
N1835=05-0095 2005-06-23

<stdint.h> for C++
Steve Clamage, Sun Microsystems

Header <stdint.h>, introduced in C99, provides a portable way for programmers to
specify integers of a needed size. The header consists of typedefs and macros. The
typedefs refer to existing standard types, and possibly to implementation-specific types.
Not all typedefs and macros need to be provided by an implementation. Those which are
not supported can be omitted.

Proposal N1823 “New Character Types in C++” requires some of the typedefs in
<stdint.h>, so adopting <stdint.h> into C++ supports that proposal.

I don't see any conflict with C++ in the C99 specification, so I propose adopting the
specification from C99 as modified by TC1 and TC2, except for the following:

Header <cstdint> puts the declarations described by the C99 standard into namespace
std. The C++ version of <stdint.h> puts the declarations into both the global
namespace and namespace std, as with the other headers inherited from C.

NOTE: If we later decide to do something different with namespaces for the headers
inherited from C, the same would apply to <cstdint> and <stdint.h>.

The relevant pages from the C99 standard, as modified by TC1 and TC2, are attached to
this paper.



WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

7.18 Integer types <stdint.h>

1 The header <stdint.h> declares sets of integer types having specified widths, and
defines corresponding sets of macros.217) It also defines macros that specify limits of
integer types corresponding to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable
constants.

4 For each type described herein that the implementation provides,218) <stdint.h> shall
declare that typedef name and define the associated macros. Conversely, for each type
described herein that the implementation does not provide, <stdint.h> shall not
declare that typedef name nor shall it define the associated macros. An implementation
shall provide those types described as ‘‘required’’, but need not provide any of the others
(described as ‘‘optional’’).

7.18.1 Integer types

1 When typedef names differing only in the absence or presence of the initial u are defined,
they shall denote corresponding signed and unsigned types as described in 6.2.5; an
implementation providing one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with
no leading zeros (e.g., 8 or 24, but not 04 or 048).

217) See ‘‘future library directions’’ (7.26.8).

218) Some of these types may denote implementation-defined extended integer types.

§7.18.1 Library 255



ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

7.18.1.1 Exact-width integer types

1 The typedef name intN_t designates a signed integer type with width N , no padding
bits, and a two’s complement representation. Thus, int8_t denotes a signed integer
type with a width of exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N . Thus,
uint24_t denotes an unsigned integer type with a width of exactly 24 bits.

3 These types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, no padding bits, and (for the signed types) that have a
two’s complement representation, it shall define the corresponding typedef names.

7.18.1.2 Minimum-width integer types

1 The typedef name int_leastN_t designates a signed integer type with a width of at
least N , such that no signed integer type with lesser size has at least the specified width.
Thus, int_least32_t denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width
of at least N , such that no unsigned integer type with lesser size has at least the specified
width. Thus, uint_least16_t denotes an unsigned integer type with a width of at
least 16 bits.

3 The following types are required:

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

7.18.1.3 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest219) to operate
with among all integer types that have at least the specified width.

2 The typedef name int_fastN_t designates the fastest signed integer type with a width
of at least N . The typedef name uint_fastN_t designates the fastest unsigned integer
type with a width of at least N .

219) The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear
grounds for choosing one type over another, it will simply pick some integer type satisfying the
signedness and width requirements.

256 Library §7.18.1.3



WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

7.18.1.4 Integer types capable of holding object pointers

1 The following type designates a signed integer type with the property that any valid
pointer to void can be converted to this type, then converted back to pointer to void,
and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer to void can be converted to this type, then converted back to pointer to void,
and the result will compare equal to the original pointer:

uintptr_t

These types are optional.

7.18.1.5 Greatest-width integer types

1 The following type designates a signed integer type capable of representing any value of
any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t

These types are required.

7.18.2 Limits of specified-width integer types

1 The following object-like macros220) specify the minimum and maximum limits of the
types declared in <stdint.h>. Each macro name corresponds to a similar type name in
7.18.1.

2 Each instance of any defined macro shall be replaced by a constant expression suitable
for use in #if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to

220) C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined
before <stdint.h> is included.

§7.18.2 Library 257



ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

7.18.2.1 Limits of exact-width integer types

1 — minimum values of exact-width signed integer types

INTN_MIN exactly −(2N−1)

— maximum values of exact-width signed integer types

INTN_MAX exactly 2N−1 − 1

— maximum values of exact-width unsigned integer types

UINTN_MAX exactly 2N − 1

7.18.2.2 Limits of minimum-width integer types

1 — minimum values of minimum-width signed integer types

INT_LEASTN_MIN −(2N−1 − 1)

— maximum values of minimum-width signed integer types

INT_LEASTN_MAX 2N−1 − 1

— maximum values of minimum-width unsigned integer types

UINT_LEASTN_MAX 2N − 1

7.18.2.3 Limits of fastest minimum-width integer types

1 — minimum values of fastest minimum-width signed integer types

INT_FASTN_MIN −(2N−1 − 1)

— maximum values of fastest minimum-width signed integer types

INT_FASTN_MAX 2N−1 − 1

— maximum values of fastest minimum-width unsigned integer types

UINT_FASTN_MAX 2N − 1

7.18.2.4 Limits of integer types capable of holding object pointers

1 — minimum value of pointer-holding signed integer type

INTPTR_MIN −(215 − 1)

— maximum value of pointer-holding signed integer type

INTPTR_MAX 215 − 1

258 Library §7.18.2.4



WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

— maximum value of pointer-holding unsigned integer type

UINTPTR_MAX 216 − 1

7.18.2.5 Limits of greatest-width integer types

1 — minimum value of greatest-width signed integer type

INTMAX_MIN −(263 − 1)

— maximum value of greatest-width signed integer type

INTMAX_MAX 263 − 1

— maximum value of greatest-width unsigned integer type

UINTMAX_MAX 264 − 1

7.18.3 Limits of other integer types

1 The following object-like macros221) specify the minimum and maximum limits of
integer types corresponding to types defined in other standard headers.

2 Each instance of these macros shall be replaced by a constant expression suitable for use
in #if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign. An
implementation shall define only the macros corresponding to those typedef names it
actually provides.222)

— limits of ptrdiff_t

PTRDIFF_MIN −65535
PTRDIFF_MAX +65535

— limits of sig_atomic_t

SIG_ATOMIC_MIN see below
SIG_ATOMIC_MAX see below

— limit of size_t

SIZE_MAX 65535

— limits of wchar_t

221) C++ implementations should define these macros only when __STDC_LIMIT_MACROS is defined
before <stdint.h> is included.

222) A freestanding implementation need not provide all of these types.

§7.18.3 Library 259



ISO/IEC 9899:TC2 Committee Draft — May 6, 2005 WG14/N1124

WCHAR_MIN see below
WCHAR_MAX see below

— limits of wint_t

WINT_MIN see below
WINT_MAX see below

3 If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of
SIG_ATOMIC_MIN shall be no greater than −127 and the value of SIG_ATOMIC_MAX
shall be no less than 127; otherwise, sig_atomic_t is defined as an unsigned integer
type, and the value of SIG_ATOMIC_MIN shall be 0 and the value of
SIG_ATOMIC_MAX shall be no less than 255.

4 If wchar_t (see 7.17) is defined as a signed integer type, the value of WCHAR_MIN
shall be no greater than −127 and the value of WCHAR_MAX shall be no less than 127;
otherwise, wchar_t is defined as an unsigned integer type, and the value of
WCHAR_MIN shall be 0 and the value of WCHAR_MAX shall be no less than 255.223)

5 If wint_t (see 7.24) is defined as a signed integer type, the value of WINT_MIN shall
be no greater than −32767 and the value of WINT_MAX shall be no less than 32767;
otherwise, wint_t is defined as an unsigned integer type, and the value of WINT_MIN
shall be 0 and the value of WINT_MAX shall be no less than 65535.

7.18.4 Macros for integer constants

1 The following function-like macros224) expand to integer constants suitable for
initializing objects that have integer types corresponding to types defined in
<stdint.h>. Each macro name corresponds to a similar type name in 7.18.1.2 or
7.18.1.5.

2 The argument in any instance of these macros shall be a decimal, octal, or hexadecimal
constant (as defined in 6.4.4.1) with a value that does not exceed the limits for the
corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expression
suitable for use in #if preprocessing directives. The type of the expression shall have
the same type as would an expression of the corresponding type converted according to
the integer promotions. The value of the expression shall be that of the argument.

223) The values WCHAR_MIN and WCHAR_MAX do not necessarily correspond to members of the extended
character set.

224) C++ implementations should define these macros only when __STDC_CONSTANT_MACROS is
defined before <stdint.h> is included.

260 Library §7.18.4



WG14/N1124 Committee Draft — May 6, 2005 ISO/IEC 9899:TC2

7.18.4.1 Macros for minimum-width integer constants

1 The macro INTN_C(value) shall expand to an integer constant expression
corresponding to the type int_leastN_t. The macro UINTN_C(value) shall expand
to an integer constant expression corresponding to the type uint_leastN_t. For
example, if uint_least64_t is a name for the type unsigned long long int,
then UINT64_C(0x123) might expand to the integer constant 0x123ULL.

7.18.4.2 Macros for greatest-width integer constants

1 The following macro expands to an integer constant expression having the value specified
by its argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified
by its argument and the type uintmax_t:

UINTMAX_C(value)

§7.18.4.2 Library 261


