
 Date: October 20, 1999
 Project: ISO C++
 Doc. No.: J16/05-0107 = WG21 N1847
 Reply To: Herb Sutter
 (hsutter@microsoft.com)

vector<bool>: More Problems, Better Solutions
(This paper was presented as N1211 at the 1999 Kona meeting, but it didn’t get into the

post-meeting mailing. It’s being reissued without changes as N1847.)

Summary of J16/99-0008 = WG21 N1185

The major issues covered in the earlier paper were:

1. Although the standard lists vector<bool> in Clause 23, vector<bool> is not a container and
vector<bool>::iterator is not a random-access iterator (or even a forward or bidirectional
iterator either, for that matter). This has already broken user code in the field in mysterious ways. The
motivating example from the previous paper was:

// Example 1: Works for every T except bool
//
template<class T>
void g(vector<T>& v) {
 T& r = v.front();
 // ...
}

2. vector<bool> forces a specific (and potentially bad) optimization choice on all users by enshrining
it in the standard. The optimization is premature; different users have different requirements. This too
has already hurt users who have been forced to implement workarounds to disable the ‘optimization’
(e.g., by using a vector<char> and manually casting to/from bool).

3. Yet if we try to fix Problem #1 or #2 we risk breaking code that relies on vector<bool>’s space or
performance characteristics and/or its flip() interface.

New Information

Further discussions have brought the following problems to light:

4. Curiously, vector<bool> is not actually specified, so no current use of it invokes well specified
behavior. Its declaration appears in the standard, but not a single function is specified. Note that the
argument “it’s just the same as vector” fails because a vector<bool> is demonstrably not a
vector: it has a different interface (i.e., flip()), a different structure (e.g., reference is a class, not
a typedef for T&), does not meet the same requirements (e.g., container and iterator requirements), etc.

There are only two ways to fix this particular problem: Complete the specification of
vector<bool>, or remove (not just deprecate) it.

5. Following from the previous point: Since in particular vector<bool>::flip() and
vector<bool>::reference::flip() are actually not specified, it could be argued that Problem
#3 is not a problem at all; that is, even if we removed vector<bool> outright it could only break
user code that relied on incompletely specified behavior anyway.

J16/05-0107 = WG21 N1847 2

Discussion

The container requirements do not allow proxied containers, and a packed representation for
vector<bool> is possible only with proxies. Therefore I think the only known resolutions to this
problem fall into the following categories:

1. Status quo. I now think this is not possible, because vector<bool> shouldn’t be left underspecified.

2. Document the status quo for std::vector<bool>, and finish specifying it. As noted in Dublin,
adding a note that documents Problem #1 is equivalent to saying we made a mistake and we’re proud
of it. Also, we would still have to actually specify vector<bool>. Finally, this does not solve
Problem #2.

3. Fix Problem #1 but keep the packed-representation std::vector<bool> under that name, and
finish specifying it. This is not possible, because the only way to do it is to loosen the container and
iterator requirements in a way that will break much more existing code (e.g., drop the requirement
that container<T>::reference be a T&). Although it was proposed in Dublin that we might
create new requirements for a “proxyable container,” even if this definition existed it wouldn’t solve
Example 1, where the fundamental problem is subtly breaking user code because “not all vectors are
containers” and which problem would be unchanged.

4. Keep the packed-representation std::vector<bool> under another name and document that it’s
not a container, and finish specifying it. This would solve all problems. It was proposed in Dublin
that we might rename vector<bool> to something else (e.g., bitstring). I think I have a better
solution: Move it into a nested namespace within namespace std, say std::packed. The code in
Example 1 would now work for all types, without surprises. This technique also solves Problem #3,
because any existing code that might want the packed representation or the flip() interface still
works as written after writing using namespace std::packed.

5. Deprecate std::vector<bool>, and finish specifying it. This is a “punt,” and puts us in the odd
position of admitting we made a mistake while at the same time finishing the mistake’s specification
so that it can be used in the meantime. I don’t think this option is viable.

6. Eliminate std::vector<bool>. This solves all problems, including #3 which is addressed by #5.

I think that only variants on Options #4 and #6 are implementable and otherwise viable.

Proposed Resolutions

I propose one of the following two alternative solutions, either of which solves all of the problems. The
first represents the minimum change.

1. Remove 23.2.5 [lib.vector.bool], on the basis that it is broken and breaks user code, and that any
existing code that can tell the difference (i.e., uses flip() or any other part of vector<bool>) is
relying on underspecified behavior anyway.

2. Move vector<bool> into a nested namespace within namespace std (e.g., std::packed), and
finish specifying it. Any existing code that might want the packed representation or the flip()
interface still works as written after writing using namespace std::packed.

