type type
from MyIter:

template <typename Iter>
concept InputIterator {

typename difference type = Iter::difference type;
};

struct MyIter {
typedef int difference type;

};

template <>
concept InputIterator<MyIter> { };

4.2.3 Refinements and models

If there is a model definition for a concept that refines other concepts, and models for the refinements are not already
defined, then model definitions for the refinements are implicitly generated. Consider the following example.

template <typename T>
concept A {

void foo();
};

template <typename T>
concept B : A<T> { };

template <>
concept B<int > {

void foo() { }
};

ConceptB refinesA. There is a model definition forB<int >, but no explicit definition forA<int >. Thus, a model
definition forA<int > is implicitly generated by the C++ implementation from the definition ofB<int >.

Models for refined concepts will be defined even for model templates. These implicitly defined models will have
the same template parameters,where clauses, and template arguments as the model originally defined by the user. For
instance, ifForwardIterator refinesInputIterator, the following model ofForwardIterator will result in a similar model of
InputIterator:

template <typename T>
concept ForwardIterator<T∗> {

typedef T value type;
typedef std::ptrdiff t difference type;
typedef const T& reference;
typedef const T∗ pointer;

};

// Implicitly generated, unless it already exists...
template <typename T>
concept InputIterator<T∗> {

typedef T value type;
typedef std::ptrdiff t difference type;
typedef const T& reference;
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typedef const T∗ pointer;
};

If the template parameters of an implicitly defined model are not all deducible from the template arguments of that
model, the model shall not be defined. For instance, consider the following concept and model:

template <typename V, typename S>
concept VectorSpace : AbelianGroup<V>, Field<S> { ... };

template <typename T, typename U>
where { Convertible<U, T> }

concept VectorSpace<std::complex<T>, U> { ... };

Within the above rule, the implementation would attempt to implicitly define:

template <typename T, typename U>
where { Convertible<U, T> }

concept AbelianGroup<std::complex<T> > { ... };

template <typename T, typename U>
where { Convertible<U, T> }

concept Field<U> { ... };

However, both of these are invalid partial specializations (and, hence, invalid model declarations), becauseU cannot
be deduced in the first definition andT cannot be deduced in the second definition.

4.2.4 Model identifiers

model-id:
template-id

A concept name followed by a list template arguments is a model identifier (model-id). Model identifiers may be
used to qualify access to entities in the scope of a model, such as type definitions and functions. In the example below,
the model identifierB<int > is used to qualifyzero().

model B<int > {
int zero() { return 0; }

};
int main() { return B<int >::zero(); }

Lookup into amodel-idis only well-formed when there exists a model for thatmodel-id. The method used to determine
if a model exists is described in Section4.3.1.

4.2.5 Model templates

A model template establishes that a family of types models a concept. For example, the following model definitions es-
tablish pointers and pointers to constant values as models ofMutableRandomAccessIterator andRandomAccessIterator,
respectively.

template <typename T>
concept MutableRandomAccessIterator<T∗> {

typedef T value type;
typedef T& reference;
typedef T∗ pointer;
typedef ptrdiff t difference type;

};

template <typename T>
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concept RandomAccessIterator<const T∗> {
typedef T value type;
typedef const T& reference;
typedef const T∗ pointer;
typedef ptrdiff t difference type;

};

In the upcoming Section4.3 we extend templates withwhere clauses to express constraints on template parameters.
The template may only be instantiated with arguments that satisfy the constraints. The following example demonstrates
how constraints are useful in model templates.

template <typename T, typename Alloc> where { EqualityComparable<T> }
concept EqualityComparable< vector<T, Alloc> > { };

This model template states that avector is a model ofEqualityComparable if the value typeT is EqualityComparable.

4.2.6 Friend models

member-declaration:
friend concept model-id;
template < template-argument-list> friend concept concept-name;

Models can be friends of a class, permitting the definition of those models to accessprivate or protected members
of the class. For instance, we can rewrite the previousstudent record example with all its membersprivate :

class student record {
private :

string id;
string name;
string address;

friend concept EqualityComparable<student record>;
};

template <>
concept EqualityComparable<student record> {

bool operator ==(const student record& a, const student record& b)
{ return a.id == b.id; }

};
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4.3 Where clauses

template-declaration:
exportopt template < template-parameter-list> where-clauseopt declaration

member-declaration:
where-clause member-declaration

where-clause:
where { requirement-listopt }

type-parameter:
class!opt identifieropt

class!opt identifieropt = type-id
typename!opt identifieropt

typename!opt identifieropt = type-id
template< template-parameter-listopt > class !opt identifieropt

template< template-parameter-listopt > class !opt identifieropt = id-expression

requirement-list:
requirement, requirement-list

requirement:
model-requirement
same-type-requirement
ice-requirement

This proposal introduces constraints on templates in the form of awhere clause. The syntax of template declara-
tions (and definitions) is extended to include awhere clause, which consists of a set of requirements. Any template
that contains awhere clause is called aconstrained template. The following is a simple example:

template <typename T> where { Assignable<T>, CopyConstructible<T> }
void swap(T& a, T& b);

where clauses can also be placed on the members of class templates. For instance,std::list<T>::sort can only be
applied whenT is a model ofLessThanComparable:

template <typename T> where { CopyConstructible<T> }
class list {
public :

where { LessThanComparable<T> } void sort();
};

The requirements in awhere clause play two roles in type checking:

1. When a template identifier is used, such asvector<int >, all of the requirements in the template’swhere clause
must be satisfied, otherwise the program is ill-formed.

2. When type checking the body of a template, the constraints add assumptions to the context of the compilation.

The first of these roles is discussed in this section, which describes how checking for each of the kinds of requirements
shall occur. Failure to satisfy the requirements of awhere clause means that the template cannot be used (e.g., called
or instantiated). For instance, consider the following simple example:

list<int > l;
sort(l.begin(), l.end()); // Error.

A diagnostic message shall be issued becauselist<int >::iterator is not a model ofRandomAccessIterator. ConceptGCC
emits the following message:
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sort.C:7: error: no matching function for call to ’sort(std:: List iterator<int>, std:: List iterator<int>)’
<path>: note: candidates are: void std::sort( Iter, Iter) [with Iter = std:: List iterator<int >] <where clause>
sort.C:7: note: unsatisfied model requirement ’std::MutableRandomAccessIterator<std:: List iterator<int> >’

Discussion of the second role ofwhere clauses, as constraints that add assumptions to the context of the compilation,
is deferred to Section4.4.

4.3.1 Model requirements

model-requirement:
model-id

A model requirement is amodel-id, which names a concept and provides it with template arguments. A model
requirement is only satisfied if there exists a model declaration that best matches the template arguments, otherwise
a diagnostic is required. The set of matching model declarations is determined in a similar fashion to how class
specializations are chosen in (14.5.4.1) of the C++ standard. For each matching model template, the requirements
in the model template’swhere clause must be satisfied, otherwise the model is removed from consideration (as is
done with class and function templates). Partial ordering of model templates occurs in the same manner as partial
ordering of class templates; this proposal extends the partial ordering rules to also considerwhere clauses, described
in Section4.3.5. Consider the following example:

template <typename T>
concept A { };

template <typename T> where { A<T> }
void foo(T) { }

template <typename T>
concept A<T∗> { };

template <>
concept A<int∗> { };

int main() { int∗ x; foo(x); }

For the call tofoo() there must be a model ofA<int∗>. Both model definitions match, but the second definition is a
better match.

Model requirements in templates Model requirements can also be satisfied by model requirements expressed or
implied in thewhere clause of an enclosing scope. For instance, the call tolower bound insidebinary search is valid
becausebinary search’s where clause contains all of the models required bylower bound:

template <typename Iter>
where { BidirectionalIterator<Iter>, LessThanComparable<value type> }
Iter lower bound(Iter first, Iter last, value type value);

template <typename Iter>
where { BidirectionalIterator<Iter>, LessThanComparable<value type> }
bool binary search(Iter first, Iter last, value type value) {

Iter result = lower bound(first, last, value);
// ...

}
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Model requirements for structural concepts If a model requirement cannot be satisfied with any existing model
and the corresponding concept is a structural concept, the model requirement can be satisfied by a successfulstructural
match. A structural match occurs when a set of types fulfills all of the syntactic requirements of a structural concept.

Structural matches are attempted only when no other models exist for amodel-id. When a structural match fails, the
model requirement is unsatisfied but the program is not necessarily ill-formed3. For instance, consider the following
example:

template <typename T, typename U>
struct concept Convertible {

operator U(const T&);
};

template <typename T> where { Convertible<T, int > }
int f(const T& t);

void g(char ch) {
f(ch); // ok

}

There is no explicit model declarationConvertible<char , int >, so a structural match is attempted. It succeeds, so the
program is well-formed.

Structural matches are performed as if an empty, non-templated model definition were created at the point where
the model is required. For instance, the model definition generated for the above example is:

template <> concept Convertible<char , int > { };

4.3.2 Same-type requirements

same-type-requirement:
type-specifier== type-specifier

A same-type constraint is satisfied if the two types are equivalent. Consider the following example:

template <typename T, typename U> where { T == U }
void foo(T t, U u) { }

int x;
foo(x, x); // OK, int == int
float z;
foo(x, z); // Error, int != float

Within a template, determining if a same-type constraint is satisfied may require comparisons based on same-type
constraints expressed in or implied by thewhere clause of an enclosing scope. See Section4.4.3for more details on
type equivalence with same-type constraints.

4.3.3 Integral constant expression requirements

ice-requirement:
assignment-expression

An integral constant expression requirement is satisfied if the integral constant expression, when converted to a
bool , evaluatestrue . For instance, the following class template accepts only odd integers: any attempt to provide it
with an even integer will result in a diagnostic:

3Readers concerned about the implementability of this feature may wish to read section 3.6 of N1848 [GSW+05].
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template <int N> where { N % 2 }
struct only odd { };

only odd<5> five; // OK
only odd<6> seven; // Error: N % 2 does not evaluate true

4.3.4 Constraint propagation

It is often the case that certain requirements on template parameters are apparent from the declaration of a constrained
template, even if they are not explicitly stated. These requirements (constraints) are implicitly added to thewhere
clause of the template through the process ofconstraint propagation. Constraint propagation must generate the small-
est set of implicit constraints that guarantee that the declaration of a template will always instantiate properly.

One immediate example of an implicit constraint is that pass-by-value parameters and return types are assumed to
modelCopyConstructible. Thus, the following template is well formed:

template <typename T> where {} T identity(T x) { return x; }

The constraint propagation rule has some interesting implications. Take the following definition ofvector:

template <typename T> where { CopyConstructible<T>, Assignable<T> }
class vector { ... };

A function template withvector appearing in the declaration will have the implicit constraint that the type argument
for vector must modelCopyConstructible andAssignable.

template <typename U> where {} // CopyConstructible<U> and Assignable<U> are implicit constraints
void foo(vector<U>& v) {

U u(v[0]); // OK to use copy constructor here.
}

In the following declaration, the template includes an implicit constraint thatT cannot be a reference type:

template <typename T> where {}
T∗ ptr id(T∗ x) { return x; }

4.3.5 Partial ordering with where clauses

Function and class templates can be partially ordered based on their function arguments and template arguments,
using the rules in 14.5.5.2 and 14.5.4.2 of the C++ standard, respectively. This proposal extends this ordering when
two templates are considered identical after removing thewhere clauses and modulo the names of template parameters.
In this case, the templates are partially ordered based on the requirements in thewhere clauses.

The following examples illustrate intuitively how this partial ordering should work. In the following example, the
secondf should be chosen becauseB refinesA.

template <typename T> concept A { };
template <typename T> concept B : A<T> { };

template <typename T> where { A<T> } void f(T x) { std::cout << ”1”; }
template <typename T> where { B<T> } void f(T x) { std::cout << ”2”; }

template <> concept B<int >;
int main() { f(1); }

The output is:

2

In the next example, the second definition off should be chosen because its constraints are a superset of the constraints
of the first definition.
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template <typename T> concept A { };
template <typename T> concept C { };

template <typename T> where { A<T> } void f(T x) { std::cout << ”1”; }
template <typename T> where { A<T> , C<T> } void f(T x) { std::cout << ”2”; }

template <> concept A<int >;
template <> concept C<int >;
int main() { f(1); }

The output is:

2

The following example should be ill-formed because the function call is ambiguous. The constraintB<T> in the first
f is more specific thanA<T> in the secondf, but the secondf has a second constraint that is not in the firstf.

template <typename T> concept A { };
template <typename T> concept B : A<T> { };
template <typename T> concept C { };

template <typename T> where { B<T> } void f(T x) { std::cout << ”1”; }
template <typename T> where { A<T>, C<T> } void f(T x) { std::cout << ”2”; }

template <> concept B<int >;
template <> concept C<int >;
int main() { f(1); } // ambiguous

Given two templatesT1 andT2 that are equivalent modulo template parameter names andwhere clauses, use the
following procedure to determine a partial ordering between the templates.

1. Introduce the requirements from thewhere clause ofT1 into a new environment.

2. Check each of the requirements in thewhere clause ofT2 to determine if they are satisfied in the new environ-
ment. If so,T1 is at least as specialized asT2.

3. Repeat the process with a new environment, to determine ifT2 is at least as specialized asT1.

4. If T1 is at least as specialized asT2, butT2 is not at least as specialized asT1, thenT1 is the more specialized
template. Similarly, we can determine ifT2 is more specialized thanT1.

4.3.6 Syntactic shortcut for single-parameter concepts

template-parameter:
concept-name!opt identifier
concept-name!opt identifier= assignment-expression

type-parameter:
concept-name!opt identifier= type-id
concept-name!opt identifier= id-expression

It is common for many concepts in a program to have only a single template parameter, typically a template type
parameter. To make these concepts more easy to use in a template, we provide a shortcut (also in N1782 [SD05])
wherein the concept name may be written as the “type” of the template parameter, instead oftypename or class . For
instance, here is a declaration ofadvance() that uses this shortcut:

template <InputIterator Iter> void advance(Iter& x, difference type n);

Using this shortcut is identical to writing out the template with awhere clause, e.g.,
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template <typename Iter> where { InputIterator<Iter> }
void advance(Iter& x, difference type n);

4.4 Type checking templates

The requirements placed on template parameters by awhere clause have two roles. When using a constrained template,
the requirements of thewhere clause must be satisfied by the user. However, those same requirements are also taken
as assumptions against which the body of the template can be fully type-checked. This section focuses on the latter
role.

4.4.1 Non-dependent template parameters

This proposal introduces non-dependent template parameters, which, unlike normal template parameters, do not make
expressions based on them dependent. In essence, a non-dependent template parameter acts more like a regular, non-
dependent type (class X, int , char∗) than a template parameter. Name lookup and type-checking for non-dependent
types and expressions occurs when a template is initially defined, whereas lookup and checking for dependent types
and expressions is delayed until instantiation time. With non-dependent template parameters, all type-checking and
name lookup can occur at template definition time, so that errors can be detected prior to instantiation. Modulo
certain ambiguities and problems with incorrectly specified specializations, a well-formed template that uses only
non-dependent template parameters is guaranteed to instantiate properly.

When any requirements or awhere clause is provided for a template, all template parameters are considered
non-dependent unless specifically marked as “dependent.” An emptywhere clause also suffices to make template
parameters non-dependent. Let us start with a genericfor each algorithm and introduce an emptywhere clause, to
enable type-checking:

template <typename Iter, typename F> where {}
F for each(Iter first, Iter last, F f)
{

while (first != last) {
f(∗first);
++first;

}
return f;

}

This program is ill-formed, because we have stated that there are no requirements on the template parametersIter and
F, but we are using many operators. For this code snippet, ConceptGCC produces the following output:

for each.C: In function ’F for each(Iter, Iter, F)’:
for each.C:6: error: no match for ’operator!=’ in ’first != last’
for each.C:7: error: no match for ’operator∗’ in ’∗first’
for each.C:7: error: ’f’ cannot be used as a function
for each.C:8: error: no match for ’operator++’ in ’++first’
for each.C:10: error: ’F’ has no copy constructor

To eliminate the error messages related to the iterator operations!=, ∗, and++, we need to state that theIter type is
actually anInputIterator. We do so using thestd::InputIterator concept, which will presumably be a part of a concept-
enabled Standard Library (as it is in ConceptGCC’s standard library implementation). Doing so results in the following
code:

template <std::InputIterator Iter, typename F> where {}
F for each(Iter first, Iter last, F f)
{

while (first != last) {
f(∗first);
++first;
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}
return f;

}

Is this code now correct? Attempting to compile it with ConceptGCC produces the following error messages:

for each.C: In function ’F for each(Iter, Iter, F)’:
for each.C:7: error: ’f’ cannot be used as a function
for each.C:10: error: ’F’ has no copy constructor

F needs to be some type that isCopyConstructible so thatf can be returned4. F must also be a function pointer or
function object (or anything else “Callable”). With these constraints added, the definition offor each becomes:

template <std::InputIterator Iter, std::CopyConstructible F>
where { std::Callable1<F, reference> }

F for each(Iter first, Iter last, F f)
{

while (first != last) {
f(∗first);
++first;

}
return f;

}

The reference type refers tostd::InputIterator<Iter>::reference, the return type ofoperator ∗. This final definition of
for each is now well-formed and compiling it with ConceptGCC produces no errors.

There are many template libraries in existence now that would benefit from the introduction of concepts. However,
introducing concepts into an existing library is not a trivial task, as we have found while updating the GNU C++
standard library implementation. To ease the transition, it is possible to mark template parameters as “dependent”
even when we have placed requirements on them via awhere clause. To do this, we place a! in front of the name of
the template parameter:

template <std::InputIterator !Iter, std::CopyConstructible !F>
where { std::Callable1<F, reference> }

F for each(Iter first, Iter last, F f) {
// Do some metaprogramming and perhaps parallelize the loop
return f;

}

With the ! operators in place, the template parameters are dependent, so the body offor each is largely unchecked.
Thus, we can use whatever template metaprogramming we want, even if it would be hard or impossible to do in a fully
type-checked template. The type-checking for thisfor each is essentially one-sided: users must meet the requirements
of thewhere clause when callingfor each, but there are no requirements on the implementor offor each. Practically
speaking, this allows template library authors to introduce concepts gradually, providing better error messages and
checking for users initially while evolving the implementation to a completely type-checked, safe version.

4.4.2 Name lookup

This proposal introduces two additional rules that affect name lookup in templates. The first rule involves introducing
the ability to perform lookups in the model requirements in awhere clause, so that pseudo-signatures and associated
types may be used unqualified within constrained templates. The second rule involves the lookup of unqualified names
for function calls in constrained templates.

4This is actually due to a bug in ConceptGCC, which does not support constraint propagation. However, explicitly writing the constraints is not
harmful.
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Lookup in where clauses The where clause introduces names into the scope of the template definition. For each
model requirement, the pseudo-signatures from the corresponding concept, its refinements, and all nested requirements
(including their refinements!) are in scope. Additionally, the associated types from the concept and its refinements
(but not nested requirements) are in scope. The scope of these requirements is the same as the scope of the template
parameter list.

Pseudo-signatures Pseudo-signatures of model requirements introduce function declarations into the template
parameter list scope. For example, consider the definition ofswap().

template <typename T> where { Assignable<T>, CopyConstructible<T> }
void swap(T& a, T& b) {

T tmp = a;
a = b;
b = tmp;

}

The model requirementAssignable<T> brings the declaration

T& operator =(T&, const T&);

into scope for the body ofswap(). This declaration allows the expressionsa = b andb = tmp to type check. Similarly,
the model requirementCopyConstructible<T> brings the declaration

T::T(const T&);

into scope, allowing the variable initializationT tmp = a to type check.

Associated types Associated type requirements introduce type names but not the actual type bindings. The
following example demonstrates how awhere clause brings associated types into scope:

template <Container C, typename F> where { Callable1<F, value type> }
void for each c(const C& c, F f) {

for (const iterator i = c.begin(); i != c.end(); ++i)
f(∗i);

}

The typevalue type andconst iterator are associated types from theContainer concept.
If the same type name is introduced into scope from two or more concept constraints, then access to those types

must be qualified by the model identifier unless the types can be proven equivalent. Consider the following example:

template <typename C>
concept BackInsertionSequence : Sequence<C> { // and remember, Sequence refines Container

reference C::back();
const reference C::back() const ;
void C::push back(value type);
void C::pop back();

};

template <typename C1, typename C2>
where { Container<C1>, BackInsertionSequence<C2> }

void copy c(const C1& c1, C2& c2) {
for (Container<C1>::const iterator i = c1.begin(); i != c1.end(); ++i)

c2.push back(∗i);
}

Theconst iterator associated type is introduced by both constraints, so the model identifierContainer<C1> is used to
disambiguate.
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Non-dependent names When name lookup in a template resolves to something outside the scope of the template
itself (or its where clause), the name may reference an overloaded function. The handling of this name depends on
whether any arguments to the function are dependent or not. If any are dependent, the call expression is dependent
and the overload set will be augmented by functions found through argument-dependent lookup (ADL) at instantiation
time. If they are not dependent, this overload set is complete and the compiler will perform overload resolution when
a single function is needed.

The introduction of constrained templates does not change this aspect of name lookup. Consider the following
example, in whichlower bound makes an unqualified call toadvance:

template <InputIterator Iter>
void advance(Iter& x, difference type n); // #1

template <BidirectionalIterator Iter>
void advance(Iter& x, difference type n); // #2

template <BidirectionalIterator Iter>
Iter lower bound(Iter first, Iter last, const value type& value)
{

difference type n = distance(first, last);
Iter mid = first;
advance(mid, n/2);
// ...

}

template <RandomAccessIterator Iter>
void advance(Iter& x, difference type n); // #3

Name lookup onadvance finds the twoadvance overloads, with different concept requirements. Sincemid andn/2
are non-dependent expressions, overload resolution is performed immediately. Both #1 and #2 match, but #2 is more
specialized so it will be selected. If #3 was visible (i.e., declared prior tolower bound), it would have been rejected
becauseIter is not necessarily aRandomAccessIterator.

When an call expression is non-dependent but contains (non-dependent) template parameters, the overload set
returned by name lookup willnot be augmented by functions found through ADL at instantiation time. Instead, it
will be augmented with theimplied specializations5 of advance, i.e., any other declarations ofadvance in the same
namespace that are (1) identical modulo template parameter names andwhere clauses and (2) more specialized, based
on thewhere clause. Definition#3 fits the criteria of an implied specialization, so it will be found and added to the
overload setat instantiation time. Continuing the example above, we define an iterator typemy iter that has its own
advance:

namespace other {
struct my iter { typedef int difference type; ... };

void advance(my iter& x, int n); // #4
}

namespace std {
template <> concept RandomAccessIterator<other::my iter> {};

}

When lower bound<other::my iter> is instantiated, which declaration ofadvance will the call in lower bound re-
solve to? #1 and #3 are implied specializations, so they will enter the overload set.#4 will not be found be-
cause ADL is not employed for non-dependent expressions at instantiation time. Sinceother::my iter is a model of
RandomAccessIterator, and #3 is the most specialized function in the overload set, it will be used.

5This notion comes from N1782 [SD05].
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These name lookup rules permit specializations of algorithms to occur and be used by other, type-safe generic
algorithms without the problems caused by argument-dependent lookup. For instance, the resolution of Library DR
225 (“std:: algorithms use of other unqualified algorithms”) is automatic when the algorithms in namespacestd are
constrained templates.

Lookup in uninstantiated templates Type checking the definition of a constrained template is performed without
knowledge of the bindings for the template parameters. Thus it is impossible to instantiate templates according to
template identifiers that appear in the body. Instead, the best matching specialization will be chosen (and used for type
checking purposes) with the information at hand.

Consider the following well-formed C++03 program. The function templatef() is instantiated withU=int and the
template identifierfoo<U> resolves to the specializationfoo<int >.

template <typename T> class foo { };
template <> class foo<int > { void bar(); };
template <typename U> void f() { foo<U>::bar(); }
int main() { f<int >(); }

If f() is changed to a constrained template, the body is checked without knowledge of whatU will be. In this case,
foo<U> will refer to the primary template, which does not have a memberbar(), and a diagnostic will be issued. The
rationale behind these type checking rules is that if the templatef() is truly generic it should work with any type bound
to parameterU, not justint .

template <typename U> where { EqualityComparable<U> }
void f() { foo<U>::bar(); } // error

It is possible for a specialization to be chosen. For example, if there was a specialization offoo for T∗, and a use of the
template identifierfoo<U∗>.

Once f is instantiated, template instantiation will occur inside the definition off as usual. This may result in
different specializations than were used during type checking, and thus may result in compilation errors that were
missed by the initial type checking. For example, the definition ofg() in the program below will type check based on
the primary template forfoo but will fail when g is instantiated and the specializationfoo<int > is selected.

template <typename T> class foo { int bar(); }
template <> class foo<int > { void bar(); }
template <typename U> int g() { return foo<U>::bar(); }
int main() { return g<int >(); } // instantiation−time diagnostic

4.4.3 Type equivalence

A same-type constraint expresses the requirement that two type expressions denote the same type. For instance, in
the following example we state the relationship between thepointer, reference, andvalue type associated types in a
Mutable Forward Iterator:

template <typename X>
concept MutableForwardIterator {

typename value type;
typename reference;
typename pointer;
where reference == value type&;
where pointer == value type∗;

};

The same-type constraints of awhere clause induce a partition of type expressions into equivalence classes. A same-
type constraintS == T merges the equivalence classes thatS andT belong to. Two types are considered equivalent if
they are in the same equivalence class. Same-type constraints introduce “deep” equivalence between the two classes.
For instance,S == T impliesS∗ == T∗, vector<T> == vector<U>,
vector<T>::value type == vector<U>::value type, etc. Also, for any conceptA, A<S>::type is equivalent toA<T>::type
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if S andT are equivalent. Further, ifB is a refinement ofA, thenB<U>::type is equivalent toA<S>::type if B<U>
refines (transitively)A<T> andS is equivalent toT. Similarly, the same-type constraintS∗ == T∗ impliesS == T, and
everything implied by it.

4.5 Extensions

This section documents potential extensions to the features we are proposing. The list of extensions is not exhaustive,
but contains only features that we know would be useful but we do not require because either (1) we are not sure they
are implementable or (2) we have not had the time to adequately specify them.

4.5.1 Partial specialization of function templates

The implied specializations described in Section4.4.2are similar in spirit to partial specializations of function tem-
plates. They use the same name as the function template, have equivalent declarations modulo parameter names, and
havewhere clauses that are more restrictive than the original template. If partial specializations of function tem-
plates were allowed, the partial specializations of the functions in the overload sets should augment the overload set at
instantiation time (as the implied specializations do now).

Consider the following declarations ofcopy, one of which uses arbitrary input and output iterators and the other
uses pointers:

template <InputIterator InIter, typename OutIter>
where { OutputIterator<OutIter, InputIterator<InIter>::value type> }
OutIter copy(InIter first, InIter last, OutIter out); // #1

template <typename T>
T∗ copy(T∗ first, T∗ last, T∗ out); // #2

If a generic function taking input and output iterators contained a call tocopy, only #1 would enter the overload set
because #2 would not match to arbitrary input and output iterators. Thus, we miss out on the opportunity to pick up a
better match. However, if #2 was written as a partial specialization of a function, it would be picked up when the call
to copy is instantiated:

template <typename T>
T∗ copy<T∗, T∗>(T∗ first, T∗ last, T∗ out); // #3

We note that the behavior of #3 can be emulated with the current proposal, but leave the formulation as an exercise
for the reader.

4.5.2 Associated values

Concepts permit associated type requirements to be defined, but there is no analogue for “associated values”, i.e.,
integral constant expressions that are part of the concept. Associated value requirements would contain the type of the
associated value, but the value itself would be unknown until instantiation time.

This extension was proposed by Daniel Krügler oncomp.std.c++. We do not yet have a favored syntax for
associated values nor have we attempted to implement them, but we do not believe that there is anything fundamentally
difficult in their implementation.

4.5.3 Nested class template requirements

Concepts may include pseudo-signature templates that require their models to have templated operations. One could
also consider permitting concepts to require nested class templates, and then place requirements on the members of
those class templates. For instance, we could specify anAllocator concept similar to the one in the standard library
with such an extension:

template <typename Alloc>
concept Allocator {

template <typename T>
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struct Alloc::rebind {
typename other;
where Allocator<other>;

};
// ...

};

In this example, we want to say that every model ofAllocator has a member templatestruct namedrebind that contains
a type namedother that itself models theAllocator concept.

The ability to specify these kinds of requirements may make it possible to express type-safe template metaprograms
using concepts. However, at this time we are not sure that such an extension is implementable, and it is an active
research area.

4.5.4 Remote specializations and models

Specializations (and models) need to be written in the same namespace as the primary template (or concept). This
restriction is rather inconvenient when the types used in the specialization come from a different namespace. We
could allow “remote” specializations that can be written in any namespace. These specializations would have the same
semantics as existing specializations, except that name lookups within the specializations themselves would reflect
their point of declaration. For instance:

namespace std {
template <typename X>
concept InputIterator { ... };

}

namespace boost {
template <typename Func>
class counting iterator {

// ...
};

template <typename Func>
concept std::InputIterator<counting iterator<Func> > {

// ...
};

}

4.5.5 Exporting defaulted requirements

Default implementations of pseudo-signatures allow generic functions to use a richer syntax than is required by the
concepts themselves. For instance, theLessThanComparable concept only requiresoperator < to be defined, but any
function requiringLessThanComparable<T> may use operators<, >, <=, and>=:

template <typename T>
struct concept LessThanComparable {

bool operator <(const T&, const T&);
bool operator <=(const T& x, const T& y) { return !(y < x); }
bool operator > (const T& x, const T& y) { return y < x; }
bool operator >=(const T& x, const T& y) { return !(x < y); }

};

We could invent a syntax that couples remote models (Section4.5.4) with the idea of “exporting” the default imple-
mentations for a class when it is defined. This might be similar to the way in whichfriend functions defined in a class
template are exposed. For instance, we might define a classX that itself contains onlyoperator <, but by exporting
default requirements we get>, <=, and>=:
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struct X {
friend bool operator <(const X& x, const X& y);
export concept std::LessThanComparable<X>;

};

bool equiv(X x, X y) {
return !(x < y) && !(y < x); // Ok!

}
This feature would make it possible to get the benefits of the Boost Operators library [AS02] from concepts, so that
model declarations can actually reduce the amount of typing required to define a type.

5 Impact

This section describes the impact of the proposed changes on users, the standard library, and compiler vendors.

5.1 Impact on users

When a generic library written using C++03 is updated to use concepts, the way in which users interact with the library
will change. The two major changes are as follows:

1. The compiler will provide improved diagnostics and type safety for templates, both uses and definitions.

2. The user will be required to introduce model declarations for some of their types.

The first item is a clear advantage: by introducing direct support for generic programming into C++03, the prob-
lems of weak type checking and horrible error messages can be eliminated, making generic libraries (and generic
programming in general) more accessible. The second item is both an advantage and a disadvantage. It is advanta-
geous because the introduction of explicit models adds additional type checking (i.e., checks whether the syntax of
the model matches the syntax of the concepts) and asserts semantic properties that were otherwise only assumed to
exist. The disadvantage is that porting will require some effort to write these model declarations. This disadvantage
can be mitigated by careful generic library design (e.g., providing model templates that map from traits structures; see
AppendixA), by careful use of structural concepts, and by proper compiler diagnostics that describe what models are
required. For instance, compiling the entire ConceptGCC testsuite (for both GCC and its standard library) with the
concept-enabled C++ standard library required the introduction of only one explicit model declaration; that declaration
could be avoided if GCC supported thedecltype proposal [JS03].

5.2 Impact on the standard library

The C++ standard library is itself a generic library that could be extended to support concepts. This extension would
require several specific changes, all of which are demonstrated in SectionA and prototyped in ConceptGCC:

1. Replace the requirements tables and traits for concepts with new concept definitions. This change formalizes the
semantics of concepts and will likely eliminate ambiguities that have arisen due to the use of valid expressions
in the descriptions and the lack of automated checking.

2. Provide or require model definitions for all standard library components. The standard already specifies when a
particular library component meets the requirements of a concept; we need only state that these library compo-
nents have model declarations for those concepts. In some cases, these will be model templates with constraints,
e.g.,vector<T> modelsEquality Comparable whenT modelsEquality Comparable.

3. Specify requirements viawhere clauses. The templates in the standard library list requirements informally, e.g.,
by naming template parametersRandomAccessIterator when they must modelRandom Access Iterator. We can
replace these informal requirements withwhere clauses that convey the same information in a formal way. This
will simplify the description of some parts of the standard, e.g., the “do the right thing” clause for the container
constructors taking iterators. In addition, the improved type checking will verify the specification and most
likely unearth bugs that have been lurking in the standard.
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4. Provide model definitions for backward-compatibility. The conventions of the standard library, such asiterator traits,
can be used to build model templates that will greatly simplify porting from the existing standard library to a
concept-enabled one. These models will be required in order to provide maximal backward compatibility, i.e., to
minimize the number of changes users will need to make to recompile their code with the new standard library;
see SectionA.

The most interesting question regarding changes to the standard library revolves around what we can do with
components that have inconsistencies in their specification. For instance,vector<bool > does not model the same
concepts as the primary template forvector because its iterators do not model theRandom Access Iterator concept: an
error that would have been caught given the extensions in this proposal. We expect that a full review of the changes to
be made to the standard library will uncover additional, subtle problems with the specification of the library.

5.3 Impact on compiler vendors

The extensions proposed here are numerous and will undoubtedly require a nontrivial amount of effort to implement in
any compiler. However, we have taken great care to ensure that this proposal retains the existing template compilation
model, extending it without requiring fundamental changes. The impact that this proposal will have on compilers, and
a discussion of the techniques we used to implement concepts for ConceptGCC and theG compiler, are provided in a
separate document [GS05b].
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A Example: Standard library concepts and declarations

In addition to adding concept support to the GNU C++ compiler to create ConceptGCC, we also updated a large
part of the GNU C++ standard library implementation,libstdc++, to use concepts. To demonstrate the syntax of our
proposal and that it is sufficient to express the type requirements of the C++ standard library, we present some examples
from this updated standard library. The examples were chosen to stress-test the proposal; diversity of features was the
goal in selection. Wherever the standard provides a requirements table to specify a concept, the requirements table is
provided side-by-side with the definition of the concept. Table numbers refer to the table numbers in the standard.

A.1 Helper concepts

The definition of theLess Than Comparable concept demonstrates the use of default implementations for concept
operations. Here, default implementations serve the same purpose as the comparison operators in thestd::rel ops
namespace (but without its problems). This is a structural concept, so any type with a< operator similar to the given
signature will model this concept, and will have the other operators defined automatically.
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Table 29,Less Than Comparable
requirements [Int98]

expression return type

a < b convertible tobool
TypeT is a model ofLess Than Comparable anda, b

are values of typeT.

template <typename T>
struct concept LessThanComparable {

bool operator <(const T&, const T&);
bool operator <=(const T& x, const T& y)
{ return !(y < x); }

bool operator > (const T& x, const T& y)
{ return y < x; }

bool operator >=(const T& x, const T& y)
{ return !(x < y); }

};

The definition ofCopy Constructible illustrates pseudo-signatures for constructors and destructors. We also see how
sometimes fewer pseudo-signatures than valid expressions are required to express a concept.

Table 30,Copy Constructible requirements [Int98]
expression return type

T(t)
T(u)
T::˜T()
&t T∗
&u const T∗

TypeT is a model ofCopy Constructible, t is a value
of typeT andu is a value of typeconst T.

template <typename T>
struct concept CopyConstructible {

T::T(const T&);
T::˜T();
T∗ operator &(T&);
const T∗ operator &(const T&);

};

A.2 Iterator concepts

Concepts in the iterator hierarchy demonstrate several features of the proposal, such as associated types and concept
refinement. Before we can express the iterator concepts, a helper conceptArrowable is needed to express the behavior
of the−> operator. ThePtrlike type parameter refers to an object that can be on the left-hand side of the−> operator,
e.g., a pointer or an object with an overloadedoperator −>. TheValue type parameter is the return type produced by
following the chain of−> operators.

template <typename Ptrlike, typename Value>
struct concept Arrowable
{

typename arrow result = Value∗;
arrow result operator −>(Ptrlike);

};

The following model templates for pointers provide the base cases forArrowable:

template <typename T>
concept Arrowable<const T∗, T>
{

typedef const T∗ arrow result;
};

template <typename T>
concept Arrowable<T∗, T&>
{

typedef T∗ arrow result;
};
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template <typename T>
concept Arrowable<T∗, const T&>
{

typedef T∗ arrow result;
};

template <typename T>
concept Arrowable<const T∗, T&>
{

typedef const T∗ arrow result;
};

Equipped with theArrowable concept, we can now write the iterator concepts. We choose to define a helper concept
Iterator Associated Types for the associated type requirements common to bothInput Iterator andBasic Output Iterator
(a concept for the common case of an output iterator whose reference type has a non-polymorphic= operator). The
Iterator Associated Types concept demonstrates how associated types can have default definitions:

template <typename X>
concept IteratorAssociatedTypes
{

typename value type = X::value type;
typename difference type = X::difference type;
typename reference = X::reference;
typename pointer = X::pointer;

};

Because the standard definitions of theInput Iterator concept and its refinements require the result of the postfix++
operator to be dereferenceable but not incrementable, a special concept is defined for this purpose.

template <typename PtrLike, typename Value>
struct concept Dereferenceable
{

Value operator ∗(PtrLike&);
};

In Input Iterator, the postincrement operator can return a proxy. Because of the pseudo-signatures used in this proposal,
a new associated type must be defined to represent the proxy type. Otherwise, this example is straightforward, but
please note the use of theArrowable concept.
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Table 73,Input Iterator requirements [Int98]
operation type
X u(a); X
u = a; X&
a == b convertible tobool
a != b convertible tobool
∗a convertible toT
a−>m
++r X&
(void )r++
∗r++ convertible toT

TypeX is a model ofInput Iterator, u, a, andb
are values of typeX, typeT is a value type of
iteratorX, m is the name of a member of type

T, andr is a reference to a non-constantX
object.

template <typename X>
concept InputIterator : IteratorAssociatedTypes<X>,
concept InputIterator : CopyConstructible<X>,
concept InputIterator : Assignable<X>,
concept InputIterator : EqualityComparable<X> {

where SignedIntegral<difference type>;
where Convertible<reference, value type>;
where Arrowable<pointer, value type>;

typename postincrement result = X;
where Dereferenceable<postincrement result, value type>;

pointer operator −>(X);
X& operator ++(X&);
postincrement result operator ++(X&, int );
reference operator ∗(const X&);

};

TheOutput Iterator concept has a second type parameter to represent the value type, since a single output iterator type
can accept many different value types. In particular, given an output iteratorIter that is able to directly store objects
of typeT (i.e., its dereference operation returns a type which has an assignment operator taking a parameter of type
T), objects of any typeU whereU is convertible toT are also valid for storage by the iterator. In order to handle the
common case of an iterator directly taking only one type, a special conceptBasic Output Iterator is defined, along with
a model template providing the correct conversion behavior. This model template states that for every modelIter of
Basic Output Iterator and any typeValue which is convertible to the type storable inIter, Iter andValue together model
Output Iterator. This one model template expresses this relationship for every possible combination of iterator and
value types. Also, note that there are no pointer or difference types for an output iterator, as these are never used and
are often not defined to sensible values.
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Table 74,Output Iterator requirements [Int98]
operation type
X(a)
X u(a);
u = a;
∗r = o result is not used
++r X&
r++ convertible toconst X&
∗r++ = o result is not used

TypeX is a model ofOutput Iterator, u anda
are values of typeX, o is a value whose type
is in the value type set for typeX, andr is a

reference to a non-constantX object.

template <typename X, typename Value>
concept OutputIterator {

typename value type = Value;
typename reference = X::reference;

where CopyConstructible<X>;
where Assignable<X>;

where value type == Value;
where Assignable<reference, value type>;

typename postincrement result = X;
typename postincrement ref result = reference;
where Dereferenceable<postincrement result,
where Dereferenceable<postincrement ref result>;
where VoidAssignable<postincrement ref result, value type>;
where Convertible<postincrement result, const X&>;

reference operator ∗(X&);
X& operator ++(X&);
postincrement result operator ++(X&, int );

};

template <typename X>
concept BasicOutputIterator : IteratorAssociatedTypes<X>,
concept BasicOutputIterator : CopyConstructible<X>,
concept BasicOutputIterator : Assignable<X> {

where Assignable<reference, value type>;
typename postincrement result = X;
typename postincrement ref result = reference;

where Dereferenceable<postincrement result,
where Dereferenceable<postincrement ref result>;
where VoidAssignable<postincrement ref result, value type>;
where Convertible<postincrement result, const X&>;

reference operator ∗(X&);
X& operator ++(X&);
postincrement result operator ++(X&, int );

};

template <BasicOutputIterator !X, typename !Value>
where {Convertible<Value, value type>}
concept OutputIterator<X, Value> {

typedef Value value type;
typedef BasicOutputIterator<X>::reference reference;

};

For Forward Iterator and all iterator concepts refining it, there are two variants of each concept: mutable and non-
mutable. The reference type requirement expressed in the standard (that the reference type of a forward iterator be
eitherconst value type& or value type&) is not expressible using our proposal, since we do not propose disjunctive
constraints. Much of the complication in these concepts is because a single table of iterator requirements in the
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standard really defines both the mutable iterator concept and the non-mutable iterator concept. A diagram of all of
the ConceptGCC iterator concepts is in Figure2; in the diagram, solid lines represent requirements and refinements
within concepts while dotted lines represent models.

Mutable Random Access Iterator Random Access Iterator

Mutable Bidirectional Iterator Bidirectional Iterator

Iterator Associated Types

Input Iterator

Output Iterator

Basic Output Iterator

For all types convertible
to the value type of the
Basic Output Iterator

Forward IteratorMutable Forward Iterator

Figure 2: ConceptGCC iterator concepts
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Table 75,Forward Iterator
requirements [Int98]

operation type
X u;
X()
X(a)
X u(a);
X u = a;
a == b convertible tobool
a != b convertible tobool
r = a X&
∗a T& if X& is mutable, other-

wiseconst T&
a−>m U& if X is mutable, other-

wiseconst U&
r−>m U&
++r X&
r++ convertible toconst X&
∗r++ T& if X is mutable, other-

wiseconst T&
TypeX is a model ofForward Iterator, u, a,
andb are values of typeX, typeT is a value

type of iteratorX, m (with typeU) is the
name of a member of typeT, andr is a
reference to a non-constantX object.

template <typename X>
concept ForwardIterator : InputIterator<X>,
concept ForwardIterator : DefaultConstructible<X> {

where Convertible<reference, const value type&>;
where Arrowable<pointer, const value type&>;
where Convertible<postincrement result, const X&>;

};

template <typename X>
concept MutableForwardIterator : ForwardIterator<X>,
concept MutableForwardIterator : BasicOutputIterator<X> {

where reference == value type&;
where Arrowable<pointer, value type&>;

};

The remaining iterator concepts require relatively straightforward translations, requiring no new features. Again, the
standard’s requirements tables express both mutable and non-mutable versions of the concepts, which we present as
separate concepts.

Table 76,Bidirectional Iterator
requirements [Int98]

operation type
−−r X&
r−− convertible toconst X&
∗r−− convertible toT

TypeX is a model ofBidirectional Iterator, T
is the value type ofX, andr is a non-constant

reference to anX.

template <typename X>
concept BidirectionalIterator : ForwardIterator<X> {

typename postdecrement result = X;
where Dereferenceable<postdecrement result, value type>;
where Convertible<postdecrement result, const X&>;

X& operator −−(X&);
postdecrement result operator −−(X&, int );

};

template <typename X>
concept MutableBidirectionalIterator :

BidirectionalIterator<X>,
MutableForwardIterator<X> {

where reference == value type&;
where Arrowable<pointer, value type&>;

};
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Table 77,Random Access Iterator
requirements [Int98]

operation type
r += n X&
a + n X
n + a
r −= n X&
a − n X
b − a Distance
a[n] convertible toconst T&
a < b convertible tobool
a > b convertible tobool
a >= b convertible tobool
a <= b convertible tobool

TypeX is a model ofRandom Access
Iterator, T is the value type ofX, a andb are

values of typeX, coder is a non-constant
reference to anX, Distance is the difference
type ofX, andn is a value of typeDistance.

template <typename X>
concept RandomAccessIterator : BidirectionalIterator<X>,
concept RandomAccessIterator : LessThanComparable<X> {

X& operator +=(X&, difference type);
X operator +(X, difference type);
X operator +(difference type, X);
X& operator −=(X&, difference type);
X operator −(X, difference type);
difference type operator −(X, X);
reference operator [](X, difference type);

};

template <typename X>
concept MutableRandomAccessIterator :

RandomAccessIterator<X>,
MutableBidirectionalIterator<X> {

where reference == value type&;
where Arrowable<pointer, value type&>;

};

To improve backward compatibility, a set of model templates are provided by the standard library to adapt existing
iterators (based oniterator traits) to the new iterator concepts. Each model template is constrained by awhere clause
that checks the iterator category against the standard tag clauses to determine which standard library iterator concepts
it models. ForForward Iterator and the concepts that refine it, mutability is determined by comparing the iterator’s
reference type againstvalue type&. The IteratorTraits concept provides a simplified way to accessiterator traits. Also,
if iterator traits<Iter> is not valid for some typeIter, there is no error: the modelIteratorTraits<Iter> simply doesn’t
exist, and so the compatibility models for the new iterator concepts for that type are also disabled without error.

template <typename Iter>
struct concept IteratorTraits {

typename iterator category = iterator traits<Iter>::iterator category;
typename value type = iterator traits<Iter>::value type;
typename difference type = iterator traits<Iter>::difference type;
typename pointer = iterator traits<Iter>::pointer;
typename reference = iterator traits<Iter>::reference;

};

template <IteratorTraits ! Iter>
where { Convertible<iterator category, input iterator tag>}
concept InputIterator<Iter> {

typedef IteratorTraits<Iter>::value type value type;
typedef IteratorTraits<Iter>::difference type difference type;
typedef IteratorTraits<Iter>::pointer pointer;
typedef IteratorTraits<Iter>::reference reference;

};

template <IteratorTraits ! Iter>
where { Convertible<iterator category, input iterator tag>,
where { Convertible<iterator category, forward iterator tag>}
concept ForwardIterator<Iter> {

typedef IteratorTraits<Iter>::value type value type;
typedef IteratorTraits<Iter>::difference type difference type;
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typedef IteratorTraits<Iter>::pointer pointer;
typedef IteratorTraits<Iter>::reference reference;

};

template <IteratorTraits ! Iter>
where { Convertible<iterator category, input iterator tag>,
where { Convertible<iterator category, forward iterator tag>,
where { reference == value type&}
concept MutableForwardIterator<Iter> {

typedef IteratorTraits<Iter>::value type value type;
typedef IteratorTraits<Iter>::difference type difference type;
typedef IteratorTraits<Iter>::pointer pointer;
typedef IteratorTraits<Iter>::reference reference;

};

// Similar model templates for BidirectionalIterator and
// RandomAccessIterator

A.3 Container concepts

As the current standard does not have algorithms using container concepts, they were not implemented in the library for
ConceptGCC. Hypothetical versions of them are presented here to show that they can be expressed in ConceptGCC,
however. TheSequence concept shows that a concept can require polymorphic functions, including member functions
and constructors.
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Table 68,Sequence
requirements [Int98]

expression return type

X(n, t)
X a(n, t)
X(i, j)
X a(i, j)
a.insert(p, t); iterator
a.insert(p, n, t); void
a.insert(p, i, j); void
a.erase(q); iterator
a.erase(q1, q2); iterator
a.clear(); void
a.assign(i, j); void
a.assign(n, t); void

TypeX is a model ofSequence, a is a
value of typeX, n is a value of type

X::size type, t is a value of type
X::value type, p is a valid iterator ofa, q

is a dereferenceable iterator ofa,
[q1, q2) is a valid range ina, i andj
denote iterators satisfying the input

iterator requirements, and[i, j) denotes a
valid range.

template <typename X>
concept Sequence: Container<X> {

X::X(size type n, value type t);

template <InputIterator InputIter>
where { Convertible<InputIterator<InputIter>::value type,
where { Convertible<value type> }
X::X(InputIter a, InputIter b);

iterator X::insert(iterator p, value type t);
void X::insert(iterator p, size type n, value type t);

template <InputIterator InputIter>
where { Convertible<InputIterator<InputIter>::value type,
where { Convertible<value type> }
void X::insert(iterator p, InputIter a, InputIter b);

iterator X::erase(iterator q);
iterator X::erase(iterator q1, iterator q2);
void X::clear();

template <InputIterator InputIter>
where { Convertible<InputIterator<InputIter>::value type,
where { Convertible<value type> }
void X::assign(InputIter i, InputIter j);

void X::assign(size type n, value type t);

where MutableForwardIterator<iterator>;
where ForwardIterator<const iterator>;

};

A.4 Models

The definition ofstack, not yet implemented in the concept-enabled standard library, demonstrates that class templates
can also be concept-constrained, including using same-type constraints to express that the container used in a stack
must be able to store the same type as the stack stores.

template <typename T, BackInsertionSequence Seq = std::deque<T> >
where { CopyConstructible<T>, Assignable<T>, typename Seq::value type == T }
class stack {

public :
typedef typename Seq::value type value type;
typedef typename Seq::reference reference;
typedef typename Seq::const reference const reference;
typedef typename Seq::size type size type;
typedef Seq container type;

protected :
Seq c;

public :
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explicit stack(const Seq& = Seq());
stack(const stack&);
stack& operator =(const stack&);
bool empty() const ;
size type size() const ;
value type& top();
const value type& top() const ;
void push(const value type&);
void pop();

};

A stack will have a well-defined equality comparison operator (==) when its element type modelsEquality Comparable.
In this case, thestack itself will also modelEquality Comparable. The same logic applies to the less-than operator (<)
and theLess Than Comparable concept. After the following generic functions are defined, the models of these concepts
for stack are implicit because the concepts are structural:

template <EqualityComparable T, typename Seq>
bool operator ==(const stack<T, Seq>&, const stack<T, Seq>&) { ... }

template <LessThanComparable T, typename Seq>
bool operator <(const stack<T, Seq>&, const stack<T, Seq>&) { ... }

A.5 Algorithms

This section contains (sometimes simplified) definitions of several standard library algorithms, to illustrate how the
introduction ofwhere clauses into the standard library would affect their presentation. The definition of one of the
most basic algorithms,copy(), follows:

template <InputIterator InputIter, typename OutputIter>
where { OutputIterator<OutputIter, value type> }
OutputIter copy(InputIter first1, InputIter last, OutputIter out) {

while (first != last) ∗out++ = ∗first++;
return out;

}

The unarytransform() algorithm introduces function objects, which are identified by theCallable concept family. The
numbered conceptsCallable0, Callable1, Callable2, etc., require that the first type parameter be an object that can be
called with a given set of parameter types (the rest of the type parameters to the concept). Function pointer types and
classes with overloadedoperator ()s are examples ofCallable types.

template <InputIterator InputIter, typename OutputIter, typename UnOp>
where { Callable1<UnOp, reference>,
where { OutputIterator<OutputIter, result type> }
OutputIter transform(InputIter first, InputIter last, OutputIter out, UnOp f) {

while (first != last) ∗out++ = f(∗first++);
return out;

}

The binarytransform() algorithm is the first algorithm to have multiple input iterator types as parameters. Since
each iterator type has avalue type, the algorithm qualifies references tovalue type. TheCallable2 concept is used to
refer to a binary function object.

template <InputIterator InputIter1, InputIterator InputIter2,
template <typename OutputIter, typename BinOp>
where { Callable2<Func, InputIterator<InputIter1>::value type,
where { Callable2<Func, InputIterator<InputIter2>::value type>,
where { OutputIterator<OutputIter, result type> }
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OutputIter transform(InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter out, BinOp f) {
while (first1 != last1) ∗out++ = f(∗first1++, ∗first2++);
return out;

}

Same-type constraints are required by several standard library algorithms, especially those that involve comparing
two sequences. The following declaration of theincludes() algorithm requires that the two input iterator sequences
have the samevalue type.

template <InputIterator InputIter1, InputIterator InputIter2, typename Cmp>
where { InputIterator<InputIter1>::value type == InputIterator<InputIter2>::value type
where { StrictWeakOrdering<Cmp, InputIterator<InputIter1>::value type> }
bool includes(InputIter1 first1, InputIter1 last1, InputIter2 first2, InputIter2 last2, Cmp cmp);

Theadvance function demonstrates the use of concept-based function selection, by providing multiple definitions with
differentwhere clauses.

template <InputIterator Iter>
void advance(Iter& i, difference type n) {

while (n != 0) {++i; −−n;}
}

template <BidirectionalIterator Iter>
void advance(Iter& i, difference type n) {

while (n > 0) {++i; −−n;}
while (n < 0) {−−i; ++n;}

}

template <RandomAccessIterator Iter>
void advance(Iter& i, difference type n) {

i += n;
}
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