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Abstract 
We describe a design of “concepts” (a type system for types) for improved 
support of generic programming in C++. This paper presents a current best-effort 
design based on previous work followed by lengthy discussions of technical 
details. The design is based on the principles that simple things should be simple 
(whereas more advanced programming techniques may require some extra work), 
that there should be no performance degradation compared to current template 
techniques, and that essentially all current template techniques should be 
improved by the use of concepts. The design achieves perfect checking of 
separately compiled templates at the cost of minor restrictions on the instantiation 
mechanism.  

Changes for Rev. 1 
We have corrected and clarified many points, cleaning up the presentation. 
We have strengthened the argument for optional asserts in appendix A. 
We have explained the use of negative asserts and their importance (Section ???). 
We have factored out the (still incomplete) discussion of combinations of 
concept-checked and old-style template parameters (Appendix C). 
We addressed the issue of how to deal with concepts that differ only in semantic 
(Section ???). 

1 Introduction 
This paper describes a best-effort design of concepts for C++. For clarity, most 
discussion of alternatives are placed elsewhere [Stroustrup, 2003a-c] and motivation is 
kept brief. We do not assume that this design is perfect; rather, our assumption is that 
progress can best be made based on a clearly stated concrete design. The design is based 
on previous work, including [Stroustrup, 2003a-c], [Siek, 2005].  
“Concepts” is a type system for C++ types. Its main aims are 
 

• Perfect separate checking of template definitions and template uses 
• No performance degradation compared to C++ that doesn’t use concepts 
• Simplify all major current template programming techniques 
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• No loss of expressiveness compared to current template programming techniques 
• Simple tasks are expressed simply (close to a logical minimum) 

 
We consider the design coherent and also complete in the sense that it addresses all the 
major issues people usually bring up in the context of concept. 
 
It has been suggested [Siek, 2005] that the word “constraints” is a better characterization 
for “concepts” than “types of types” [Stroustrup, 2003a]. However, a concept describes 
the (syntactic and semantic) properties of a type. That’s the traditional role of types; for 
example, the type of a variable describes its syntactic and semantic properties. A concept 
does more than simply constrain a type. 
 
The order of topics aims to reflect the likely number of people directly affected: 
  

• §2-5 – Use and definition of concepts 
• §6-7 – Technical details 
• §8 – Concepts in the specification of the STL 

 
Appendices 

• A – Why asserts must be optional 
• B – Haskell type classes 
• C – Mixing concept parameters and unconstrained parameters (incomplete) 
• D – semantics properties in concepts (incomplete) 

 

2 Using concepts 
First we show some uses of concepts (types of types); later, we show how to define them. 
 

2.1 Catching errors early 
Consider the STL fill(): 
 

template<class ForwardIterator, class ValueType> 
void fill(ForwardIterator first, ForwardIterator last, const ValueType & v) 
{ 
 while (first!=last) { *first = v; ++first; } 
} 
 

The names ForwardIterator and ValueType are descriptive and their requirements are 
specified in the standard. However, those requirements are not known to the compiler. 
Using concepts, we can express the requirements of fill()’s arguments directly: 
 

template<Forward_iterator For, Value_type V> 
where Assignable<For::value_type,V> 

void fill(For first, For last, const V& v) 
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{ 
 while (first!=last) { *first = v; ++first; } 
} 

 
That is, The first two arguments of fill() must be of the same type and that type must be a 
Forward_iterator. The third argument must be of a Value_type and it must be possible 
to assign an object of the Value_type to an object of the Forward_iterator’s 
value_type. This is exactly the standards requirements. 
 
Note in particular that it is not possible to state the standard’s requirements purely on 
each argument type in isolation from the other. The assignment is an essential and 
reasonable part of fill()’s specification that can only be stated as a relationship between 
the argument types. For example, the Forward_iterator could be a double* and the 
Value_type a short. 
 
The use of a concept as the type of a template parameter type is simply a shorthand for 
expressing it as a predicate. For example, this – more longwinded – version of fill() is 
equivalent to the last: 
 

template<class For, class V> 
where Forward_iterator<For> 

&& Value_type<V> 
&& Assignable<For::value_type,V> 

void fill(For first, For last, const V& v) 
{ 
 while (first!=last) { *first = v; ++first; } 
} 
 

We can read this as “for all types For and for all types V, such that For is a 
Forward_iterator and V is a Value_type and a V can be assigned to a 
For::value_type”. If you like Math, you’ll find the formulation familiar. When looking 
at templates and concepts, it is useful to remember that <class T> means “for all types T” 
and <X T> means “for all types T, such that T is an X”. 
 
Note the way <class T> allows every possible operation on T to be written in the 
template definition whereas <C T> allows only operations explicitly specified by C to be 
used. So (as ever), if a template specifies a parameter <class T> (or equivalently 
<typename T>), absolutely every type can be passed as a template argument and the 
template definition may apply absolutely any operation to it (checking comes later when 
we know an actual type). When we add a where clause, such as C<T>, we constrain 
arguments to types for which C<T> is true and limit the operations that the template 
definition can apply to T to those specified in C. 
 
We consider the use of Assignable, that is “can be assigned using =” typical. The simpler 
test “the types are the same” (see Section 7.4) is far less frequent in common C++ usage. 
Similarly, “comparable to” or “convertible to” are far more important than “same type” 
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constraints. Obviously, this complicates specifications and checking, but this has been a 
fact of life in C and C++ for more than 25 years, so we have to deal with it.  For a further 
simplification/refinement of the specification of fill(), see Appendix C. 
 

2.1.1 Use errors 
Consider some errors: 
 

int i = 0; 
int j = 9; 
fill(i, j, 9.9); 

 
The “old style” first definition of fill() has no problems with this until we come to 
dereference first: *first=v; we can’t dereference an int. Unfortunately, this is discovered 
only at the point of instantiation and is reported (typically obscurely) as an illegal use of 
*. Using concepts, however, the second “new style” definition of fill() will give an error 
at the point of use: an int is not a Forward_iterator because it lacks the dereference 
operation *. 
 
The logical distinction becomes obvious if we have only a declaration and not a 
definition of fill() available at the point of call: 
 

template<class ForwardIterator, class ValueType> 
void fill(ForwardIterator first, ForwardIterator last, const ValueType & v);  

 
int i = 0; 
int j = 9; 
fill(i, j, 9.9); 
 

There is nothing here to allow the compiler to diagnose an error. To contrast: 
 

template<Forward_iterator For, Value_type V> 
where Assignable<For::value_type,V> 

void fill(For first, For last, const V& v);  
 

int i = 0; 
int j = 9; 
fill(i, j, 9.9); 
 

Here the compiler knows that For must be a Forward_iterator and can easily determine 
that int is not a Forward_iterator. 
 
On the other hand, consider: 
 

int* i = &v[0]; 
int* j = &v[9]; 
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fill(i, j, 9.9); 
 
This will work with both definitions of fill() and generate the same code. The only 
difference is that when we use the “new style” concept-based definition, we know that 
the code will compile as soon as we have checked the point of call. 
 
Note that the size of the new style and old style declarations are quite similar: (23 tokens, 
124 characters) vs. (32 tokens, 122 characters). 
 

2.1.2 Definition errors 
In addition to catching errors at the point of use of a template, concept checking catch 
errors in the definition of a template. Consider  

 
template<Forward_iterator For, Value_type V> 

where Assignable<For::value_type,V> 
void fill(For first, For last, const V& v) 
{ 
 for (; first<last; --last) *last=v; 
} 

 
This will not compile because a parameter defined using a concept can only use 
properties defined for that concept. The concept Forward_iterator provides ++ and != 
but not -- or <. The only operations that can be used for a parameter defined using a 
concept are those defined in the concept (see Section 7 for details). Any use beyond that 
causes the definition not to compile. 
 

2.2 Overloading on concepts 
Overloading of templates has been confounded by the fact that there is no general way of 
choosing between two templates with the same number of template parameters. For 
example, we’d like to have versions of sort() that apply directly to a container and 
versions of sort() that accept bi-directional iterators, in addition to the current Standard 
versions that take random access iterators: 
 

template<class RandonAccessIterator> 
void sort(RandonAcessIterator first, RandonAcessIterator last); 

template<class RandonAcessIterator, class Compare> 
void sort(RandonAcessIterator first, RandonAcessIterator last,  

Compare comp); 
 

template<class BidirectionalIterator> 
void sort(BidirectionalIterator first, BidirectionalIterator last); 

template<class BidirectionalIterator, class Compare> 
void sort(BidirectionalIterator first, BidirectionalIterator last,  

Compare comp); 
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template<class Container> void sort(Container c); 
template<class Container, class Compare> 

void sort(Container c, Compare comp); 
 
Note that because template parameter names are not semantically significant, we did not 
– despite appearances – manage to define separate versions of sort() for random access 
and bi-directional iterators. This can be achieved only through a combination of traits and 
reliance on language subtleties. Consider how you would ensure that these calls are 
appropriately resolved: 
 
 void f(list<double>& ld, vector<int>& vi, Fct f) 
 { 
  sort(ld.begin(), ld.end()); // call bi-directional iterator version 
  sort(ld); 
  sort(vi); 
  sort(vi, f);   // call container version  
  sort(vi.begin(), vi.end()); // call random access iterator version 
 } 
 
Given ingenuity and time, it can be done. However, many standard library algorithms 
have restrictions on their interfaces that can be best explained as implementation 
complexity showing through in the interface. 
 
Using concepts we get: 
 

template<Randon_access_iterator Iter> void sort(Iter first, Iter last); 
template<Randon_access_iterator Iter, Compare Comp> 
 where Convertible<Comp::argument_type,Iter::value_type> 
void sort(Iter first, Iter last, Comp comp); 

 
template<Bidirectional_iterator Iter> void sort(Iter first, Iter last); 
template<Bidirectional_iterator Iter, Compare Comp> 
 where Convertible<Comp::argument_type, Iter::value_type> 
void sort(Iter first, Iter last, Comp comp); 

 
template<Container Cont> void sort(Cont c); 
template<Container Cont, Compare Comp> 
 where Convertible<Comp::argument_type, Cont::element_type> 
 void sort(Cont c, Comp comp); 

 
Now the example calls are easily resolved based on the knowledge that vector and list 
are containers (and not iterators) and that vector iterators are random access iterators 
whereas list iterators are (just) bidirectional iterators. 
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The same overloading mechanism provides a straightforward solution to the 
implementation of advance() that currently requires a trait class: 
 

template<Forward_iterator Iter> void advance(Iter& p, int n) 
{ 
 for (int i=0; i<n; ++i) ++p; 
} 
 
template<Random_iterator Iter> void advance(Iter& p, int n) 
{ 
 p += n; 
} 

 
 void f(list<double>& ld, vector<int>& vi) 
 { 
  auto p = ld.begin(); 
  auto q = vi.begin(); 
  // … 
  advance(p, 7); // Forward_iterator version 
  advance(q, 3); // Random_iterator version 
 } 
 
This implies that many problems that currently require traits can be expressed as simple 
overloading (or specialization; see sections 6.3-6.4) without the need for auxiliary traits 
classes. Basically, concepts act as traits for the purpose of “dispatching” or rather traits is 
a technique for dispatching on types. 
 

2.3 The “do the right thing” wart 
Consider this fraction of the standard library vector and an example of its use: 
 

template<class T> class vector { 
 // … 
 vector(size_type n, const value_type& x = value_type()); 
 template<class InputIterator> 

vector(InputIterator first, InputIterator last); 
}; 
 
vector<int>(100,1); 

 
For this source code, the template constructor will be chosen over the non-template one 
because size_type is an unsigned type so that the non-template constructor requires a 
conversion. Usually, that is not what the user intended, but fortunately that use of the 
template constructor will not compile. The library has the “do the right thing” rule 
specifically to handle this problem. Such special rules are warts. Concepts provide a 
straight forward alternative: 
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template<Value_type T> class vector { 
 // … 
 vector(size_type n, const value_type& x = value_type()); 
 template<Input_iterator Iter> vector(Iter first, Iter last); 
}; 
 
vector<int>(100,1); 

 
Again, int isn’t an Input_iterator so the template constructor will not be called. 
 

2.4 Helper functions: Advance 
For entities dependent on a template parameter specified using concepts, a template 
definition can use only operations specified for those concepts. However, a template 
definition is not restricted to use only members of the template parameter types. As ever, 
we can call functions that take arguments of template parameter types. For example: 
 

template<Forward_iterator Iter> Iter advance(Iter p, int n) 
{ 
 while (n-->0) ++p; 
 return p; 
} 
 
template<Forward_iterator Iter> void foo(Iter p, Iter q) 
{ 
 // … 
 Iter pp = advance(p,4); 
 // … 
} 

 
The details of how overloading of advance() is handled (without loss of generality or 
performance compared to current usage) are in Sections 6.3-6.5. 
 

3 Defining concepts 
So, how do we define a concept? We simply list the properties (functions, operations, 
associated types) required: 
 

concept Forward_iterator<class Iter>{ // see also Section 8 
 Iter p;    // uninitialized 
 Iter q =p;   // copy initialization 
 p = q;    // assignment 
 Iter& q = ++p;  // can pre-increment, 

// result usable as an Iter& 
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 const Iter& cq = p++; // can post-increment 
     // result convertible to Iter 
 bool b1 = (p==q);  // equality comparisons, 

// result convertible to bool 
 bool b2 = (p!=q); 
 Value_type Iter::value_type; // Iter has a member type value_type, 
      // which is a Value_type 
 Iter::value_type v = *p; // *p is assignable to Iter’s value type 
 *p = v;    // Iter’s value type is assignable to *p 
}; 

 
Basically, a concept is a predicate on one or more types (or values). At compile time, we 
determine if the arguments have the properties defined in the body of the concept. The 
parameters (formal arguments) have the same form as template parameters, but note that 
a concept parameter has no properties beyond the ones explicitly mentioned, thus: 
 
 concept No_op<class T> { }; 
 
This defines a concept No_op that defines no properties for T: Any type is a No_op, but 
since no operations can be used on a No_op, a No_op parameter is useless except as a 
place holder. 
  
The concept body for Forward_iterator is roughly a copy of the syntactic part of the 
standard’s requirements tables relating to a forward iterator. With two exceptions the 
notation is just the ordinary. For example p!=q simply says that two Forward_iterators 
can be compared with != and that the result can be converted to bool. Note that this says 
nothing about exactly how != is implemented for a type T. In particular, != need not be a 
member function or take an argument of type const T& or return a bool. All the usual 
implementation techniques can be used [Stroustrup, 2003a]. Note also that we specify 
only that the result can be converted to a bool; no other operations are required for or 
allowed on the result of p!=q. See also §6.6. 
 
Here, 

Iter p; 
 
introduces the name p of type Iter for us to use when expressing concept rules. It does 
not state that an Iter require a default constructor. That would be expressed as 
 
 Iter(); 
 
or 
 Iter p = Iter(); 
 
This overloading of the meaning of Iter p; is unfortunate, and could be eliminated by 
some special syntax, such as 
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 unitinitalized Iter p; 
 (Iter p); 
 Var<Iter> p; 
 
Such new syntax has its own problems, however. 
 
The declaration, 
 
 Value_type Iter::value_type; 
 
states that the member name value_type must be applicable for a Forward_itarator in a 
template definition. By default, that means that Iter must have a member type 
Iter::value_type. However, there is a way to make value_type refer to the type T for a 
pointer type T* (Section 4). Such types are often called “associated types” [Siek, 2005]. 
 
Note that we require that we can say Iter&. By itself, that means that Iter cannot be void 
(because void& is not valid). Similarly, had we required Iter*, that would have implied 
that Iter couldn’t be a reference (because T&* is not valid). 
 
Expressions within concept definitions, except the ones in where clauses, are not 
evaluated. “Concepts” is a purely compile-time mechanism. 
 
Basically, a concept expresses the required properties for a type as a series of examples of 
its use – through a usage patterns. For each operation the minimal requirements on the 
operand types and (optionally) the minimal requirements on a return type are specified.. 
The usage patterns used to define concepts here is one of two obvious and roughly 
equivalent alternative notations [Stroustrup, 2003a]. We prefer it to the alternative 
(abstract signatures) because we consider it a simpler and more direct notation; see also 
section ???. 
 

3.1 Applying concepts 
The concept Forward_iterator defines a predicate – a mapping from the single type Iter 
to true or false. For a type X, Forward_iterator<X> may be true if X has the properties 
required by the concept. For details of when and how such predicates can be used, see 
Section 4; for now, consider an example: 
 

class Ptr_to_int { 
 typedef int value_type; 
 Ptr_to_int& operator++();  // ++p 
 Pter_to_int operator++(int); // p++ 
 int& operator*();   // *p 
 // … 
}; 
 
bool operator==(const Ptr_to_int&, const Ptr_to_int&); 
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bool operator!=(Ptr_to_int, Ptr_to_int); 
 
Is Ptr_to_int a Forward_iterator? It may be because 
 

• it provides the two increment operators 
• it provides the dereference operator 
• It has the default copy operators 
• It has the member typedef value_type  
• the int returned by * has the default copy operations 
• the two equality operations == and != are defined by the global functions 
• these operations have return types that can be used as specified 

 
See Section 4 for more details. 
 

3.2 Composing concepts 
Requirements are usually not simple lists of individual attributes; they are partially 
composed out of other requirements that we have found widely useful and named. We do 
the same for concepts. For example: 
 

concept Assignable<class T, class U = T> { 
 T a; 

U b; 
 a = b; // can assign 
}; 
 

In addition to be used in template definitions, a concept can be used to define other 
concepts: 

 
concept Copyable<class T, class U = T> 

where Assignable<T,U> { 
 U a; 
 T b = a; // can copy construct 
}; 
 

A concept that can be used as a predicate of a single argument can be used as the type of 
a concept argument, exactly as it can for a template parameter: 

 
concept Trivial_iterator<Copyable Iter> { 
 typename Iter::value_type; // value_type names a type 
 Iter p; 
 Iter& r = ++p; 
 const Iter& = p++; 
}; 
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Here, a Trivial_iterator<T> must for starters be Copyable<T>. In addition, it must 
provide the name value_type and the increment operators.  
 

concept Output_iterator<Copyable Iter> { 
 Iter p; 

Value_type Iter::value_type; 
Iter::value_type v; 
*p = v;   // we can write 
// we can’t compare output iterators 

}; 
 

Here, Output_iterator adds a requirement on the value_type: it must be a Value_type. 
For a Trivial_iterator, absolutely any type could be the value_type and consequently a 
template definition could not use any operation on it at all (none is guaranteed to be 
provided). By requiring a Value_type, Output_iterator limits the kind of type that can 
be its value_type while ensuring that it can use copy operation. 
 
If more requirements are needed for a concept parameter, we use a where clause exactly 
as for template arguments: 
 

concept Input_iterator<Trivial_iterator Iter> 
where Equal_comparable<Iter> { 

 Iter p; 
Iter::value_type v = *p; // we can read  

}; 
 
Alternatively, we can use && to express that a concept is built out of two other concepts: 

 
concept Forward_iterator<Input_iterator && Output_iterator Iter>  { 
}; 
 
concept Bidirectional_iterator<Forward_iterator Iter>  { 
 Iter p; 

Iter& r1 = --p;    
 const Iter& r2 = p--;   
}; 
 
concept Random_access_iterator<Bidirectional_iterator Iter> { 
 Iter p;     
 p = p+1;    // can add an int 
 p = p-2;    // can subtract an int 
 Iter::value_type v = p[3];  // can subscript with an int 
}; 

 
Here 1, 2, and 3 are just examples of ints used to express a usage pattern. If you like, you 
can think of an integer literal used in a concept as “any int”. 
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We chose to use where clauses, rather than inheritance to express that a concept includes 
the properties of others. This mostly reflects a syntactic preference, but since no issues of 
overriding is involved, the predicate syntax seems more natural. 

 

3.2.1 General predicates 
Predicates that say that a given type is an example of a concept are central to concept 
checking, but they are not the only predicates involving types. As shown, template 
functions require certain relations among their argument types. The standard library 
find() is another example: 
 

template<Forward_iterator For, Value_type V> 
where EqualComparable<For::value_type,V> 

For find(For first, For last, const V& v)  
{ 
 while (first!=last && *first!=v) ++first; 
 return first; 
} 
 

We can define EqualComparable<class T, class U> like this: 
 

concept EqualComparable<class T, class U = T> { 
 T t; 
 U u; 
 bool b1 = (t==u); 
 bool b2 = (t!=u); 
}; 

 
Calling EqualComparable a concept could be considered a bit of a misnomer. As 
defined in the context of template argument checking, a concept is really a predicate on a 
single type argument. However, it seems a waste to introduce a new keyword for the 
generalization to more arguments. So, we use the name of the most prominent use, 
“concept”, for the more general notion, “type predicate”. Also, one way of viewing a type 
is exactly as a predicate. 
 
Note that any type that can be a template parameter can be used as a concept parameter. 
This implies that integers can be used as concept arguments. For example: 
 

concept Small<class T, int limit> 
 where sizeof(T)<=limit 
{ 
}; 

 
This might be used for selection like this: 
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template<Value_type T> where Small<T,200> 
void f(const X& a) { X aa = a; /* … */ } 

 
template<Value_type T> where !Small<T,200> 

void f(const X& a) { X& aa = new X(a); /* … */ } 
 
template<Value_type T, int N> struct Array { T a[N]; }; 
 
void g() 
{ 
 Array<double,100> ad; 
 Array<int,10> ai; 
 f(ad); // not small 
 f(ai); // small 
} 
 

In this example, the function f() is overloaded based on the size of its type argument.  It 
does its internal job by allocating temporaries on stack if the type is estimated small, 
otherwise free store.  The overloading is guided by the evaluation of the Small predicate 
(concept).  For more details on concept-based overload resolution, see section 6.3. 
 
 

3.2.2 Use of associated types 
Consider again Forward_iterator. We specified that its associated value_type must be a 
Value_type. That constrains its use to the operations specified by Value_type. For 
example: 
 

template<Forward_iterator Iter1, 
Forward_iterator Iter2, 
Forward_iterator Iter3>  

void f(Iter1 p1, Iter2 p2, Iter3 p3) 
{ 
 int x1 =  (*p1).m;  // maybe m is an int 
 void* x2 = (*p2).m;  // maybe m is a void* 
 int x3 = (*p3).m(7);  // maybe m is a member function 

// taking a double and returning an int 
} 

 
At first glance, the definition of f() looks fine. However, we apply . (dot) to an object of 
Iter’s value_type. But dot is not defined for Value_type, so clearly an error that’s easily 
caught by the concept check. 
 
It is up to the user of a Forward_iterator to specify assumptions about the value_type. 
The obvious place to do that is in function template declarations. For example, we saw 
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how the writer of fill() needed to specify where 
EqualComparable<For::value_type,V> to get complete checking. 
 
Consider a function that traverses sequences and wants to directly read/write a name 
string and also output the elements. We could of course write a function object for doing 
the work and apply that, but let’s do the work directly: 
 

concept Record<class T> { 
 T x; 

string& a = x.name; // can use name as a string (for reading and writing) 
cout << x;  // can use << for some ostream 

}; 
  
template<Forward_iterator Iter> 

where Record<Iter::value_type> 
void f(Iter first, Iter last) 
{ 
 for (; first!=last; ++first) { 
  if ((*first).name<=name) { 

cout<<*first; 
cout << ‘\n’; 

   } 
 } 
} 

 
This f() will handle any sequence of any element type with the desired embers (name of 
type string) and output operation. Applying .mem to a variable of a concept argument is 
a requirement for a type matching the concept to have a member mem. Note that 
requiring a member mem doesn’t make any assumptions about mem’s relative position 
in an object. For example, f() would work equally well with 
 

struct S1 { 
 string name; 
 // … 
}; 
 
ostream& operator<<(ostream&, S1); 
 

 
And 
 

struct S2 { 
 int x,y,z; 
 string name; 
 // … 
}; 
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ostream& operator<<(ostream&,const S2&); 

 
 

It would not work with 
 

struct S1 { 
private: 
 string name; 
 // … 
public: 
 // … 
}; 

 
Properties of a type required by a concept must be public.  
 

4 Which types match a concept? 
We say that a type matches a concept if it meets all of the requirements of the concept. It 
would be simpler and more correct to say that a type was of a concept (e.g. int* is a 
Forward_iterator) in the same way as we say that an object is of a type (e.g. 8800 is an 
int). However, that “is a” would easily be confused with the class hierarchy use of “is a”. 
Others use “models” in much the same way we use “matches”. 
 
How does the compiler know that int* matches Forward_iterator and int doesn’t? The 
compiler does the matching when needed; that is the matching of C<T> for a concept C 
and a type T is done when the predicate is explicitly used in the source code or when T is 
used as the argument to a template requiring a C. Obviously the check for a match is 
done at compile time and needs to be done only once per C<T> combination. If C<T> is 
used many times, the compiler can simply use the answer computed the first time. 
 
Sometime we want to explicitly state that we expect C<T> to be true. If so, we use an 
assert: 
 

static_assert C<T>; 
 
If C<T> is false, the compilation fails. Note that we are using the original and proper 
meaning of an assert: that a predicated must be true or the compilation fails. Therefore, 
we have not compunction about “reusing” the keyword static_assert. 
 
Consider a simple pointer class that can be used as an iterator because it has the required 
operations with the required semantics: 
 

class Ptr_to_int { 
 typedef int value_type; 
 Ptr_to_int& operator++();  // ++p 
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 Pter_to_int operator++(int); // p++ 
 int& operator*();   // *p 
 // … 
}; 
 
bool operator==(const Ptr_to_int&, const Ptr_to_int&); 
bool operator!=(Ptr_to_int, Ptr_to_int); 
 

We can use Ptr_to_int in the obvious way: 
 
 const int max = 100; 

int a[max]; 
Ptr_to_int pi(a); 
Ptr_to_int pi2(a+100); 
fill(pi, pi2, 77); 
 

When the compiler sees the call of fill() it evaluates Forward_iterator<Ptr_to_int> and 
finds that Ptr_to_int has all the operations needed to be a Forward_iterator. 
 
Now consider int*: 
 
 const int max = 100; 

int a[max]; 
fill(a, a+max,77); 

 
Obviously, we want this to compile. We want to accept int* as an iterator, but the 
Forward_iterator concept requires the member name value_type for the type pointed to 
and int* offers no such name. So, as stated so far, int* is not a Forward_iterator. We 
must somehow say that for an int*, the value_type is int. That is done by an assert for 
pointers augmented by a specification of the meaning of value_type for a pointers: 

 
static_assert template<Value_type T>  Forward_iterator<T*> { 
 typedef T* pointer_type; // auxiliary name for predicate argument 
 typedef  T pointer_type::value_type; 
}; 
 

This means that any T* is a Forward_iterator (the compiler checks that the operations 
are provided) and that when we need to use value_type for a T* we use the typedef for 
T. As long as this assert appears lexically before the first use of int* where a 
Forward_iterator is required, all works as expected. 
 
The syntax for naming the value type for a pointer is a bit awkward. We’d have liked to 
say: 
 

static_assert template<Value_type T>  Forward_iterator<T*> { 
 using T*::value_type = T; 
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}; 
 
However, that would combine the new syntax for template aliases with the syntactic 
innovation of applying :: to a type expression. However, writing it this way may help 
show what’s really going on: When we are compiling a template definition that requires a 
Forward_iterator and the template argument is a pointer, we use value_type as if it was 
a member of the T*  meaning T. 
 
If desired, a user can provide asserts for a wide variety of concept type combinations. 
Some users will want to make such assertions to make their intent more explicit. For 
example, if a Ptr_to_int is intended to be used as a Forward_iterator a user may  like to 
assert that: 
  

static_assert Forward_iterator<Ptr_to_int>; 
 

That way, any deficiency of Ptr_to_int when – as intended – it is used as a 
Forward_iterator is caught before anyone tries to use it. 
 
However, explicit asserts are not required except where needed to map properties of a 
type to the requirements of a concept. Consistent use of static_assert is unmanageable 
and complete use is impossible for the current range of generic programming techniques; 
see Appendix A. 
 

4.1 Negative assertions 
We can assert that something is not true. For example: 
 
 static_assert !Forward_iterator<My_iterator>; 
 
This says that the compiler should not (ever) evaluate the predicate 
Forward_iterator<My_iterator> but consider it false whenever it occurs. That assert 
does not mean “evaluate the predicate and give an error if it is true”. The main point of a 
negative assertion is to give the compiler information that it might have problems 
figuring out for itself. For example, My_iterator might be a type that required complex 
template instantiation that we specifically don’t want done or maybe My_iterator does 
have the syntactic properties of a Forward_iterator, but for some semantic reason we 
don’t want it considered a Forward_iterator (see 6.6). 
 
Note that by making a negative assertion we can enforce the use of (positive) asserts for a 
concept. For example: 
 
 static_assert template<class T> !C<T>; // in general a T isn’t a C 
 // ... 
 static_assert C<My_type>; // but My_type is a C 
 
See 6.6. 
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4.2 Assertion checking 
An assert appears at a specific place of a program. However, the complete 
implementation of a template that it makes an assertion about may be scattered all over 
the program. For example: 
 

template<Value_type T> class Ptr { 
 T* p; 
 // … 
 Ptr(T* pp) : p(pp) { /* … */ } 
 void release(); 
 void rebind(T*); 
 T* peek(); // defined in somewhere_else.cpp 
 // … 
}; 
 
template<Value_type T> void Ptr<T>::release() { /* … */ } 
 
static_assert Forward_iterator<Ptr<My_type>>; 
 
template<Value_type T> void Ptr<T>::rebind(T* pp) { /* … */ } 

 
We suggest that the assert triggers a check of the class and every member function in 
scope. Member functions that are not in scope of the assert as not checked until they are 
used, where the concept checking will be implicitly done. 
 
 
 

5 FAQ 
One paper can’t answer all questions and especially can’t answer all questions 
exhaustively. So here are a few key questions with brief answers: 
 

• What’s concepts good for? They allow us to get much better error messages when 
using templates, and to get those error messages as we compile individual source 
files, rather than later during linking. They allow us to write much simpler generic 
code, eliminating most traits, helper functions, and “enable if” workarounds. 

• Why aren’t constraints classes and archetypes sufficient? Constraints classes 
(concept classes) are part of the definition of templates, not part of their 
declaration (interface). A constraints class can detect the lack of an operation 
early, but can’t catch the use of an unspecified operation that happens to be 
available to a given type. Archetypes (used to address that last problem) are hard 
to write and require a special effort to use. 
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• Why don’t we just do “conventional type checking” and specify the exact type of 
every operation? After all that’s easy to implement, easy to understand, and 
“that’s what everybody else does”. Because we’d loose most of generic 
programming, because the rules for C++ built-in types are defined in terms of 
conversions (not of type equality), and because C++ use depends on overloading. 
If that’s what we want, we can use abstract classes. 

• Why do we use usage patterns to define concept constraints rather than abstract 
signatures? Because they are easier to write, easier to read, a terser notation, and 
require less language invention than the alternative: abstract signatures. (Abstract 
signatures can be seen as the assembly code for usage patterns; see ???). 

• How can I be sure that my templates are checked at compile time rather then later 
at instantiation time? Make sure every template type parameter has a concept. 

• Why don’t we specify the concept as part of a type declaration? Because then we 
end up with the rigid hierarchical structures of object-oriented programming. If 
that’s what we want, we can use inheritance. 

• Why don’t we require explicit “matching” (modeling) declarations to associate 
types with concepts? Because programs with sufficient assertions of this kind 
becomes unmanageable. 

• Is the matching simply “structural conformance”? No. By using static_asserts 
and where clauses we manipulate the type system based on named predicates. 

• Does concept use involve overheads compared to ordinary class parameters? No. 
• Does concept use limit flexibility compared to ordinary class parameters? Not that 

we know of and overloading based on concept opens new possibilities. 
• Are concepts hard to use? Every new feature is initially seen as complicated, but 

concepts are significantly easier to use than the current techniques used to 
compensate for proper typing of template type arguments. 

• Is there anything useful that we can express with <class T> that we can’t express 
with <C T> where C is some concept? Yes, a completely unconstrained type, 
such as the type T pointed to by T*. Even a void* can’t point to a function.  

• Can we eliminate <class T>? In the abstract, maybe. In reality, no. Many template 
meta-programming techniques seem to fundamentally depend on unconstrained 
types parameters (see appendix D). Also, there will always be pre-concept C++ 
code around. 

 

6 Technicalities 
This section records discussions of more technical aspects of the concept design 
presented in this paper.  It considers interoperations with existing template mechanism 
and interaction with overload resolution, partial specializations, and name resolution. 
 

6.1 Type argument syntax 
If you don’t use concepts, templates work exactly as before. You can use any 
combination of concepts and old-style template arguments. The intent is that the only 
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difference should be when and where an error is found (and the quality of the resulting 
error message). We only approximate this ideal; see Section 7. 
 
The two uses of concepts to specify an argument 
 
 template<My_concept T> 
 
and 
 
 template<class T> where My_concept<T> 
 
are completely  interchangeable. 
 
A where clause starts with the keyword where followed by a (non-empty) list of concept 
predicates combined using &&, ||, and !. For example: 
 
 concept Forward_iterator<class Iter> 

where Trivial_iterator<Iter> && Equality_comparable<Iter> 
 
is equivalent to 
 
 concept Forward_iterator<Trivial_iterator Iter> 

where Equality_comparable<Iter> 
 
The &&, ||, and ! operators can also be used in the concept parameter so this is also 
equivalent to 
 

concept Forward_iterator<Trivial_iterator && Equality_comparable  Iter> 
 

6.2 Syntax 
The concept syntax is closely based on the template syntax. It introduces two new 
keywords, concept and where. In addition, it “hijacks” the closely related keyword 
static_assert. The angle brackets are retained to emphasize the compile-time nature of 
the predicates and their relation to templates. 

6.3 Overloading based on concepts 
We can overload based on concepts. Consider a set of templates and a use. Each 
argument in the use is matched against the concepts of all the templates 
 

1. If the arguments in the use match none of the templates obviously, the use fails 
2. If the arguments in the use match exactly one of the templates, that template is 

used 
3. If the arguments match two (or more) of the templates, we try to find a best 

match. To be a best match a template must be such that 
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a. Each argument must be a better match or as good a match as the 
corresponding match for that argument for all other candidate templates 

b. At least one match must be better than the corresponding match for that 
argument for all other argument templates  
 

An argument is a better match for one concept than another if it is more constrained than 
the other; that is, if the predicates of the other concept is a subset of the predicates of the 
first. This set of rules is a (radically) simplified version of the rules for function 
overloading. 
 
Note that we only consider complete named predicates. We do not “look into” the 
definition of a predicate when comparing predicates. For example: 
 

concept Assignable<class T> { 
 T a; 
 T b; 
 a = b; 
}; 
 
concept Copy_constructible<class T> { 
 T a; 
 T b = a; 
}; 
 
concept Copyable1<class T> { 
 T a; 
 T b = a; 
 a = b; 
}; 
 
concept Copyable2<Copy_constructible T> { 
 T a; 
 T b; 
 a = b; 
}; 
 
concept Copyable3<class T> 
 where Assignable<T> && Copy_constructible<T> { 
}; 
 

 
Here, Copyable3 is both Assignable and Copy_constructible. However, Copyable2 is 
Copy_constructible but not Assignable, and Copyable1 is neither  Copy_constructible 
nor Assignable. The fact that any type that matches one of the three Copyables also 
matches the other two is not relevant to overload resolution as it is “just an 
implementation detail”. 
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6.4 Concepts and specialization 
Some functions, like advance(), work on series of refined concepts.  Typical 
implementations are based on uses of traits for type dispatching.  Concepts can be used to 
simplify and express directly the implementation of such functions.  For example 
 

template<Forward_iterator Iter>  // #1 
void advance(Iter& p, int n) 
{ 

 while (n--)  
 ++p; 

} 
 
template<Random_access_iterator Iter> // #2 
void advance(Iter& p, int n) 
{ 

 p += n; 
} 

 
Definition #2 is considered a specialization of definition #1, because the concept 
Random_access_iterator has been defined as a refinement of Forward_iterator; that is, 
Forward_iterator<T> is true whenever Random_access_iterator<T> is true.  Consider 
the following case 
 
 //  Both advance()templates are in scope 
 template<Forward_iterator Iter> 
            void mumble(Iter p, int n) 
            { 

// … 
advance(p, n / 2); 

          // … 
            } 
 

int ary[] = { 904, 47, 364, 652, 589, 5, 35, 124 }; 
mumble(ary, 4); 

 
The definition of mumble() passes concept-checking because there is a declaration of 
advance() in scope (#1 that takes Forward_iterator or “higher”).  Furthermore, because 
the version #2 of advance() is a specialization of #1, it is selected when mumble() is 
instantiated with int*.  That way, the use of concepts does not automatically imply 
performance pessimization compared to templates not using concepts: the most 
specialized (and often the most efficient) version is used.  A way to think of a 
specialization is as a definition that happens to provide a better or more efficient 
implementation for template arguments with known refined concepts.  In particular, 
specializations do not participate in concept-based overload resolution (Section 6.3).  
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Only after concept-based resolution takes place, are they selected to provide 
implementations for the most abstract templates they are specializing. 
 
So, exactly how do we know that a template definition L is a specialization of template 
definition K?  First, both must have the same number of template-parameters. Second, we 
can write their definitions in the more verbose style 
 
 template<class T /*… */ >  where … apply predicates to parameters ... 
 
This makes it clear that the corresponding parts of the declarations without the where-
clauses are undistinguishable (modulo the usual template parameter renaming rule).  In 
the advance() case, we would have 
 
 template<class Iter> where Forward_iterator<Iter>  // #1 
 void advance(Iter&, int); 
 
 template<class Iter> where Random_access_iterator<Iter> // #2 
 void advance(Iter&, int); 
 
If we ignore the where-clause parts, both declarations declare the same template. Third, 
in the rewritten form, the predicate of L must imply the predicate of K. 
 
This rule is simple, but we believe it suffices to guarantee that specialized templates will 
be used where available, therefore reducing the risk of potential pessimizations due to 
concept uses. The effects of this rule are very similar to “function template partial 
specialization” (for which we do not have syntax in current C++) which would require 
use of traits and forwarding: 
 
 template<class iterator_category_tag>  struct advance_helper; 
 // specialize for forward iterator 
 template<> 
 struct advance_helper<forward_iterator_tag> { 
  template<class Forward> 
  static void do_it(Forward& p, int n) { /* … */ } 
 }; 
 
 // specialize for random access iterator 
 template<> 
 struct advance_helper<random_access_iterator_tag> { 
  template<class Rand> 
  static void do_it(Rand& p, int n) { /* … */ } 
 }; 
 
 // This function template forwards the real work to the specific 
 // implementation based on the category of the iterator. 
 template<class Iter> 
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 void advance(Iter& p, int n) 
 { 
  typedef  typename iterator<Iter>::category category; 
  advance_helper<category>::do_it(p, n); 
 } 
 
Notice that in this form, it is obvious that only the implementation of advance() changes, 
not its type.  The rule for function template specialization based on concept guarantees 
that same type-safety. Note also how much simpler the concepts version is. 
 
 

6.5 Name resolution in templates using concepts 
In a template definition where template-parameters are defined with concepts, we cannot 
use operations on parameters that are not supported by the relevant concepts.  If strictly 
applied, that rule would render use of concepts painful, as every template would now 
have to list all references to dependent names in a separate concept. 
 
A template definition can reference a dependent name not explicitly listed in the relevant 
concept if there is a corresponding declaration in scope and the concept can be satisfied.  
For example, consider the following fragment  
 
 template<Forward_iterator Iter>void advance(Iter&, int); 
 
 template<Bidirectional_iterator Iter> void bar(Iter first, Iter last) 
 { 
   advance(first, 2);  // ok 
 } 

This is valid even though advance() is not listed directly in the Bidirectional_iterator 
properties.  The reason is that, there is a declaration in scope and its concept is matched 
by any Bidirectional_iterator (the Forward_iterator is a predicate that is part of the 
Bidirectional_iterator predicate).  In other words, this is the instance of contra-variance 
in arguments that is type-safe: bar() can be called only with something that is a 
Bidirectional_iterator and every Bidirectional_iterator is a Forward_iterator. On the 
other hand, had advance() been defined to require a Random_access_iterator then the 
call would have failed concept-checking because Random_access_iterator requires 
more than Bidirectional_iterator. That is one kind of reference to dependent names in 
template definitions. 

When a dependent name used in a template definition appears explicitly in the properties 
of the type’s concept, and happen to be also declared in the scope containing the template 
definition, we have a conflict that can be resolved in three different ways: 
 

1. prefer the name listed in the concepts; or 
2. prefer the name declared in scope; or 
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3. consider the use ambiguous or merge the declarations and do overload resolution. 

Arguments can be constructed for each case.  We resolve this conflict using (1).  The 
rationale is that for a template parameter declared with a concept, the user has to supply 
all required operations and the expectation is that those operations will be used in the 
instantiation as opposed to whatever happen to be around at the definition site.  On the 
other hand, the author of the template definition may expect his definition be used as 
opposed to whatever happens to be supplied by user at instantiation site.  However, the 
resolution (1) support the notion of “points of customization”, whereby a template author 
can advertise in the template interface what operations are expected, so that a user can 
supply them.  Thus, that resolution provides control over the “argument dependent name 
lookup” rule.  For example: 
 

concept Sorting_iterator<Random_access_iterator Iter> { 
Iter::value_type x, y; 
swap(x, y);   // swap() must be found at use point 

 }; 
 
namespace lib { 
 template<Value_type V> void swap(V&, V&); 
 template<Sorting_iterator Iter> void bubble_sort(Iter first, Iter last) 
 { 
  Iter p, q; 
  // … 
  swap(*p, *q);  // use swap() from use point. 
  // … 
 } 
 
 template<Random_access_iterator Iter> 
 void quicksort(Iter first, Iter last) 
 { 

Iter p, q; 
  // … 
  swap(*p, *q); // use lib::swap(), no ADL. 
 } 
} 

In the lib::bubble_sort() case, the use of swap() is resolved to the name found at the use 
point, in particular no argument dependent name lookup is performed.  For the 
lib::quicksort() example, the call to swap() is resolved to the one in scope at the point of 
template definition; no ADL is performed. 
 

6.6 Semantics differences 
There are situations where concepts differ only in semantics and not in syntactic 
requirements.  One could argue that such a situation should not happen; that is, “if you 
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use the same syntax for two different things you are asking for trouble”.  However, such 
situations do occasionally happen for good reasons.  Fortunately, we can handle such 
syntactically ambiguous situations simply through explicit assertions.  Consider: 

 static_assert !C<T>; 
 
This means that the compiler should never ever try to check whether type T matches 
concept C. Rather, the compiler must simply assume that the type T does not match 
concept C; that is, C<T> is false (whatever an actual check of the definition of C might 
say).  That is a “trust the programmer” part of the concept system.  Assume we have a 
concept that says that every type is nice unless explicitly asserted otherwise: 
 

concept Nice<typename T> { }; // everybody is nice 
 

 struct Grumpy { };  
 static_assert !Nice<Grumpy>; // except Grumpy. 
 
 template<Nice T>  
 void f(T t);        // Nice people can  call f(). 
 
 int main() 
 { 
  f(42);   // OK – int is Nice, by default 
  f(Grumpy());  // error – no Grumpy is Nice. 
 } 
 
This is a typical situation where concepts differ not it the operations they provide, but in 
the way users are supposed to use those operations. For example, the syntactic 
requirements of an input iterator and a non-mutating forward iterator are identical. 
However, the semantics of a genuine input iterator is profoundly different from a forward 
iterator. In particular, we cannot make a purely syntactic distinction between a 
list<int>::const_iterator and an istream_iterator<int>. The difference is semantic: the 
former can be used in multi-pass algorithms whereas the latter cannot.  In other words, an 
input operator and a forward iterator differs (only) in the protocol required for their use. 
 
 concept Input_iterator<Trivial_iterator Iter> { 
  // list of input iterator properties 
 }; 
 
 concept Forward_iterator<Input_iterator Iter> { 
  // list of forward iterators properties 
 }; 
 
 // we find that all non-mutating (const) Forward_iterators are also Input_iterators 
 // but some shouldn’t be 
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 // some of istream iterators are really special: 
 static_assert 

template<Value_type T> !Forward_iterator<istream_iterator<T>>; 
 
Note that implementers of genuine input iterators have to explicitly state that their 
iterators do no support multi-pass algorithms (are not Forward iterators) – just as they 
have to do in the today uses of the standard library (there is no free lunch). However, 
implementers of iterators that support the “multipass protocol” – the vast majority don’t 
have to say anything special. 
 

6.7 Usage patterns 
The definition of a concept is expressed in terms of usage patterns, showing how a type 
that matches the concept must be usable. In general the declarations, statements, and 
expressions used to express these usage patterns are simply ordinary constructs with the 
same syntax and semantics as ever. However, the constructs are not meant to be executed 
so a sequence of statement is not meant to make sense. 
 
We rely on conventions to introduce names and values into a concept definition:  
 

• T x; where T is a concept parameter type introduces x as a variable of type T. 
Note that we do not apply any of the initialization rules. This use is much as the 
way we introduce a function parameter. A mentioned in Section ???, we might 
prefer a different syntax for this. 

• C T; introduces T as the name of a type of concept C, just like in a template 
parameter declaration. 

• T::m x; If T is a concept parameter and T::m is a type then this introduces a 
variable x without applying initialization rules, just as in T x. 

• 42 introduces a value of type int (and equivalently for other integer types). 
Any other int literal can be use equivalently. 

• 3.14 introduces a floating-point value of type double (and equivalently for 
other floating-point types). Any other double literal can be used equivalently. 

• T::m introduces a member m of the type T. Note that when T is a concept 
argument, the actual definition of m can be in the concept, rather in the type. As 
ever, we have to use the prefix typename if m is to be a type. 

 
In general, every expression is taken as just an example of its type. For example, f(1)<2 is 
not evaluated yielding a bool; rather, it is checked that a function f() that can accept an 
int argument and yield a result that can be compared to an int. If we want evaluation, we 
use a where clause. 
 
 

7 Implementation model 
The big question is 
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“if a call of a template function compiles and (separately) the definition of that 
template function compiles, can the program fail to link?” 

 
We must simultaneously try to avoid three problems: 
 

1. The call and the definition both compile, but the program don’t link (because of 
an instantiation failure) 

2. The call or definition fails to compile, but the program would have compiled and 
linked had concepts not been used. 

3. The call and the definition both compile, but the program has a different meaning 
from what it would have had using templates without concepts. 

 
It is impossible to avoid all three problems simultaneously. If we add the constraint that 
the specification of concepts should be relatively simple we have an interesting set of 
tradeoffs. 
 
We choose to solve (1) and (2) at the cost of accepting (3). Our rationale is that “some 
programs ought not to work and if they do then they should not work in such surprising 
ways”. That is, even though (3) is a problem for some users and potentially for compiler 
implementers, there can also be benefits for both users and implementers. 
 

7.1 Abstract signatures 
In [Stroustrup, 2003a] we introduced the notion of “abstract signatures” as an alternative 
notation for concept requirements ([Siek, 2005] calls those “pseudo signatures”). One 
way of understanding concepts (however expressed) is to consider how a compiler might 
convert them to the most primitive form of abstract signatures. Consider 
 

concept LessThanComparable<class T> { 
 T a, b; 
 bool b1 = a<b; // the result of a<b can be used as a bool 
}; 

 
That is, two Ts can be compared using < and the result of such a comparison can be 
converted to (be used as) a bool. As discussed in [Stroustrup, 2003a], this does not mean 
that there must exist a function bool T::operator<(const T&); rather, one of the many 
ways of implementing a<b must have been used (a non-member <, a built-in <, a < 
involving conversions, etc.). We can express the requirement by introducing three 
additional types A1, A2, and R: 
 
 T -> A1 
 T -> A2 
 Operator<(A1,A2) -> R 
 R -> bool 
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The first three abstract signatures say that there must exist types A1 and A2 for which 
there exists a < operation returning some type R; T must be (implicitly) convertible to A1 
and A2. Obviously, in the simplest case, both A1 and A2 are T. The fourth abstract 
signature says that the type R must be convertible to bool.  A1 and A2 are potential 
intermediate types used to invoke < and R is a potential intermediate type for the result. 
The arrow, ->, means “converts to”. 
 
As ever, only the specified operations must be used for a type. In particular, we cannot 
apply any operations not mentioned for A1, A2, and R. We consider such simple abstract 
signatures an “assembly code” for usage patterns and assume that they, or an equivalent 
abstract syntax representation, will be used internally to compilers. 
 
In C++ just about every operation involves conversions that can be described using such 
abstract signatures. Most operations potentially require two auxiliary types (the operand 
type and the result type). The complexity of explicitly introducing these auxiliary types is 
a major reason for using usage patterns to define concepts. 
 

7.2 An interesting example 
[Siek, 2005] presents this example: 
 

template<LessThanComparable T> 
bool foo(T x, T y) 
{ 
 return x<y && random()%3; 
} 

 
Assume that LessThanComparable is defined in the minimal way: 
 

concept LessThanComparable<class T> { 
 T a, b; 
 bool b1 = a<b; // the result of a<b can be used as a bool 
}; 

 
The writer of foo() probably assumed that x<y yields a bool and that the built-in && is 
used on that bool and the result of the int result of random()%3. That is, the resolution 
is most likely assumed to be 
 

return bool(x<y) && random()%3; 
 
However, consider this: 
 

class Y { 
 operator bool(); 
 bool operator&&(int); 
}; 
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class X { 
 Y operator<(X); 
}; 

 
X x1, x2; 
bool b = foo(x1,x2); 

 
Without use of concepts, the following would happen: Y’s && is an exact match and will 
be chosen over the conversion of x<y to bool. That is, the resolution would be 
 

return Y::operator&&(x<y, random()%3); 
 
However, we did use a concept: foo() was defined using LessThanComparable and the 
only operations specified for (and therefore the only operations allowed on) the argument 
type T (in our example X) was to compare it and to use its result as a bool. Nothing 
further was said about or can be assumed about the result of x<y. Thus, the instantiation 
foo<X> may not use Y::operator&&(); it must use bool(x<y). This resolution differs 
from [Siek, 2005] Section 3.2-3 where the example was used to argue for the use of exact 
types, rather than “convertible”. 
 
So, this example is a case of “problem (3)” above; that is, a program that would compile 
using templates without concepts, but differently when using concepts. However, we 
consider this an example that in an ideal world shouldn’t have worked in the first place 
because dramatically different resolutions (some surprising) were used for different 
argument types. 
 

7.3 The three-operand problem 
The example above is an instance of a general problem where two operators and three 
operands are involved. In [Stroustrup, 2003b], this problem was discussed in terms of 
how to handle intermediate results, but we can now state a solution more simply. 
Consider 
 

template<Arithmetic T> void f(T x, T y, T z) 
{ 
 // … 
 x*y+z; 
 // … 
} 

 
What should the concept Arithmetic look like? Our Arithmetic should of course be able 
to handle the built-in arithmetic types and also other types where the type of x*y is 
different from that of the type of x. 
 
Let’s first define Arithmetic like this: 
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concept Arithmetic <Value_type T> { 
 T a, b; 
 a = a+b; 
 a = a-b; 
 a = a*b; 
 a = a/b; 
}; 

 
To describe this in terms of abstract signatures requires 12 auxiliary types: 
 

T -> A1 
T -> A11 
Operator+(A1,A11)->R1 
R1->T 
 
T -> A2 
T -> A21 
Operator-(A2,A21)->R2 
R2->T 
 
T -> A3 
T -> A31 
Operator*(A3,A31)->R3 
R3->T 
 
T -> A4 
T -> A41 
Operator/(A4,A41)->R4 
R4->T 

 
This is fully general and makes no assumptions about the types used to hold intermediate 
results.  
 

7.4 The “same type” problem 
How would we express the more constrained concept where intermediate results have to 
be of the same type as the arguments? In other words, how do we express the notion of 
“same type”? Basically, there is no simple way in C++ to express the idea that two 
expressions have the same type. Equality involves possible conversions. Initialization 
involves possible conversions and the rvalue/lvalue distinction. What we want is 
something like this: 
 

concept Arithmetic <Value_type T> { 
 T a, b; 
 a = a+b; 
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 a = a-b; 
 a = a*b; 
 a = a/b; 
 same_type(a+b,a-b); 
 same_type(a-b,a*b); 
 same_type(a*b,a/b); 
}; 

 
We could provide same_type() as a primitive operation, possibly related to decltype. 
However, this would probably do: 
 

template<class T, class U> concept Same_type { 
 T t; 

U u; 
T* r1 = &u; 

 U* r2 = &t; 
} 
 
template<class T, class U> void same_type(T x, U y) 

where Same_type<T,U> 
{ } 

 
On the other hand, this might be seen as the kind of “clever” template programming, 
we’d like to minimize. Obviously, there is an art to writing concepts that we still have to 
develop. Like the art of writing templates, we can’t expect to know it all before we have 
implementations to work on, but as in the case of templates, we must provide general 
mechanisms to allow programmers to express solutions beyond our immediate 
imagination. 
 
An alternative solution is to introduce the intermediate type explicitly: 
 

concept Arithmetic <Value_type T, Value_type W = T> { 
 T a, b; 
 W(a+b); 
 W(a-b); 
 W(a*b); 
 W(a/b); 
}; 

 
 
We could use this last Arithmetic like this: 
 

template<Arithmetic T> 
void calc1(const vector<T>& a1, const<vector<T>& a2, vector<T>& res);  
 
template<class T, class W> where Arithmetic<T,W> 
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void calc2(const vector<T>& a1, const<vector<T>& a2, vector<W>& res); 
 

 

7.5 The “arrow” problem 
The standard iterator requirements include the requirement that p->m should be valid if 
(*p).m is valid. This is curious because it is a conditional requirement: p may be a 
pointer to a type that doesn’t have any members, such as an int for int*. There is no 
simple piece of code than we can write to determine whether an iterator type Iter actually 
points to something with a member. We can of course easily check whether a type 
supports a particular member, but that’s a different problem. 
 
Consider a trivial template definition: 
 

template<Forward_iterator Iter> void f(Iter p) 
{ 
 int x = p->m; 
} 

 
There are basically one right way and three wrong ways to call f(): 
 

struct S1 { int m; };  // what f() likes 
struct S2 { void* m; }; // f() doesn’t like the type of m 
struct S3 { int n; };  // no member m for f() to use 
S1* p1; 
S2* p2; 
S3* p3; 
int* p; 
 
f(p1);  // ok 
f(p2);  // type error: can’t convert void* to int 
f(p3);  // type error: S3 has no member m 
f(p);  // type error: you can’t use -> in an int* 

 
We would like to make these type errors – detected only during instantiation – into 
concept errors – caught at the point of call and/or the point of f()’s definition. A complete 
solution is to specify f()’s requirement on the value_type: 
 

• The value_type must be a class  
• The class must have a member called m 
• the member m must be convertible to int 

 
In other words: 
 

concept Has_m<class Ptr> { 
 Ptr p; 
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 int i = p->m; 
}; 

 
template<Forward_iterator Iter> 
 where Has_m<Iter> 
void f(Iter p) 
{ 
 int x = p->m; 
} 

 
Unfortunately, the mechanism of usage patterns offers no way of just stating that -> is 
required. There couldn’t be because C++ offers no general syntactically valid way of 
using -> without a member name. Thus, if we want an Arrow predicate, we must provide 
it through simple, but special-purpose compiler magic. We propose 
 
 concept Arrow<class P> { 
  P p; 

// we can apply -> to p if we can apply . to *p 
}; 
 
concept Forward_iterator<Input_iterator Iter> 
 where Arrow<Iter> 
{ 
 // ... 
}; 

 
However, before adopting this special-purpose “intrinsic predicates” we should consider 
if a modification of the iterator requirements would be a better choice. We use Arrow 
rather than Has_arrow because of its curious conditional nature. 
 

7.6 The function call syntax problem 
Our concepts definitions do not care whether a required function is implemented as a 
built-in, a member function, or as a non-member function. Ideally, we would provide the 
same freedom when specifying function calls: p->f() or f(p)? Why should we care? We 
care because when we make the distinction between p->f() and f(p), we either double the 
number of concepts or force the users of a concept to conform to the concept’s preferred 
notation. Either way, the resulting templates will be less flexible and less easy to use. 
Consider a concept that  requires the use of both calling syntaxes: 
 

concept FG<class T> { 
 T a; 
 f(a); 
 a.g(); 
}; 

 

Stroustrup & Dos Reis 35 



N1782=05-0042(rev1)  April 2005 

We also happen to have a class that similarly uses both calling syntaxes, but 
“unfortunately” in exactly the opposite cases: 
 
 class X { 
  virtual void f(); 
 }; 
 
 void g(const X&); 
 
If we can handle FG<X>, we can handle any call syntax mappings, and more. As for 
member types, we can specify the mapping in an explicit assert of the relation between 
the concept and the type: 
 
 static_assert FG<X> { 
  void f(X& a) { a.f(); } // non-member to member mapping 
  void X::g() { g(*this); } // member to non-member mapping 
 }; 
 
Consider  
 

X x; 
// … 
template<FG T> void ff(T a) 
{ 
 f(a); 
 a.g(); 
} 
// … 
ff(x); 

 
When we instantiate ff() for an X, we look at f(a). That will call the f(X&) defined in the 
assert, which in turn will call X::f() for a. Similarly, a.g() will call the “X::g()” defined in 
the assert, which in turn will call g(a). Note that there is absolutely nothing “abstract” 
about the functions and types defined in an assert; they are simply ordinary definitions in 
a scope that encloses the argument type’s scope. 
 
Why is this better than simply defining an extra class to map conventions and let the 
programmer use that? For example: 
 

struct XX { // map X to FG’s requirements 
 X* p; 
 XX(X& a) :p(&a) { } 
 void g() { g(p); }   // member to non-member notation 
 static void f(XX& pp) { pp.p->f(); } // non-member to member notation 
}; 
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Apart from the possible performance implications, the problem is that we now have to 
explicitly mention XX every time an X is passed to something requiring an FG. Consider 
again: 
 

X x; 
 
template<FG T> void ff(T a) 
{ 
 f(a); 
 a.g(); 
} 
 
ff(x); 

 
As written, this is clearly wrong. We can add the static_assert FG<X> or replace ff(x) 
with ff(XX(x)). At best, the latter is inelegant and the exact ways of mapping the 
conversions will vary from class to class. 
 

8 Standard-library concepts 
One of the first and most important tasks, given concepts, is to provide concepts for the 
standard library. That will not only give an easier to use and better specified library, but 
also provide a set of standard-library concepts for programmers to learn from and use. 
The aim is to remove as much as possible from the requirements tables and present them 
as concepts instead. The ideal would be to eliminate the requirements tables altogether. 
 
The standard library defines and uses several relational notions: comparisons with 
equality, relative orderings: 
 

concept Equality_comparable<class T, class U = T> {  
  T a; 

U b;  
bool eq = (a == b); 
bool neq = (a!=b) 

};  
 
 concept Less_comparable<class T, class U = T> {  
  T a;  

U b; 
bool lt = (a < b);  

  };  
 

concept Less_equal_comparable<class T, class U = T>  
  where Less_comparable<T, U> { 
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T a;  
 U b;  
  bool le = (a <= b); 

};  
 
concept Greater_comparable<class T, class U = T> { 

T a; 
U b; 
bool gt = (a > b);  

};  
 
concept Greater_equal_comparable<class T, class U = T>  

where Greater_comparable<T, U> { 
T a; 
U b; 
Bool ge = (a >= b);  

};  
 

concept Total_order<class T, class U = T> 
  where Less_comparable<T, U> 
  && Less_equal_comparable<T, U> 
  && Greater_comparable<T, U> 
  && Greater_equal_comparable<T, U>  
  && Eeual_comparable<T, U>  { }; 
 

 
Total_order is not directly required by the standard library, but is a property provided 
for all standard sequences, provided the sequence’s value_type is also a Total_order. 
The standard containers use a fairly elaborate notion of copyable object types: value 
types are assumed to support the operation of explicitly calling their destructors, taking 
the address of an object of such type is assumed to yield an expression convertible to 
plain pointer types: 

 
concept Copy_constructible<class T> { 

T t; 
const T u; 
T(t);  // direct-initialization from plain T 
T(u);  // direct-initialization from const T 
t.~T();  // destructible 
T* p = &t; // addressable 
const T* q = &u; 

};  
 
Note that the “core language” notion of copy-constructible does not involve, in itself, the 
ability to take the address of an object; only the container requirements make it so.  
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Therefore it would have made sense to take that property out of Copy_constructible and 
make it a separate, independent concept Addressable: 
 
 concept Addressable<class T> { 
  T t; 
  const T u; 
  T* p  = &t;  // address is convertible to T* 
  const T* q = &u; // address is convertible to const T* 
 }; 

 
In some cases, the standard library requires some types to be default constructible, or 
assignable. 

 
concept Default_constructible<class T> { 

T(); 
};  
 
concept Assignable<class T> { 

T t; 
T u; 
const T v; 
t = u;  // can assign both a T 
t = v;  // and const T 

};  
 
 concept Value_type<Copy_constructible T>  
  where Default_construtible<T> 

    && Assignable<T> { 
};  
 
concept Trivial_iterator<Arrow Iter>  

where Copyable<Iter> {  
typename Iter::value_type; 
typename Iter::difference_type; 
// not required but present  in the iterator<> traits: 
typename Iter::reference; 
typename Iter::pointer;  

 };  
 
concept Input_iterator<Trivial_iterator Iter> 

where Equality_comparable<Iter> {  
Iter  p, q;          // variable p and q 
Iter& i = (p = q); // must be assignable 

// the result must be usable as an Iter& 
Iter::value_type v = *p;     // dereferencing converts to value_type 
Iter& r1 = ++p; 
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p++;          // we don't know the result type of post-increment 
Iter::value_type v2 = *p++; 

};  
 

The Input_iterator requirements – as mandated by the standard library -- may appear 
“overly restrictive” as they rule out pointers to non-copyable types (e.g. ofstream*) from 
being considered input iterators (let alone random access iterators).  
 
   concept Output_iterator<Trivial_iterator Iter> {  

// not equal comparable in standard 
      // The standard requires that both value_type and difference_type  
      // be defined as void, for iterator<>.  Was that intentional? 
      Iter p;  
     Iter::value_type t;  
     *p = t;    // we don't know the type of the result  
      Iter& q3 = ++p;    

const Iter& q4 = p++;  
      *p++ = t;  
  };  
 
concept Forward_iterator<Input_iterator Iter>  
   where Output_iterator<Iter>  
               && Default_constructible<Iter> 

    && Assignable<Iter> {  
Iter p, q;  
Iter& r = (p = q);  
Iter::value_type& t = *p;  
Iter& q2 = ++p;  
   const Iter& q3 = p++;  
   Iter::value_type& t2 = *p++;  

             }; 
 
The “Forward iterator” concept as expressed above actually stated the assumptions on 
mutating iterators  
 
   concept Bidirectional_iterator<Forward_iterator Iter> {  
       Iter p;  
       Iter& q = --p;  
       const Iter& r = p--;  
       Iter::value_type t = *p--;  
   };  

 
concept Random_access_iterator<Bidirectional_iterator Iter>  
   where Less_equal_comparable<Iter>  
               && Greater_equal_comparable<Iter> {  
      Integer_type Iter::difference_type;  // Integer_type is a concept 
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      Iter::difference_type n;  
      Iter p;  
      Iter& q1 = (p += n);  
      Iter q2 = p + n;  
      Iter q3 = n + p;  
      Iter& q4 = (p -= n);  
      Iter q5 = p - n;  
      Iter::difference_type m = p - q1;  
      Iter::value_type t = p[n];  
  }; 

 
The Random_access_iterator requirements impose mutable value_type, as inherited 
from the requirements for Forward_iterator.  In fact, that “mutability” requirement is a 
property of the associated value_type and should probably be taken out and stated 
separately for those algorithms that need it. 

 
static_assert template<Value_type T> Random_access_iterator<T*> { 

typedef T* Iter;  
using Iter::value_type = T;  
using Iter::difference_type = ptrdiff_t;  
using Iter::reference = T&;  
 using Iter::pointer = T*;  

};  
 
 static_assert template<Value_type T> Random_access_iterator<const T*> { 
   typedef const T* Iter;  
   using Iter::value_type = const T;  
   using Iter::difference_type = ptrdiff_t;  
   using Iter::reference = const T&;  
   using Iter::pointer = const T*;  
  }; 
 

While the standard library requirements state that the associated value_type of a const 
T* should be T, it is debatable whether that is consistent with the fact that the associated 
reference is const T&. 
 
Standard containers are assumed to provide iterators that have at least the “forward 
iterator” properties: 
 

concept Container<class C>  
where Copy_constructible<C> && Assignable<C> { 
Value_type C::value_type; // needs value_type that matches Value_type 
Reference C::reference; // must be an "lvalue type" 
Reference C::const_reference; // must be a non-modifible "lvalue type" 

    Forward_iterator C::iterator; 
Signed_integral_type C::difference_type  
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where Same<difference_type, iterator::difference_type>; 
Unsigned_integral_type C::size_type; 

 
C c1; 
const C c2; 
C::iterator p1 = c1.begin(); 
C::iterator q1 = c1.end(); 
C::const_iterator p2 = c2.begin(); 
C::const_iterator q2 = c2.end(); 
c1.swap(c2); 
C::size_type s1 = c1.size(); 
C::size_type s2 = c1.max_type(); 
bool b1 = c1.empty(); 

}; 
 

Clearly the specification of reference and const_reference needs work.  It is unclear 
whether we should allow for “proxy references” (class that overload the dot operator).  
Several relational operators on containers’s type are lifted to the containers themselves, 
whenever they are available: 
  

static_assert template<Container C> 
where Less_comparable<C::value_type> Less_comparable<C>; 

// and so on for other relational notions. 
 
Containers that provide bidirectional iterators can be reversed: 
 

concept Reversible_container<Container C> { 
Bidirectional_iterator C::reverse_iterator; 

   Bidirectional_iterator C::const_reverse_iterator; 
   C c1; 
  const C c2; 
 
  C::reverse_iterator r1b = c1.rbegin(); 
   C::reverse_iterator r1e = c1.rend(); 
   C::const_reverse_iterator r2b = c2.rbegin(); 
   C::const_reverse_iterator r2e = c2.rend(); 
 C::iterator i;  // variable i 
 C::reverse_iterator ri(i); // can convert from C::iterator 
 C::const_reverse_iterator cri(i); 
}; 
 

The notion of Sequence refines that of Container, providing several construction (e.g. 
“fill” constructors and “range” constructors). 

 
concept Sequence<Container C> { 

C::size_type n; 
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C::value_type t; 
C::iterator p; 
C::Input_iterator Iter;  

 Iter i, j; 
C(n, t);   // fill the container with n copies of t 
C c(i, j);   // construct from the range [i, j) 
C::iterator q = c.insert(p, t); 
c.insert(p, n, t); 
c.insert(p, i, j); 
C::iterator r = c.erase(p); 
C::iterator s = c.erase(p, q); 
c.clear(); 

}; 
 
Notice that although the STL provides a Sequence view out of associative containers, 
they differ from sequences in many ways; one of them being that they do not support 
“fill” constructors. 

9 Future work 
This paper presents a design for concepts.  Future work should aim at expressing as much 
as possible of the standard library requirements tables in terms of concepts, rephrase 
warts (e.g. “do the right thing” rule), etc.  Given the ability to overload and specialize 
functions on concepts, one should try to rephrase functions like sort() or find() in terms 
of the properties of their iterators arguments. For example, we should be able to specify 
find() to effectively and efficiently supports iterators from ordered containers and that 
list::sort() no longer need  to be a member. This will improve both the concept design 
and the standard library. For example, we expect many (most?) traits classes will become 
redundant. 
 
It will be important to try out concepts on an application domain that is not the STL, or 
STL derived. We plan to use classical math, in particular algebra. 
 
One important side-effect of this work with concepts will be a better understanding of the 
programming techniques required to use them well. 
 
Finally we need a more formal specification of concepts and text suitable for the 
standard. 
 

10 Summary 
The design presented here is not assumed to be perfect; it is a best effort to address 
competing concerns between improved type checking, effective programming styles, and 
implementation complexity.  We hope for further improvements. 
 
Our major conclusions are 
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• We can achieve perfect separate checking based on typed template arguments 

(using concepts) and predicates specifying requirements on combinations of 
template arguments. 

• Haskell-style schemes based on same-type checking (rather than conversions) and 
overriding (type hierarchies, rather than overloading) are infeasible for C++ 

• Concept/type asserts (“models statements”) are necessary (for flexibility) and 
must be optional (not to over constrain and complicate code) 

 
The main points of the design is 
 

• Perfect separate checking of template uses and definitions 
• Near perfect backwards compatibility, incl. integration of “old” template 

arguments with “new” type checked template arguments (using concepts) 
• No requirements to impose hierarchical order on template argument types 
• No restrictions on conversions or overloading compared to existing code 
• No performance penalty in time or space 
• New code can be simpler than old code not using concepts (through selection 

based on concepts and elimination of traits and helper classes) 
• Concepts are relatively easy to define and many can be defined once as part of a 

library 
• The STL can be described using concepts (and in places improved) 
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Appendix A: Why asserts must be optional 
Why don’t we require that a user always explicitly state that a type is of a concept? That 
is, why don’t we require an assert (Section 4) for each (type,concept) combination? We 
need an explicit mechanism anyway, and there are at least three arguments for asserts: 
 

1. Where a type requires a template instantiation, compilers can have a hard time 
recovering from a failed attempt to instantiate, so it is better to have a place where 
a failure to instantiate is an error. (The alternative is a language rule that require 
all compilers to be able to recover from any failed instantiation). 

2. We need a place to map abstract requirements, such as “we should be able to refer 
to a type value_type in a template definition” to the details of a specific type, 
such as “for an int*, value_type is int”. (The alternative is a language mechanism 
providing named members of built-in types [Stroustrup, 2003b]). 

3. A type could accidentally have the properties required by a concept, but a 
different semantics. 

 
We consider (3) unlikely and infrequent in real code, but others are less optimistic about 
this. An optional assert mechanism (static_assert) will allow people who worry to 
protect themselves. One reason this is feasible is that most “accidental matches” are not 
really accidental, but the result of deliberate designs that leaves two concepts or two type 
very closely related. An example of that is a non-mutable Forward_iterator that differs 
from a Input_iterator only in the protocol for the use of the dereference and increment 
operators (Section 6.6). 
 
Problem (2) only applies when we need to map properties of a type to the requirements of 
a type. So a mapping mechanism has to be available, but is irrelevant to the many types 
where no mapping is needed. Thus, and optional assert mechanism suffices. 
 
Note that the designer of a concept can explicitly assert that for that concept a 
static_assert required for a type to match (Section4.1). 
 
Here, we present an argument that asserts cannot be compulsory. We first demonstrate 
that consistent use of asserts would be tedious to the point of poor engineering yielding 
unmaintainable code. Then, we present a worst case example where asserts are not 
logically possible and argue that this example is not an unimportant corner case. Please 
remember that asserts are clearly essential in some cases (4.1and 6.6) and very useful in 
others (??? and ???). Thus, asserts must be optional. Furthermore, the programmer can 
enforce the use of  asserts for specific concepts where such asserts are logically necessary 
(???). 
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Implementation problems 
The implementation problem (1) is the critical one. Our initial design discussions 
[Stroustrup, 2003a-c] did not require (compulsory) asserts, but after discussions with 
implementers, we decided that a compulsory assert would solve many real 
implementation problems and the absence of an explicit assert for some types would 
force implementers to use “speculative instantiation” that doesn’t fit well into all current 
compilers. Thus, unless we require asserts in all cases (or at least in all cases that can lead 
to speculative instantiation), we cause implementation problems. 
 
Consider how simple the implementation of concepts is if we have compulsory asserts: 
When a compiler sees a use of a predicate, either that predicate has been seen in an assert 
(and it is true) or it is false. No evaluation is ever required outside the asserts. The 
implementation of predicate evaluation degenerates into a table lookup. An assert states 
something about the relationship of a type and a concept. However, to say anything about 
a type, it has to exist, so an assert implies a request for instantiation. If an assert fails, it is 
a compilation error; no code will ever be generated for that translation unit and the 
quality subsequent error messages may be affected by the user-error.  
 
If asserts are optional, the implementation becomes: when we see C<T> we look up in 
the table to see if we have already computed the answer; otherwise, we compute the 
answer and enter it into the table. The snag is that in evaluating C<T>, the compiler 
might have to instantiate the type T and that instantiation may fail. Unfortunately, 
instantiation may cause changes to the compiler state (such as symbol tables) that some 
compilers can’t easily undo. 
 
From an implementation point of view, we would prefer to require asserts. Unfortunately, 
the effect on programming style would be major (see below). In fact, we are convinced 
that requiring asserts would render concepts useless for their main intended purpose: to 
better support the current template-based programming techniques and to provide a base 
for significantly increased mainstream use of those techniques.  
 

Programming problems 
Consider why generic programming took off with C++ and not with Ada. A key reason is 
that Ada requires explicit definition of every instantiation (using Ada’s instantiation 
operator new). In C++, we can create a type and use it without even mentioning it. For 
example, think of make_pair() or a vector’s iterator type returned by begin(). With 
explicit instantiation (or rather without implicit instantiation), the programmer would 
have to figure out what the types of the arguments of make_pair() were and explicitly 
instantiate the appropriate Pair type. Similarly, before using v.begin() we would have to 
look at the type of v, see what its iterator type is, and instantiate that. For example: 
 

vector<My_type> v; 
// … 
copy(v.begin(), v.end(), somewhere); 
some_function(make_pair(string(“some name”),v)); 
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Compulsory asserts would closely mirror Ada’s explicit instantiation requirement, and 
we’d have to write something like: 
 
 static_assert Element_type<My_type>; 
 static_assert Forward_iterator<vector<My_type>::const_iterator>; 
 static_assert Value_type<string>; 
 static_assert Value_type<vector<My_type>>; 
 static_assert Value_type<Pair<string,vector<My_type>>>; 
 
Clearly, we will at least have to “automate” some of these asserts and make many 
implicit. 
 
Who would write asserts? When we implement a template, we can place requirements on 
the template arguments; that is, we can use concepts. However, we don’t know the types 
with which our template will be used, so only the user can make the asserts. On the other 
hand, only we (and not our users) know which “helper templates” we use in our 
implementation. Without violating information hiding, our users cannot make assertions 
about those “helper templates”; some may even have access restrictions that make them 
inaccessible to users. Consider: 
 
 template<Value_type T> class Checked_RA_iter { 
  // … 
 }; 
 

template<Value_type T, Allocator A = allocator<T> > class vector { 
 // … 
 typedef Checked_RA_iter<T> iterator; 
 // … 
}; 
 
// written by vector implementer: 
static_assert template<Value_type T> Allocator<allocator<T>>; 
static_assert template<Value_type T> 

Random_access_iterator<Checked_RA_iter<T>>; 
 
 // … 
 

template<class T1, class T2> 
where Assignable<T1, T2> 

void some_fct(T1& a, T2& b); 
 
 class My_type { /* … */ }; 
 
 // written by My_type implementer: 
 static_assert Value_type<My_type>; 
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 vector<My_type> vec;  
 My_type x; 
 int y; 
 // … 
 
 // written by some_fct() user: 
 static_assert Assignable<My_type,int>; 
 static_assert Assignable<int, My_type>; 
 
 some_fct(x,y); 
 some_fct(y,x); 
 
This would be tedious (many have decided it to be too tedious). However, this example is 
radically simplified by the pervasive use of Value_type and the general (templated) 
asserts for Allocator and Random_access_iterator provided by the writer of vector. 
 
The templated assert works like this: the first time the compiler sees a specific example, 
such as 

Random_access_iterator<Checked_RA_iter<My_type>> 
 

for Random_access_iterator<Checked_RA_iter<T>>, it acts as if it has seen 
 

static_assert Random_access_iterator<Checked_RA_iter<My_type>>; 
 
That way, an error occurs if the assertion doesn’t hold (as opposed to the predicate just 
being false). 
 
The situation is worse still when we consider types that weren’t meant for the user to 
know about – aren’t part of the explicit interface of the abstraction – or are indented to be 
for advanced users only. Think of traits, allocators, and tuples in the implementations of 
smart_pointers, containers, lambdas, etc. They are part of the implementation of an 
abstraction, yet depend on user type. If concept matching must be explicitly asserted, 
these types must be known to the end-user and correctly used (combined with user types 
in asserts). 
 
The need to make assertions would become a portability nightmare unless such 
“implementation types” were standardized. If I used My_helper and you used 
Your_helper in the implementation of, say, multimap, the end-user wouldn’t be able to 
write simple portable code. An #ifdef would be needed to choose between asserts that 
user’s types meet the requirements of My_helper and Your_helper. 
 
As described, this is clearly a violation of abstraction, of data hiding, and a serious 
maintenance problem. This is equivalent to the problems building and maintaining 
systems based exclusively on explicit mechanisms, such as macro-based generic 
programming. 
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“Encapsulated” assertions? 
Could assertions about helper classes and implementation classes be hidden in the 
implementation of the templates that the user explicitly uses? For example 
 

template<class T> class vector { 
 // … 
 typedef T* iterator; 
 static_assert Random_access_iterator<iterator> { 
  typedef T value_type; 
 }; 
 // … 
}; 

 
That’s plausible, but would lead to repetition of asserts (in similar classes requiring 
similar asserts, e.g. the definition of deque would have to repeat assertions made in 
vector) and would work only if the template arguments of such “encapsulated asserts” 
were well known concepts. Furthermore, the compiler would have to instantiate the 
enclosing class template before discovering the assertion – thus defeating the crucial aim 
of using assertions to avoid “speculative instantiation”. 
 
Even if such encapsulation is considered acceptable for classes, it wouldn’t suffice for 
function templates: A function has no place in its declaration that could be said to 
“encapsulate/hide” an assertion. 
 
The problems with explicit asserts are not restricted to the single-argument predicates 
used to control individual arguments, we would also need to be explicit about the 
predicates used in where clauses. Consider: 

 
template<Forward_iterator For, Value_type V> 

where EqualComparable<For::value_type,V> 
For find(For first, For last, const V& v); 

 
To use this for a type My_type and an iterator My_iter, we would need: 
 

static_assert Forward_iterator<My_iter>; 
static_assert Value_type<My_type>; 
static_assert EqualComparable<My_iter::value_type,My_type>; 
 
void f(My_iter p, My_iter q, My_type x) 
{ 
 My_iter y = find(p,q,x); 
 // … 
} 
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We are convinced that compulsory explicit assertion of concepts is unmanageable. The 
use of explicit asserts simply doesn’t scale – even using techniques such as assertions of 
templated predicates (Section 4.1).  
 

A worst case example 
In some cases, explicit assertions are simply impossible. Consider a variant of the 
example from Section ???: 
 
 // a helper concept: 

concept Small<class T, int N> { where sizeof(T) <= N; } 
 
 // some implementation defined constant: 
 const int max = 200; 
 

// helper function f() overloaded on the size of T 
template<class T> where Small<T, max> void f(const T&); 
template<class T> where !Small<T, max> void f(const T&); 
 
template<class T> void foo(const T& t) 
{ 

// ... 
f(t);        // use f() as implementation detail 
// ... 

} 
 
Here, the function f() is used as an implementation detail, relying on overloading on 
concepts (we can express that idea in today C++ with “SFINAE techniques”). Note: 
 

• The user of foo() shouldn’t have to know about the “implementation detail” f(). 
• The implementer of foo() shouldn’t have to know about the implementation of f() 

(such as f()’s use of max and Small). 
• The implementers of foo() and f() have no idea about the user type argument for 

T. 
 
Since the implementer of foo() does not know the properties of  T he cannot  do a 
static_assert for Small<T,N> or for !Small<T,N> (one will be true and the other false, 
but the implementer of foo()  has no idea which). Making static_assert compulsory bans 
such current techniques because there would be no reliable way to simply and elegantly 
express those with concepts. 
 
We could try to make f()’s requirements on its argument part of foo()’s requirement. This 
is a common technique, but it doesn’t work for the “Small example”. Consider exposing 
f()’s requirements in foo()’s interface: 
 

template<class T> void foo(const T& t) 
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 where Small<T, max> || !Small<T, max>  
{ 

// ... 
f(t);        // use f() as implementation detail 
// … 

} 
 
This exposes the implementation details so that the user of foo() can write an assert 
before calling foo(). However, in this case the exposure of the implementation details 
(Small and max) is useless and absurd: Small<T, max> || !Small<T, max> is always 
true so we didn’t actually add anything useful. However, to proceed the caller of foo() 
would have to assert something like 
 

static_assert Small<My_type, max> || !Small<My_type, max>; 
 

This would evaluate Small<My_type, max> which would fail whenever we have a large 
object. In general, a negative assertion after an “or” is absurd and should probably be 
prohibited to minimize confusion. For example, the assert above would mean: 
 

“check Small<My_type, max> and have the compilation fail if it is false. Then, 
if it was false (and the compilation failed) assert that Small<Mytype, max> is to 
be considered false from now on and never evaluated.” 

 
Thus, we cannot use that function f() in a system where explicit asserts are compulsory. 
That might be acceptable if the example was a mere curiosity, but it is simple a 
particularly short example of an important kind of code: a function with an 
implementation that relies on a call to a set of functions overloaded on concepts. 
Consider: 
 

template<C1 T> void helper(T x);  
template<C2 T> void helper(T x); 
template<C3 T> void helper(T x); 
 
template<class T> void foo(T x) 
{ 
 // … 
 helper(x); 
 // … 
} 

 
How would we specify foo()’s T (with a concept or a where clause) to make foo()’s 
requirements explicit to its callers? In addition to whatever else foo() needs, it requires 
 
 C1<T> || C2<T> || C3<T> 
 
For example: 
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template<C0 T> void foo(T x) 

where C1<T> || C2<T> || C3<T>; 
{ 
 // … 
 helper(x); 
 // … 
} 

 
This can be handled (implicitly) by the compiler if the overloading is really specialization 
(some users of iterators, such as advance(), falls into this category, see ???). However, 
the general case is severely troublesome if explicit asserts are compulsory. The user of 
foo() shouldn’t know about foo()’s dependence on helper() even if it could be clearly 
expressed. The call of helper() will succeed only if exactly one of C1<T>, C2<T>, and 
C3<T> holds (or if we have specialization), so to write an assert we would have to know 
which helper() function to call. In general, we cannot know that – and evaluating all the 
conditions would lead to the speculative instantiation that we were trying to avoid 
through compulsory explicit asserts. 
 
Also, the set of overloads is open: We can always add a fourth helper() somewhere 
before the declaration of foo(), and that would imply changes to foo() or (worse) to users 
of foo(), writing asserts to use foo(). In general, the problem of implementation details 
“leaking out” of functions is made severe by a requirement of compulsory asserts. Here, 
we have only discussed one level of implementation. More realistic examples would 
involve more levels (e.g. a function calling functions, calling functions, calling functions 
with a few helper classes and constants thrown in for good measure). The requirements of 
each level would leak though to the next so that the “end user” will be faced with an 
incomprehensible mess of requirements. This exposure of implementation details would 
be exactly equivalent to the exposure currently seen in error messages related to template 
implementations. 
 

Conclusions 
We conclude that asserts cannot be compulsory. We also conclude that consistent use of 
asserts even in the theoretically feasible cases would be tedious to the point of poor 
engineering (???). One the other hand, asserts are clearly essential in some cases (??? and 
???) and very useful in others (??? and ???). Thus, asserts must be optional. 
 
 

Appendix B: Haskell type classes 
It has been repeatedly suggested that the notion of concepts envisioned for C++ is 
nothing but a rephrasing of “type classes” as found in the Haskell[Peyton Jones, 2003] 
programming language. It is often further implicitly assumed that “what’s good enough 
for Haskell is good enough for C++”. Consequently, assertion (or “model declaration”) 
should be compulsory as are the “corresponding” “instance declarations” of Haskell. 
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In fact, the notion of “concept” presented in this paper is radically different in spirit, 
meaning and purpose from Haskell’s type classes.  For one thing, type classes [Wadler, 
1989] were designed for Haskell to constraint its Hindley-Milner-based type system to 
support a form of overloading (conventionally called ad-hoc polymorphism to emphasize 
its non-parametric nature).  Haskell does not actually support overloading in the C++ 
sense.  For example, the following fragment is illegal in Haskell because the symbol 
areSame is not allowed to be declared twice (with different types): 
 
 areSame :: Int -> Int -> Bool 
 areSame x y = primEqInt x y  -- use built-in equality comparator 
 
 areSame :: Int -> Int -> (Int -> Int -> Bool) -> Bool 
 areSame :: x y p = p x y   -- use custom comparator 
 
What type classes provide is a form of “overriding” of virtual functions, as we will 
explain below.  Of course, this illustration is not 100% right but, we hope that that will 
expose the fundamental ideas of how it works, the programming style it supports and 
why the design of concepts for C++ can not just adopt a variant of Haskell’s type class 
design. 
 
Type classes in Haskell are user-defined constraints in the type system, designed to guide 
the Hindley-Milner-Damas type inference style to support a variant of overloading.  For 
example, Haskell’s Prelude facility defines a type class named Eq that makes it possible 
to use the symbols == and /= with a variety of arguments, whose actual implementation 
vary from one type to another (i.e. they are not derived from instantiations of a unique 
parametric function).  It is declared as 
 
 class Eq a where 
  (==) :: a -> a -> Bool  
  (/=) :: a -> a -> Bool 
  -- default implementations, that can be overridden in instance 
  -- declarations of specific types. 
  x /= y = not (x == y) 
  x == y = not (x /= y) 
 
What the above declaration says is that a type a belongs to the class Eq if there are 
known implementations for == and /= that take arguments of type a, or that type is 
declared to be deriving from class Eq (in which case the compiler generates 
implementations based on the structure of the datatype).  The symbols == and /= are 
called method of the class Eq.  Notice that the automatic generation of methods – based 
on explicit derivation -- is limited to a fixed set of Haskell standard type classes.  
Consequently, we will focuse on the more general facility of user-defined operations.  
Then, a type belongs to a class only through explicit declaration called instance 
declaration.   

Stroustrup & Dos Reis 53 



N1782=05-0042(rev1)  April 2005 

A type class can have default implementations, as illustrated in the Eq case.  If the 
instance declaration does not mention an implementation of a method then, the default 
implementation (if any) is used, otherwise it is undefined (no compile-time error).  In the 
case of Eq, if one method is implemented in an instance declaration then the default can 
be used for the other.  Of course, if none is implemented then a call to either method will 
result in infinite loop.  
Instance declarations supply method implementations and assert membership.  For 
example, the type Int belongs to the class Eq and there is an instance declaration 
resembling 
  
 instance Eq Int where 
  (==) = primEqInt  
 
which says that the implementation of the method == is provided by the built-in function 
primEqInt.  So, instance declarations are mapping from abstract interfaces to concrete 
implementations.  A close translation to C++, from both conceptual and popular 
implementation point of views [Peterson 1993, Hall 1996] based on dictionary passing, is 
to regard a type class as a C++ polymorphic class template.  So, assuming the trivial 
mapping of Bool to bool and Int to int, the above type class Eq declaration would 
correspond to 
 
 template<typename a> 
 struct Eq { 
  // default implementation for == and !=.  Can be overridden in  
  // instance declarations. 
  virtual bool eq_impl(a x, a y) const { return !neq_impl(x, y); } 
  virtual bool neq_impl(a x, a y) const { return !eq_impl(x, y); } 
 }; 
 
 template<typename a> 
 bool operator==(a x, a y) 
 { 
  // lookup the real implementation in the instance declaration. 
  const typename Instance<Eq, a>::Decl inst_decl; 
  return inst_decl.eq_impl(x, y); 
 } 
  
 template<typename a> 
 bool operator!=(a x, a y) 
 { 
  const typename Instance<Eq, a>::Decl inst_decl; 
  return inst_decl.neq_impl(x, y); 
 } 
 
Here, we use the traits Instance<> to map a Haskell instance declaration “C a” to the 
corresponding C++ implementation class Instance<C, a>::Decl, as follows 
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 // This traits maps a type “a” to the dictionary that implements an instance 
 // declaration “C a”. 

// Absence of instance declaration is indicated by the type “void”.  
 template<template<typename> class C, typename a> 
 struct Instance { 
  typedef void Decl; 
 }; 
 
Now, assume we have a datatype Position defined as 
 
 data Position = Pos Int 
 
and we declare it to be a member of the type class Eq 
 
 instance Eq Position where 
  (Pos x) == (Pos y) = x == y 
 
The corresponding C++ declarations would be 
 
 struct Position { 
  const int value; 
  explicit Position(int v) : value(v) { } 
 }; 
 
 struct Eq_Position_instance : Eq<Position> { 
  bool eq_impl(Position x, Position y) const 

{ return x.value == y.value; } 
 }; 
 
 // Indicate that Eq_Position_instance implements the required methods: 
 template<> 
 struct Instance<Eq, Position> { 
  typedef Eq_Position_instance Decl; 
 }; 
 
In general, type classes support inheritance – translating directly to C++ inheritance – and 
instance declarations map to overriding. Using Haskell type classes leads to a traditional 
object-oriented style, where everything must fit a given hierarchy before use. That style is 
already supported by C++. 
 
Note that the C++ program is not a perfect translation of the Haskell equivalent; we did 
not think it would be a good idea to obscure the main points by dealing with minor 
details. However, the translation scheme captures the general idea and the style of 
programming it supports. 
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Appendix C: Mixing concepts and unconstrained parameters 
When all template parameters have been declared with concepts, we can separately check 
template definitions and template uses. That leaves two questions: 
 

• What can we do if some, but not all, template parameters have concepts? 
• Are there important programming styles that require that some, but not all, 

template parameters have concepts? 
 
Our basic answers are “check what can be concept checked early and leave the rest until 
instantiation time” and “yes”. 
 

Mixed parameter templates 
Consider 
 

template<C T1, class T2> void f(T1 t1, T2 t2) 
{ 
 ++t1; 
 ++t2; 
 t1+t2; 
} 

 
Clearly, we could check ++t1 in the absence of any further information. The concept C 
determines the complete set of valid operations for t1. 
 
Equally clearly, no checking is possible ++t2 until an actual type T2 is known. 
 
A little thought makes it clear that no early checking of t1+t2 is possible: Even if C 
provided for a + operation, a T2 might “highjack the operation with a better matching +. 
Conversely, if C doesn’t provide a + operation, a T2 might provide one for which a T1 is 
a match. 
 
The obvious conclusions follow: 
 

• Any part of a template definition that depends on a “plain class” template 
parameter cannot be checked until instantiation time. 
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• Any part of a template definition that depends only on concept parameters can be 
checked immediately. 

 
We will consider non-type template parameters (e.g. int, function, and template template 
parameters). 
 

??? 
So are mixed parameter templates ever needed? Are the ever useful?  
 

<<To be written>> 
 
 
 
 <<fill() again, apply()>> 
 

Appendix D: Semantic properties of concepts 
Here, we have only considered properties of types and values when stating assumptions 
that are part of concepts.  However, semantics properties of functions play central roles in 
generic programming and several transformations could be done by a compiler when it 
has those information.  As a general rule, those are run-time properties, therefore would 
need special annotations.  Consequently, this concept design does not propose to extend 
“predicates on types” to “predicates on functions”. 
 
This appendix is simply a note pointing out this area of future (probably post C++0x) 
exploration. A sorting algorithm, for example, may be idempotent; that is, given a 
sequence s the expression sort(sort(s)) is the same as sort(s), therefore the outer call to 
sort() could be removed as unnecessary.  Similarly, given a sequence seq of bigint and 
knowing that the operation operator+(const bigint&, const bigint&) is associative, the 
expressions accumulate(seq.rbegin(), seq.rend(), bigint()) can be transformed into 
accumulate(seq.begin(), seq.end(), bigint()).  That is, summing forwards or backwards 
are equivalent.  Similar transformations are done internally by optimizing compilers on 
built-in types.  Similar or equal support for user-defined types would undoubtedly need 
some annotations on functions (not just on types); however, we need more work and 
experience in that area. 
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