

N1688 1

Doc No: N1688=04-0128

Date: 10 Sep 2004
Reply to: Matt Austern

 austern@apple.com

Library Extension Technical Report Issues List
Revision 5: 2004-09 pre-Redmond mailing

1 TR Introduction issues
1.1 How to disable TR features
Section: 1 [tr.intro]
Submitter: Matt Austern
Status: NAD

The TR says that implementers should not enable the TR by default, and should hide TR features
more thoroughly than just putting them in another namespace. It's vague on exactly what
implementers should do: have files in another directory (perhaps even shadow headers, like an
alternate version of <functional>), or use a macro, or something else. Should we be more
specific?

Resolution:
The LWG decided that the current text is satisfactory.

1.2 Feature test macros for the TR
Section: 1 [tr.intro]
Submitter: Beman Dawes
Status: Closed

How can users determine whether or not a particular compiler/library implementation supports
the components described in the library extension TR? Should we have a coarse-grained macro
(yes or not), or should we have a fine-grained facility so users can perform feature tests for
individual pieces? (See http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1558.html)

Rationale:
There was some discomfort with putting these macros in a header that’s associated so strongly
with the operating system. Additionally, it isn’t clear whether these macros would give us as
much of a portability benefit as one might hope, and they might present a legacy issue. (If code
has come to rely on their presence, there might be pressure to keep them in even after these
components have been standardized.)

N1688 2

1.3 Reference to clause 17 should be stronger
Section: 1 [tr.intro]
Submitter: Beman Dawes
Status: TR

The TR working paper makes clear that the "Methods of description" (17.3) of the C++ Standard
also apply to the TR.

But it appears to me that all of clause 17 should apply to the TR.

Proposed Resolution:
Replace:

1.1 Method of description [tr.description]

The structure of clauses in this technical report, the elements that make up the subclauses, and
the editorial conventions used to describe library components, are the same as described in
clause 17.3 of the C++ standard.

with:

1.1 Relation to C++ Standard Library Introduction

Unless otherwise specified, the whole of the ISO C++ Standard Library introduction (clause
17) is included into this Technical Report by reference.

1.4 Meaning of “impure extension”
Submitter: Pete Becker
Status: New

TR1 asserts that "additions to standard library components" are "impure" extensions, and cites as
an example the additions to std::pair in tr.tuple.pairs. For example, TR1 adds tuple_element<0,
pair<T1, T2> >, which extracts the type T1.

On the other hand, operator<<(basic_ostream<...>, tuple<...>) is not an "impure" extension, even
though it is an addition to basic_ostream.

I don't see the difference between these two: in both cases, if you use code from TR1 you can do
things that you can't do with something from the current standard library. More important, I don't
see the point of this distinction: what should I do differently when something is labeled an
"impure" extension versus when it's labeled a "pure" extension? Looks to me like we should
remove this distinction. (especially since these "additions" to pair are the only things where this
distinction is applied).

N1688 3

2 Smart pointer issues
2.1 shared_ptr constructor from auto_ptr missing postcondition
Submitter: Beman Dawes
Section: 2.2.3 [tr.util.smartptr.shared.const]
Status: TR

For
 template <class Y> shared_ptr<Y>(auto_ptr<Y> & r)
The Postcondition clause says:

use_count() == 1

Resolution:
change it to
 use_count() == 1 && r.get() == 0

2.2 Error in shared_ptr constructor
Submitter: Pete Becker
Section: 2.2.3 [tr.util.smartptr.shared.const]
Paper: c++std-lib-11461, 11463-11510, 11512-11524
Status: Closed

template<class Y> explicit shared_ptr(Y *p);
template <class Y, class D> shared_ptr(Y *, D d);
template <class Y> shared_ptr<auto_ptr<Y> & r);

The Effects clauses for the first two ctors say:
Constructs a shared_ptr that owns the pointer p [and the deleter d].

and their Postconditions clauses say:
use_count() == 1 && get() == p

Similarly, the Effects clause for the third ctor says:

Constructs a shared_ptr that stores and owns r.release()
and the Postcondition clause says:

use_count == 1

Issues:

• Is this the correct behavior when p or r.release() is a null pointer? Consistency with the
default constructor would suggest that use_count() == 0 for a null pointer, i.e. the result is
an empty shared_ptr.

• If use_count() should be 0, this raises the lesser issue of whether smart_ptr(null, Dtor)
should remember _Dtor, or should be equivalent to smart_ptr(). I'm pretty sure I prefer
the latter, 'cause it's the way I've implemented it. (It's also simpler and more efficient to
treat all null pointers the same way).

Resolution:

N1688 4

Discussed at Kona. There are several ways of phrasing this issue: Do we reference-count null
pointers? Are null pointers a special case? What is the deleter argument good for? There wasn’t
consensus for changing what the TR already says, but it was agreed that this exposed another
issue (2.3, see below).

2.3 shared_ptr equality and operator<
Submitter: Beman Dawes
Section: [tr.util.smartptr.shared]
Status: Closed

When two shared_ptrs p1 and p2 are constructed from the same underlying pointer, the behavior
of operator== and operator< is surprising. We will have p1 == p2, but also either p1 < p2 or p1 >
p2. We thus violate the usual trichotomy condition. For example, if you have a whole bunch of
shared_ptrs in a set, you can't search for it by constructing a new shared_ptr.

It may seem that this is irrelevant because it's never correct to have two shared_ptrs with the
same underlying pointer, but that's wrong. It's valid in two cases: (1) when the underlying pointer
is null; or (2) when you're using a user-defined deleter object that doesn't do deletion.

Further discussion: See N1590=04-0030, "Smart Pointer Comparison Operators", for a
justification of the current behavior.

Rationale:
General agreement that this behavior is surprising. Also general agreement that (a) we're scared of
violating Peter Dimov's recommendation; and (b) the proposed change hasn't been tested; and (c)
the surprising behavior is only in a few corner cases. Straw poll 4-1-1: keep as is vs do the
comparison based on the underlying pointer vs eliminate comparison operators entirely

2.4 shared_ptr::operator<() not a strict weak ordering
Submitter: Joe Gottman
Status: TR

According to the draft Technical Report on Standard Library Extensions, two shared_ptr's are
equivalent under the !(a < b) && !(b < a) relationship if and only if they share ownership. But
an empty (default constructed) shared_ptr does not share ownership with anything, not even
itself. This means that if a is an empty shared_ptr, it will not be equivalent to itself, so operator<
is not a strict weak ordering. The same holds true for weak_ptr's.

Peter Dimov comments (c++std-lib-12700):

Technically, this is not a defect. There is an explicit requirement in 2.2.3.6 and 2.2.4.6 for operator< to be a strict
weak ordering. This requirement implies that every smart pointer is equivalent to itself under !(p < q) && !(q < p).

In the current text, the equivalence relation is not required to yield true for two different empty pointers p and q in
order to allow implementations that use several statically allocated control blocks for empty pointers. In such an
implementation, two empty pointers may or may not share a control block.

The original version of the proposal allowed implementations where it is not possible to detect whether a given
smart pointer is empty. The revised version in the TR, however, does not permit such implementations, since it
requires use_count() to return zero for empty pointers. Therefore, it is possible to tighten the specification of

N1688 5

operator< as proposed.

Proposed Resolution:
Change the specification of shared_ptr::operator<() to say two shared_ptr's are equivalent if and
only if they share ownership or are both empty.

Change the specification of weak_ptr::operator<() to say two weak_ptr's are equivalent if and
only if they share ownership or are both empty.

2.5 May smart pointers point to incomplete types?
Submitter: Peter Dimov
Status: Open

In clause 17 (specifically, 17.4.3.6), we say that we get undefined behavior “if an incomplete
type is used as a template argument when instantiating a template component.” Should we make
an explicit exception to that general rule for shared_ptr?

Sydney: Intuitively it makes sense to say that you should be able to have a shared_ptr where T is
incomplete. However, we do not have a proposal saying what you can and can't do with such a
shared_ptr. We can't specify that it works until we identify those limitations, and this issue has
no proposed resolution. However, ruling out incomplete types is a serious limitation. There are
many use cases where this feature is important.

 Straw poll, close as NAD vs leave open: 2-6. Alisdair will try to come up with a proposed
resolution for the Redmond meeting.

Additional comments from Peter Dimov:
All of the proposed text was written as if there were an explicit requirement that T is allowed to
be incomplete. Otherwise void would not have been allowed, either.

There are no additional restrictions on what you can do with shared_ptr<T> (and weak_ptr<T>),
where T is incomplete. The Boost implementation supports it fully, and this is a very important
feature of shared_ptr

Also note that the template parameter of enable_shared_from_this is always incomplete, as its
intended use is:

class X: public enable_shared_from_this<X>
{
};

and since enable_shared_from_this<T> typically contains a weak_ptr<T> member, it is
effectively rendered useless by an implementation that does not support incomplete types.

Proposed Resolution:
Add to 2.2.3: "The template parameter T of shared_ptr can be an incomplete type."

N1688 6

Add to 2.2.4: "The template parameter T of weak_ptr can be an incomplete type."

Add to 2.2.5: "The template parameter T of enable_shared_from_this can be an incomplete
type."

2.6 dynamic_ptr_cast and deleters
Submitter: Alisdair Meredith
Status: NAD

c++std-lib-12600:
The following example appears to meet the explicit reqirements for 2.2.3.9. Not sure if I am
missing some implicit reqs.

class base
{
};

class derived : public base
{
 void foo();
};

struct DeleteDerived
{
 template< class T >
 void operator()(T *pt)
 {
 if(pt) pt->foo();
 delete pt;
 }
};

int main()
{
 shared_ptr< base > pb;
 {
 shared_ptr< derived > pd(new derived, DeleteDerived());
 pb = dynamic_pointer_cast< base >(Make);
 }
}

I suspect this kind of functor-deleter should be disallowed, but appears to pass the conditions in
2.2.3.1 Assuming DeleteDerived is rewritten as a straight function:

void DeleteDerived(derived *pd)
{
 if(pd) pd->foo();

N1688 7

 delete pd;
};

What are the implications on shared_ptr< base > calling DeleteDerived? The pointer points to
the correct object type, but is only known to be of base type. However, I am not clear what
happens dispatching all this through a function pointer. Are the function pointer type assignment
compatible?

Again, this simpler deleter appears to meet the explicit requirements in 2.2.3.9.

Rationale:
We have a pointer to the correct type internally. The control block knows the correct type
internally. Even a shared pointer to void works correctly.

2.7 weak_ptr and deleters
Submitter: Alisdair Meredith
Status: NAD

c++std-lib-12601:
Deleters again: what happens in the following case?

void array_deleter(int *p)
{
 delete []p;
}

int main()
{
 shared_ptr<int> p1;
 {
 shared_ptr<int> p2(new int[1], &array_deleter);
 weak_ptr< int > pw(p2);
 p1 = pw.lock();
 }
}

Rationale:
NAD for the same reason asd issue 2.6.

2.8 Need equivalent of shared_ptr for arrays
Submitter: Alisdair Meredith
Status: NAD

The lack of shared_array is a problem, as undefined behavior storing arrays in smart pointers is a
frequent problem when learning. This problem is worse when our only advice is "don't do
that"

N1688 8

IIUC the recommended solution is to use shared_ptr with a deleter object that will delete arrays
instead. Why not put that deleter into the TR as well, to make this clear?

Proposed Resolution:
Add a deleter class that’s appropriate for arrays:

struct array_deleter
{
template<class T>
void operator()(T *pt) const { delete []pt; }
};

Then add a non-normative example showing how this can be used:
struct junk {
 static int i;
 ~junk() {
 std::cout << "deleting object number "
 << ++i
 << std::endl;
 }
};

int junk::i = 0;
int main()
{
 std::tr1::shared_ptr<void> p(new junk[5], array_deleter());
 return 0;
}

Rationale:
The argument for it: it would be of value for users. The argument against it: it's not at all hard to
do, so all we need is user education.
2.9 Proposed addition: const_pointer_cast
Submitter: Peter Dimov
Status: TR

N1450 says in III.B.11 that "reinterpret_cast and const_cast equivalents have been omitted since
they have never been requested by users."

This was true at the time, but I was shown a legitimate use case for const_pointer_cast; a library
returns shared_ptr<X const> "read handles" and provides a separate "lock" function that converts
a read handle to a write handle (shared_ptr<X>).

On most (all?) existing implementations, shared_ptr<X const> is layout-compatible with
shared_ptr<X>, so it is possible to achieve the desired effect with a reinterper_cast, but a
portable mechanism would be better.

Proposed resolution:

Add to 2.2.3.9:

N1688 9

template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);

Requires: The expression const_cast<T*>(r.get()) is well-formed.

Returns: If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores
const_cast<T*>(r.get()) and shares ownership with r.

Throws: nothing.

Notes: the seemingly equivalent expression shared_ptr<T>(const_cast<T*>(r.get())) will
eventually result in undefined behavior, attempting to delete the same object twice.

2.10 Missing converting constructor requirements
Submitter: Peter Dimov
Status: New

The following constructors:

template<class Y> shared_ptr(shared_ptr<Y> const& r);
template<class Y> explicit shared_ptr(weak_ptr<Y> const& r);

template<class Y> weak_ptr(shared_ptr<Y> const& r);
template<class Y> weak_ptr(weak_ptr<Y> const& r);

are missing a requirement that Y* needs to be convertible to T*.

Proposed resolution:

In 2.2.3.1, replace:
shared_ptr(shared_ptr const& r);
template<class Y> shared_ptr(shared_ptr<Y> const& r);
Effects: If r is empty, constructs an empty shared_ptr; otherwise, constructs a shared_ptr that
shares ownership with r.
Postconditions: get() == r.get() && use_count() == r.use_count().
Throws: nothing.

with:
shared_ptr(shared_ptr const& r);
template<class Y> shared_ptr(shared_ptr<Y> const& r);
Requires: for the second constructor Y* shall be convertible to T*.
Effects: If r is empty, constructs an empty shared_ptr; otherwise, constructs a shared_ptr that
shares ownership with r.
Postconditions: get() == r.get() && use_count() == r.use_count().
Throws: nothing.

Add:

Requires: Y* shall be convertible to T*.

N1688 10

after:
template<class Y> explicit shared_ptr(weak_ptr<Y> const& r);

In 2.2.4.1, replace:
template<class Y> weak_ptr(shared_ptr<Y> const& r);
weak_ptr(weak_ptr const& r);
template<class Y> weak_ptr(weak_ptr<Y> const& r);
Effects: If r is empty, constructs an empty weak_ptr; otherwise, constructs a weak_ptr that
shares ownership with r and stores a copy of the pointer stored in r.
Postconditions: use_count() == r.use_count().
Throws: nothing.

with:
weak_ptr(weak_ptr const& r);
template<class Y> weak_ptr(shared_ptr<Y> const& r);
template<class Y> weak_ptr(weak_ptr<Y> const& r);
Requires: for the second and third constructors Y* shall be convertible to T*.
Effects: If r is empty, constructs an empty weak_ptr; otherwise, constructs a weak_ptr that shares
ownership with r and stores a copy of the pointer stored in r.
Postconditions: use_count() == r.use_count().
Throws: nothing.

3 Type traits issues
3.1 Use of Language in type transformations
Submitter: Pete Becker
Status: TR

See N1519 for discussion of the issue.

Resolution:
Accept the proposed resolution for N1519. [but editorial change: also add a non-normative note
pointing out what it means for cv-qualified types]

3.2 Why three headers?
Submitter: Pete Becker
Status: TR

Three headers seems excessive. Why not put them all into <type_traits>? That would simplify
things for users, who wouldn't have to remember which of the three headers defines the template
they're interested in. Currently, <type_traits> has 33 templates (not counting helpers),
<type_compare> has 3, and <type_transform> has 11. The classification is reasonable in itself,
but I don't think it's particularly helpful.

A number of people expressed support for one header on the LWG reflector.

Resolution: Combine the three type traits headers into a single header named <type_traits>.

N1688 11

3.3 Is integral_constant an implementation detail?
Submitter: Pete Becker
Status: NAD

See N1519 for discussion of the issue.

Resolution:
NAD. We accepted several changes that require integral_constant to be exposed explicitly.

3.4 Revising the Unary Type Traits Requirements
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519.

3.5 New type trait: alignment_of
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519.

3.6 New type trait: has_virtual_destructor
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution: Accept the proposed resolution from N1519, but add a proviso that false is the
fallback position if the compiler can’t determine an exact answer.

3.7 New type trait: is_safely_destructible
Submitter: Bronek Kozicki
Status: NAD

See N1508 for discussion of the issue.

Resolution: The LWG decided not to accept this proposal. If we accepted it, it would be better
for the template to have two parameters: can class D be safely destroyed via a pointer to class B?
But as is, the trait seems too high level: it answers a complicated compound question, not an
atomic question.

N1688 12

3.8 New type trait: rank
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution:
Discussed at Kona. The LWG wasn’t sure whether this was useful; the few people who could
use it reliably for metaprogramming would probably find it just as easy to write it themselves.

3.9 New type trait: dimension
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue. At Sydney the LWG decided that this was a good idea
but that “dimension” was a confusing word. We agreed to use “rank” and “extent,” since those
two words are unambiguous.

Resolution:
(This proposed resolution is N1620.)

4.2 Header <type_traits> synopsis:

Add under:

// type properties:
...
template <class T> struct rank;
template <class T, unsigned I = 0> struct extent;

Change:

template <class T> struct remove_dimension;
template <class T> struct remove_all_dimensions;

to:

template <class T> struct remove_extent;
template <class T> struct remove_all_extents;

4.3.4 Type properties

Add:

template <class T> struct rank {
 static const std::size_t value = implementation_defined;
 typedef std::size_t value_type;
 typedef integral_constant<value_type,value> type;
 operator type()const;

N1688 13

};

value: An implementation-defined integer value representing the
rank of objects of type T (8.3.4). [Note - the term "rank" here
is used to describe the number of dimensions of an array type -
end note]

[example -

 // the following assertions should hold:
assert(rank<int>::value == 0);
assert(rank<int[2]>::value == 1);
assert(rank<int[][4]>::value == 2);

- end example]

...

template <class T, unsigned I = 0> struct extent {
 static const std::size_t value = implementation_defined;
 typedef std::size_t value_type;
 typedef integral_constant<value_type,value> type;
 operator type()const;
};

value: An implementation-defined integer value representing the
extent (dimension) of the I'th bound of objects of type T
(8.3.4). If the type T is not an array type, has rank of less
than I, or if I == 0 and is of type "array of unknown bound of
T", then value shall evaluate to zero; otherwise value shall
evaluate to the number of elements in the I'th array bound of T.
[Note - the term "extent" here is used to describe the number of
elements in an array type - end note]

[example -

 // the following assertions should hold:
assert(extent<int>::value == 0);
assert(extent<int[2]>::value == 2);
assert(extent<int[2][4]>::value == 2);
assert(extent<int[][4]>::value == 0);
assert((extent<int, 1>::value) == 0);
assert((extent<int[2], 1>::value) == 0);
assert((extent<int[2][4], 1>::value) == 4);
assert((extent<int[][4], 1>::value) == 4);

- end example]

4.5.3 Array modifications:

N1688 14

Change:

template <class T> struct remove_dimension{
 typedef T type;
};
template <class T, std::size_t N> struct remove_dimension<T[N]>{
 typedef T type;
};
template <class T> struct remove_dimension<T[]>{
 typedefs T type;
};

to:

template <class T> struct remove_extent {
 typedef T type;
};
template <class T, std::size_t N> struct remove_extent<T[N]> {
 typedef T type;
};
template <class T> struct remove_extent<T[]> {
 typedef T type;
};

Change:

[example
 // the following assertions should all hold:
 assert((is_same<remove_dimension<int>::type, int>::value));
 assert((is_same<remove_dimension<int[2]>::type, int>::value));
 assert((is_same<remove_dimension<int[2][3]>::type,
int[3]>::value));
 assert((is_same<remove_dimension<int[][3]>::type,
int[3]>::value));
Ñend example]

template <class T> struct remove_all_dimensions {
 typedef T type;
};
template <class T, std::size_t N> struct
remove_all_dimensions<T[N]> {
 typedef typename remove_all_dimensions<T>::type type;
};
template <class T> struct remove_all_dimensions<T[]> {
 typedef typename remove_all_dimensions<T>::type type;
};

to:

[example

N1688 15

 // the following assertions should all hold:
 assert((is_same<remove_extent<int>::type, int>::value));
 assert((is_same<remove_extent<int[2]>::type, int>::value));
 assert((is_same<remove_extent<int[2][3]>::type,
int[3]>::value));
 assert((is_same<remove_extent<int[][3]>::type,
int[3]>::value));
Ñend example]

template <class T> struct remove_all_extents {
 typedef T type;
};
template <class T, std::size_t N> struct
remove_all_extents<T[N]> {
 typedef typename remove_all_extents<T>::type type;
};
template <class T> struct remove_all_extents<T[]> {
 typedef typename remove_all_extents<T>::type type;
};

Change:

[example
 // the following assertions should all hold:
 assert((is_same<remove_all_dimensions<int>::type,
int>::value));
 assert((is_same<remove_all_dimensions<int[2]>::type,
int>::value));
 assert((is_same<remove_all_dimensions<int[2][3]>::type,
int>::value));
 assert((is_same<remove_all_dimensions<int[][3]>::type,
int>::value));
Ñend example]

to:

[example
 // the following assertions should all hold:
 assert((is_same<remove_all_extents<int>::type, int>::value));
 assert((is_same<remove_all_extents<int[2]>::type,
int>::value));
 assert((is_same<remove_all_extents<int[2][3]>::type,
int>::value));
 assert((is_same<remove_all_extents<int[][3]>::type,
int>::value));
Ñend example]

4.5.4 Pointer modifications

Change:

N1688 16

template <class T> struct add_pointer {
 typedef typename remove_dimension<
 typename remove_reference<T>::type
 >::type*
 type;
};

to:

template <class T> struct add_pointer
{
 typedef typename remove_extent
 <
 typename remove_reference<T>::type
 >::type* type;
};

4.6 Implementation requirements

Change:

is_pod<T>::value == is_pod<remove_dimension<T>::type>::value

to:

is_pod<T>::value == is_pod<remove_extent<T>::type>::value

Change:

has_trivial_*<T>::value ==
has_trivial_*<remove_dimension<T>::type>::value

to:

has_trivial_*<T>::value ==
has_trivial_*<remove_extent<T>::type>::value

3.10 New type trait: aligned_storage
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution:

N1688 17

Accept the proposed resolution from N1519, but say “unspecified” instead of “implementation
defined.”

3.11 New type trait: remove_all_dimensions
Submitter: John Maddock
Status: TR

See N1519 for discussion of the issue.

Resolution:
Accept the proposed resolution from N1519.

3.12 Conversion of traits to integral_constant
Submitter: Dave Abrahams
Status: TR

Every traits class X has a nested typedef type, and has a conversion operator, operator type()
const. Automatic conversions are useful and important, but a conversion operator is the wrong
way to do it. Instead, we should say that X inherits from type. This would be consistent with
actual implementation practice.

3.13 is_base_of<X,X>
Submitter: Dave Abrahams
Status: TR

Currently, is_base_of<X,Y> returns false when X and Y are the same. This is technically
correct (X isn’t its own base class), but it isn’t useful. The definition should be loosened to
return true when X and Y are the same, even when the type isn’t actually a class.

Note: the LWG agreed that this behavior is more useful than what’s currently in the TR. We
were uneasy about changing the behavior will keeping the name is_base_of, but nobody thought
of a better name. We will consider changing the name if someone can come up with a better
one.

3.14 Type_traits specifications could be simpler
Submitter: Pete Becker
Status: Open

In 4.4.2 (for example), we say:

template<class T> struct remove_const{
 typedef T type;
};
template<class T> struct remove_const<T const>{
 typedef T type;
};

N1688 18

type: defined to be a type that is the same as T, except that any top level const-qualifier has been
removed....

The use of two structs is an implementation technique. The description is the actual behavior. It
should be written like this:

template<class T> struct remove_const{
 typedef T1 type;
};
The type T1 is the same as T, except that any top level const-qualifier has been removed.

This form of change is needed for all of the type transformations in clause 4.4.

Status:
Agreed that this is a good idea. Pete will provide wording.

3.15 Inconsistent non-normative note for has_virtual_destructor
Submitter: John Maddock
Status: New

The entry for has_virtual_destructor has a non-normative note that reads: "[Note: An
implementation that cannot determine whether a type has a virtual destructor, e.g. a pure library
implementation with no compiler support, should return false. -end note]".

However none of the other template that require compiler support have such notes, instead they
have an entry in section 4.6 (which has_virtual_destructor does not), we should try to be
consistent.

3.16 aligned_storage underspecified?
Submitter: Pete Becker
Status: New

This type trait produces "an implementation defined POD type with size Len and alignment
Align, and suitable for use as uninitialized storage for any object of a type whose size is Len and
whose alignment is Align."

Is the intention to permit arbitrary values for the Align argument? I hope not: I don't know how
to implement that. <g> Seems like there ought to be a constraint that Align must be one of some
implementation-specific set of values. Probably the best way to say that is to require that it be
one of the values that can be returned by align_of. (No, the set shouldn't be implementation
defined -- that's a nightmare, because it depends on compiler switches.)

Proposed resolution:
Requires: the value of the template argument Align shall be equal to
alignment_of<T>::value for some type T.

N1688 19

4 Random number generator issues
4.1 Confusing Text in Description of v.min()
Submitter: Pete Becker (see N1535)
Status: TR

In "Uniform Random Number Requirements" the text says that v.min() "Returns ... l where l is
...". This is the letter ell, which is too easily confused with the numeral one. Can we change it to
something less confusing, like "lim"?

Resolution:
Change the first sentence of the description of v.min() in 5.1.1 [tr.rand.req], Table 5.2 (Uniform
random number generator requirements) from:
 Returns some l where l is less than or equal to all values potentially returned by operator().
to:

Returns a value that is less than or equal to all values potentially returned by operator().

4.2 Confusing and Incorrect Text in Description of v.max()
Submitter: Pete Becker (see N1535)
Status: TR

In "Uniform Random Number Requirements" the text says that v.max() "returns l where l is less
than or equal to all values...". Should this be "greater than or equal to"? And similarly, should
"strictly less than" be "strictly greater than."?

Resolution:
Change the first sentence of the description of v.max() in 5.1.1 [tr.rand.req], Table 5.2 (Uniform
random number generator requirements) from:

If std::numeric_limits<T>::is_integer, returns l where l is less than or equal to all values
potentially returned by operator(), otherwise, returns l where l is strictly less than all values
potentially returned by operator().

to:
If std::numeric_limits<T>::is_integer, returns a value that is greater than or equal to all values
potentially returned by operator(), otherwise, returns a value that is strictly greater than all
values potentially returned by operator().

4.3 Table "Number Generator Requirements" Unnecessary
Submitter: Pete Becker (see N1535)
Status: TR

The table "Number Generator Requirements" has only one entry: X::result_type. While it's true
that random nunber generators and random distributions have this member, it doesn't seem like a
useful basis for classification -- there's nothing in the proposal that depends on knowing that
some type satisfies this requirement. I think the specification of X::result_type should be in
"Uniform Random Number Generator Requirements" and in "Random Distribution
Requirements."

N1688 20

Resolution:
Copy the description of X::result_type from 5.1.1 [tr.rand.req], Table 5.1 (Number generator
requirements) to 5.1.1 [tr.rand.req], Table 5.2 (Uniform random number generator requirements)
and to 5.1.1 [tr.rand.req], Table 5.4 (Random distribution requirements) and remove 5.1.1
[tr.rand.req], Table 5.1 (Number generator requirements).

4.4 Should a variate_generator Holding a Reference Be Assignable?
Submitter: Pete Becker (see N1535)
Status: TR

The third paragraph says, in part:

Specializations of variate_generator satisfy the requirements of CopyConstructible. They also
satisfy the requirements of Assignable unless the template parameter Engine is of the
formU&.

This looks like an implementation artifact. Is there a reason that variate_generators whose engine
type is a reference should not be copied?

Resolution:
Change the first two sentences of the third paragraph of 5.1.3 [tr.rand.var] from:

Specializations of variate_generator satisfy the requirements of CopyConstructible. They also
satisfy the requirements of Assignable unless the template parameter Engine is of the form
U&.

to:
Specializations of variate_generator satisfy the requirements of CopyConstructible
and Assignable. [Note: If the template parameter Engine is of reference type it is the
reference, not the object referred to, that is copied. —End Note]

4.5 Normal Distribution Incorrectly Specified
Submitter: Pete Becker (see N1535)
Status: TR

For normal_distribution, the paper says that the probability density function is1/sqrt(2*pi*sigma)
* exp(- (x - mean)^2 / (2 * sigma^2)). The references I've seen have a different initial factor,
using 1/(sqrt(2*pi) * sigma). That is, sigma is outside the square root.

Resolution:
Change the first paragraph of 5.1.7.8 [tr.rand.dist.norm] from:

A normal_distribution random distribution produces random numbers x distributed with
probability density function (1/sqrt(2*pi*sigma))e-(x-mean)2/(2*sigma2), where mean and sigma are
the parameters of the distribution.

to:
A normal_distribution random distribution produces random numbers x distributed with
probability density function (1/(sqrt(2*pi)*sigma))e-(x-mean)2/(2*sigma2), where mean and sigma are
the parameters of the distribution.

N1688 21

4.6 Should Random Number Initializers Take Iterators by Reference
or by Value?

Submitter: Pete Becker
Status: TR

See N1547 for a full discussion. Summary: when engines are seeded, the seed may be arbitrarily
large. For compound engines we use a range where the first iterator is taken by reference and
updated. This is an unconventional interface and will invite bugs. The obvious solution would
be to have a function that takes iterators first and last by value and returns the updated
version of first. However, this is an awkward solution for constructors. One possibility would
be to abandon range constructors, and rely instead on two-phase initialization where the iterators
are passed to a member function.

Notes: Sydney: the LWG agrees that this is an improvement. The only discomfort is that it
would be nice to have the glue code to turn a pair of iterators into a generator, instead of asking
each user to write it for themself. This may be a TR2 candidate.

Resolution:
In section 5.1.1 [tr.rand.req], replace in the paragraph before table 5.2

 ... it1 is an lvalue and it2 is a (possibly const) value of an input iterator type It having an
unsigned integral value type, ...

 by
 ... g is an lvalue of a zero-argument function object returning values of unsigned integral type,
...

 In the same section, replace in table 5.2 the table row for X(it1, it2) by

 expression: X(g)

return type: (none)

 pre/post-condition: creates an engine with the initial internal state given by the results of
successive invocations of g. Throws what and when g throws.

 complexity: O(size of state)

 In the same section, replace in table 5.2 the table row for u.seed(it1, it2) by
 expression: u.seed(g)

return type: void

 pre/post-conditions: sets the internal state of u so that u == X(g). If an invocation of g throws,
that exception is rethrown, and further use of u (except destruction) is undefined until a seed
member function has been executed without throwing an exception.

 complexity: same as X(g)

 After table 5.2, add a new paragraph following the one starting "Additional Requirements":
 For every pseudo-random number engine defined in this clause:

 • the constructor

N1688 22

template<class Gen> X(Gen& g)

 shall have the same effect as
X(static_cast<Gen>(g))

 if Gen is a fundamental type.

 • The member function of the form
template<class Gen> void seed(Gen& g)

 shall have the same effect as
X(static_cast<Gen>(g))

 if Gen is a fundamental type.

 [Note: The casts make g an rvalue, unsuitable for binding to a reference.]

 [Note to editor: The following changes intend to morph "dereferencing *first" to "invoking g"
only. However, complete text has been given.]

 In section 5.1.4.1 [tr.rand.eng.lcong], replace the constructor template<class In>
linear_congruential(In& first, In last) by

template<class Gen> linear_congruental(Gen& g)
 Effects: If c mod m = 0 and g() mod m = 0, sets the state x(i) of the engine to 1 mod m, else
sets the state x(i) of the engine to g() mod m.

Complexity: Exactly one invocation of g.

 Furthermore, adjust the class synopsis accordingly.

 In section 5.1.4.2 [tr.rand.eng.mers], replace the description of the constructor template<class
In> mersenne_twister(In& first, In last) by

template<class Gen> mersenne_twister(Gen& g)
 Effects: Given the values z[0] ... z[n-1] obtained by successive invocations of g, sets x(-n)
... x(-1) to z[0] mod 2w ... z[n-1] mod 2w.
Complexity: Exactly n invocations of g.

 Furthermore, remove the description of the seed(first, last) function, it is subsumed by table 5.2
and the description of the constructor, and adjust the class synopsis accordingly.

 In section 5.1.4.3 [tr.rand.eng.sub], replace the description of the constructor template<class In>
subtract_with_carry(In& first, In last) by

template<class Gen> subtract_with_carry(Gen& g)
 Effects: With n=(w+31)/32 (rounded downward) and given the values z[0] ... z[n*r-1]
obtained by successive invocations of g, sets x(-r) ... x(-1) to (z0 * 232 + ... + zn-1 * 232*(n-
1)) mod m ... (z(r-1)*n * 232 + ... + zr-1 * 232*(n-1)) mod m. If x(-1) == 0, sets carry(-1) = 1,
else sets carry(-1) = 0.
Complexity: Exactly r*n invocations of g.

 Furthermore, remove the description of the seed(first, last) function, it is subsumed by table 5.2
and the description of the constructor, and adjust the class synopsis accordingly.

N1688 23

In section 5.1.4.4 [tr.rand.eng.sub1], replace the description of the constructor
template<class In> subtract_with_carry_01(In& first, In last) by

template<class Gen> subtract_with_carry_01(Gen& g)
 Effects: With n=(w+31)/32 (rounded downward) and given the values z0 ... zn*r-1 obtained
by successive invocations of g, sets x(-r) ... x(-1) to (z0 * 232 + ... + zn-1 * 232*(n-1)) * 2-w
mod 1 ... (z(r-1)*n * 232 + ... + zr-1 * 232*(n-1)) * 2-w mod 1. If x(-1) == 0, sets carry(-1) =
2-w, else sets carry(-1) = 0.
 Complexity: Exactly r*n invocations of g.

 Furthermore, remove the description of the seed(first, last) function, it is subsumed by table 5.2
and the description of the constructor, and adjust the class synopsis accordingly.

In section 5.1.4.5 [tr.rand.eng.disc], replace the description of the constructor
template<class In> discard_block(In& first, In last) by

template<class Gen> discard_block(Gen& g)
 Effects: Constructs a discard_block engine. To construct the subobject b, invokes the b(g)
constructor. Sets n = 0.

 Furthermore, remove the description of the seed(first, last) function, it is subsumed by table 5.2
and the description of the constructor, and adjust the class synopsis accordingly.

 In section 5.1.4.6 [tr.rand.eng.xor], replace the description of the constructor template<class In>
xor_combine(In& first, In last) by

template<class Gen> xor_combine(Gen& g)
 Effects: Constructs a xor_combine engine. To construct the subobject b1, invokes the b1(g)
constructor. Then, to construct the subobject b2, invokes the b2(g) constructor.

 Furthermore, remove the description of the seed(first, last) function, it is subsumed by table 5.2
and the description of the constructor, and adjust the class synopsis accordingly.
4.7 Are Global Operators Overspecified?
Submitter: Pete Becker (see N1535)
Status: TR

See N1535 for a full discussion. Summary: Do we literally want to require the existence of a
namespace-scope operator==, or do we just want to say that when x and y are engines, x ==
y is required to work?

Resolution:
In section 5.1.1 [tr.rand.req], table 5.2, replace in the pre-/post-condition column for x == y

== is an equivalence relation. The current state x(i) of x is equal to the current state y(j) of y.
 by

== is an equivalence relation. Given the current state x(i) of x and the current state y(j) of y,
returns true if x(i+k) is equal to y(j+k) for all integer k >= 0, false otherwise.

In section 5.1.4.1 [tr.rand.eng.lcong], remove the prototypes for operator== and operator!= from
the synopsis.

 In section 5.1.4.2 [tr.rand.eng.mers], remove the prototypes for operator== and operator!= from
the synopsis.

N1688 24

 In section 5.1.4.3 [tr.rand.eng.sub], remove the prototypes for operator== and operator!= from
the synopsis.

 In section 5.1.4.4 [tr.rand.eng.sub1], remove the prototypes for operator== and operator!= from
the synopsis.

 In section 5.1.4.5 [tr.rand.eng.disc], remove the prototypes for operator== and operator!= from
the synopsis.

 In section 5.1.4.6 [tr.rand.eng.xor], remove the prototypes for operator== and operator!= from
the synopsis.

4.8 Should the Template Arguments Be Restricted to Built-in
Types?

Submitter: Pete Becker (see N1535)
Status: TR.

See N1535 for a full discussion. Summary: Generators and distributions are parameterized on
arithmetic types. The TR tries to allow user defined number-like types, but it’s very hard to get
that sort of thing right. We should restrict it to the built-in arithmetic types.

Resolution:
Replace in 5.1.1 [tr.rand.req], last paragraph

Furthermore, a template parameter named RealType shall denote a type that holds an
approximation to a real number. This type shall meet the requirements for a numeric type
(26.1 [lib.numeric.requirements]), the binary operators +, -, *, / shall be applicable to it, a
conversion from double shall exist, and function signatures corresponding to those for type
double in subclause 26.5 [lib.c.math] shall be available by argument-dependent lookup (3.4.2
[basic.lookup.koenig]). [Note: The built-in floating-point types float and double meet these
requirements.]

by
Furthermore, the effect of instantiating a template that has a template type parameter
namedRealType is undefined unless that type is one of float, double, or long double.

Delete from 5.1.7 [tr.rand.dist]

A template parameter named IntType shall denote a type that represents an integer number.
This type shall meet the requirements for a numeric type (26.1 [lib.numeric.requirements]),
the binary operators +, -, *, /, % shall be applicable to it, and a conversion from int shall exist.
[Footnote: The built-in types int and long meet these requirements.]

...

No function described in this section throws an exception, unless an operation on values of
IntType or RealType throws an exception. [Note: Then, the effects are undefined, see
[lib.numeric.requirements].]

Add after 5.1.1 [tr.rand.req], last paragraph

N1688 25

The effect of instantiating a template that has a template type parameter named IntType is
undefined unless that type is one of short, int, long, or their unsigned variants.

The effect of instantiating a template that has a template type parameter named UIntType is
undefined unless that type is one of unsigned short, unsigned int, or unsigned long.

4.9 Do Engines Need Type Arguments?
Submitter: Pete Becker (see N1535)
Status: Closed

See N1535 for a discussion. Summary: engines are parameterized by type, but this is pretty
much redundant. The appropriate type can be deduced from the template arguments.

Resolution: Discussed at Kona. No consensus that this change would be a good idea. That’s still
the status from Sydney.

4.10 Unclear Complexity Requirements for variate_generator
Submitter: Pete Becker (see N1535)
Status: TR

The specification for variate_generator says

Specializations of variate_generator satisfy the requirements of CopyConstructible. They also
satisfy the requirements of Assignable unless the template parameter Engine is of the
formU&. The complexity of all functions specified in this section is constant. No function
described in this section except the constructor throws an exception.

Taken literally, this isn't implementable. operator() calls the underlying distribution's operator(),
whose complexity isn't directly specified. The distribution's operator() makes an amortized
constant number of calls to the generator's operator(), whose complexity is, again, amortized
constant. So the complexity ofvariate_generator::operator() ought to also be amortized constant.

variate_generator also has a constructor that takes an engine and a distribution by value, and uses
their respective copy constructors to create internal copies. There are no complexity constraints
on those copy constructors, but given that the default constructor for an engine has complexity
O(size of state), it seems likely that an engine's copy constructor would also have complexity
O(size of state). This means thatvariate_generator's complexity is at best O(size of engine's
state), not constant.

I suspect that what was intended was that these functions would not introduce any additional
complexity, that is, their complexity is the "larger" of the complexities of the functions that they
call.

Resolution:
Replace in 5.1.3 [tr.rand.var]

The complexity of all functions specified in this section is constant.
by

N1688 26

Except where otherwise specified, the complexity of all functions specified in this section is
constant.

Add for variate_generator(engine_type e, distribution_type d)

Complexity: Sum of the complexities of the copy construtors of engine_type
anddistribution_type.

Add for result_type operator()()

Complexity: Amortized constant.

Add for result_type operator()(T value)

Complexity: Amortized constant.

4.11 xor_combine Over-generalized?
Submitter: Pete Becker (see N1535)
Status: Editorial

For an xor_combine engine, is there ever a case where both s1 and s2 would be non-zero? Seems
like this would produce non-random values, because the low bits (up to the smaller of the two
shift values) would all be 0.

If at least one has to be 0, then we only need one shift value, and the definition might look more
like this:
 template <class _Engine1, class _Engine2, int _Shift = 0> ...

with the output being (_Eng1() ^ (_Eng2() << _Shift)).

Resolution: Discussed at Kona. The LWG felt that this interface is still the simplest. The right
solution is to add a non-normative note advising users that only one of these parameters should
be nonzero. The project editor is directed to add that note.

4.12 xor_combine::result_type Incorrectly Specified
Submitter: Pete Becker (see N1535)
Status: TR

xor_combine has a member
 typedef typename base_type::result_type result_type;

However, it has no type named base_type, only base1_type and base2_type. So, what should
result_type be?

Resolution:
In 5.1.4.6 [tr.rand.eng.xor] replace

typedef typename base_type::result_type result_type;
by

typedef /* see below */ result_type;

N1688 27

and add at the end of the paragraph below the class definition
The member result_type is defined to that type
ofUniformRandomNumberGenerator1::result_type
andUniformRandomNumberGenerator2::result_type that provides the most storage
[basic.fundamental].

4.13 subtract_with_carry's IntType Overpecified
Submitter: Pete Becker (see N1535)
Status: TR

The IntType for subtract_with_carry "shall denote a signed integral type large enough to store
values up to m - 1." The implementation subtracts two values of that type, and if the result is < 0
it adds back the m, which makes the result non-negative. In fact, this also works for unsigned
types, with just a small change in the implementation: instead of testing whether the result is < 0
you test whether it's < 0 or greater than or equal to m. This works because unsigned arithmetic
wraps, and it makes the template a bit easier to use.

I suggest that we loosen the constraint to allow signed and unsigned types. Thus the constraint
would read "shall denote an integral type large enough to store values up to m - 1."

Resolution:
In 5.1.4.3 [tr.rand.eng.sub], replace

The template parameter IntType shall denote a signed integral type large enough to store
values up to m-1.

by
The template parameter IntType shall denote an integral type large enough to store values up
to m.

4.14 subtract_with_carry_01::seed(unsigned) Missing Constaint
Submitter: Pete Becker (see N1535)
Status: TR

The specification for subtract_with_carry::seed(IntVal) has a Requires clause which requires that
the argument be greater than 0. This member function needs the same constraint.

Resolution:
Add:

Requires: value > 0
to the description of subtract_with_carry_01::seed(unsigned) in 5.1.4.4 [tr.rand.eng.sub1]. (See
resolution of issue 4.19, which also affects the wording in this area.)

4.15 subtract_with_carry_01::seed(unsigned) Produces Bad Values
Submitter: Pete Becker (see N1535)
Status: TR

subtract_with_carry_01::seed(unsigned int) uses a linear congruential generator to produce initial
values for the fictitious previously generated values. These values are generated as(y(i)*2^-w)

N1688 28

mod 1. The linear congruential generator produces values in the range [0, 2147483564), which
are at most 31 bits long. If the template argument w is greater than 31 the initial values generated
by seed will all be rather small, and the first values produced by the generator will also be rather
small. The Boost implementation avoids this problem by combining values from the linear
congruential generator to produce longer values when w is larger than 32. Should we require
something more like that?

Resolution:
In 5.1.4.4 [tr.rand.eng.sub1] replace

 void seed(unsigned int value = 19780503)
Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod 1,
respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.
Complexity: O(r)

With
 void seed(unsigned long value = 19780503ul)
Effects: With n=(w+31)/32 (rounded downward) and given an iterator range [first, last)that
refers to the sequence of values lcg(1) ... lcg(n*r) obtained from a linear congruential
generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0, and lcg(0)
=value, invoke seed(first,last) .
Complexity: O(r*n)

4.16 subtract_with_carry_01::seed(unsigned) Argument Type Too
Small

Submitter: Pete Becker (see N1535)
Status: TR

subtract_with_carry_01::seed(unsigned) has a default argument value of 19780503, which is too
large to fit in a 16-bit unsigned int. Should this argument be unsigned long, to ensure that it's
large enough for the default?

Resolution:
In 5.1.4.2 [tr.rand.eng.mers], change the signature of a constructor and a seed function from
 explicit mersenne_twister(result_type value);
 void seed(result_type value);
to
 explicit mersenne_twister(unsigned long value);
 void seed(unsigned long value);

In 5.1.4.3 [tr.rand.eng.sub], change the signature of a constructor and a seed function from
 explicit subtract_with_carry(IntType value);
 void seed(IntType value = 19780503);
to
 explicit subtract_with_carry(unsigned long value);
 void seed(unsigned long value = 19780503ul);

In 5.1.4.4 [tr.rand.eng.sub1], change the signature of a constructor and a seed function from
 subtract_with_carry_01(unsigned int value);

N1688 29

 void seed(unsigned int value = 19780503);
to:
 subtract_with_carry_01(unsigned long value);
 void seed(unsigned long value = 19780503ul);

4.17 subtract_with_carry::seed(In&, In) Required Sequence Length
Too Long

Submitter: Pete Becker (see N1535)
Status: TR

For both subtract_with_carry::seed(In& first, In last) andsubtract_with_carry_01::seed(In& first,
In last) the proposal says: "With n=w/32+1 (rounded downward) and given the values z0 ... zn*r-
1." The idea is to use n unsigned long values to generate each of the initial values for the
generator, so n should be the number of 32-bit words needed to provide wbits. Looks like it
should be "n=(w+31)/32". As currently written, when w is 32, the function consumes two 32-bit
values for each value that it generates. One is sufficient.

Resolution:
Change

With n=w/32+1 (rounded downward) and given the values z0 ... zn*r-1

to

With n=(w+31)/32 (rounded downward) and given the values z0 ... zn*r-1

in the description of subtract_with_carry::seed(In& first, In last) in 5.1.4.3 [tr.rand.eng.sub] and
in the description of subtract_with_carry_01::seed(In& first, In last) in 5.1.4.4 [tr.rand.eng.sub1].

4.18 linear_congruential -- Giving Meaning to a Modulus of 0
Submitter: Pete Becker (see N1535)
Status: TR

Some linear congruential generators using an integral type _Ty also use a modulus that's equal to
numeric_limts<_Ty>::max() + 1 (e.g. 65536 for a 16-bit unsigned int). There's no way to write
this value as a constant of the type _Ty, though. Writing it as a larger type doesn't work, because
the linear_congruential template expects an argument of type _Ty, so you typically end up with a
value that looks like 0.

On the other hand, the current text says that the effect of specifying a modulus of 0
forlinear_congruential is implementation defined. I decided to use 0 to mean max()+1, as did the
Boost implementation. (Internally, the implementation of mersenne_twister needs a generator
with a modulus like this). Seems to me this is a reasonable choice, and one that users ought to be
able to rely on. Is there some other meaning that might reasonably be ascribed to it, or should we
say that a modulus of 0 meansnumeric_limits<_Ty>::max() + 1 (suitably type-cast)?

Resolution:
Replace in 5.1.4.1 [tr.rand.eng.lcong], in the paragraph after the class definition

If the template parameter m is 0, the behaviour is implementation-defined.

N1688 30

by
If the template parameter m is 0, the modulus m used throughout this section
isstd::numeric_limits<IntType>::max() plus 1. [Note: The result is not representable as a
value of type IntType. —end note]

4.19 linear_congruential::seed(IntType) -- Modify Seed Value When c
== 0?

Submitter: Pete Becker (see N1535)
Status: TR

When c == 0 you get a generator with a slight quirk: if you seed it with 0 you get 0's forever; if
you seed it with a non-0 value you never get 0. The first path, of course, should be avoided. The
proposal does this by imposing a requirement on seed(IntType x0), requiring that c > 0 || (x0 %
m) > 0. The boost implementation uses asserts to check this condition. The only reservation I
have about this is that it can only be checked at runtime, when the only suitable action is,
probably, to abort. An alternative would be to force a non-0 seed in that case (perhaps 1, for no
particularly good reason). I think the second alternative is marginally better, and I suggest we
change this requirement to impose a particular seed value when a user passes 0 to a generator
with c == 0.

Resolution:
Replace in 5.1.4.1 [tr.rand.eng.lcong]

 explicit linear_congruential(IntType x0 = 1)

Requires: c > 0 || (x0 % m) > 0
Effects: Constructs a linear_congruential engine with state x(0) := x0 mod m.
 void seed(IntType x0 = 1)

Requires: c > 0 || (x0 % m) > 0
Effects: Sets the state x(i) of the engine to x0 mod m.
 template linear_congruential(In& first, In last)

Requires: c > 0 || *first > 0
Effects: Sets the state x(i) of the engine to *first mod m.
Complexity: Exactly one dereference of *first.

by
 explicit linear_congruential(IntType x0 = 1)

Effects: Constructs a linear_congruential engine and invokes seed(x0).
 void seed(IntType x0 = 1)

Effects: If c mod m = 0 and x0 mod m = 0, sets the state x(i) of the engine to 1 mod m,
else sets the state x(i) of the engine to x0 mod m.
 template linear_congruential(In& first, In last)

Effects: If c mod m = 0 and *first mod m = 0, sets the state x(i) of the engine to 1 mod m,
else sets the state x(i) of the engine to *first mod m.
Complexity: Exactly one dereference of *first.

N1688 31

Replace in 5.1.4.2 [tr.rand.eng.mers]

 void seed()

Effects: Invokes seed(4357).
 void seed(result_type value)

Requires: value > 0
Effects: With a linear congruential generator l(i) having parameters ml = 232, al = 69069,
cl = 0, and l(0) = value, sets x(-n) ... x(-1) to l(1) ... l(n), respectively.
Complexity: O(n)

by
 void seed()

Effects: Invokes seed(0).
 void seed(result_type value)

Effects: If value == 0, sets value to 4357. In any case, with a linear congruential
generator lcg(i) having parameters mlcg = 232, alcg = 69069, clcg = 0, and lcg(0) = value,
sets x(-n) ... x(-1) to lcg(1) ... lcg(n), respectively.
Complexity: O(n)

Replace in 5.4.1.3 [tr.rand.eng.sub]

 void seed(unsigned int value = 19780503)
Requires: value > 0
Effects: With a linear congruential generator l(i) having parameters ml = 2147483563, al
= 40014, cl = 0, and l(0) = value, sets x(-r) ... x(-1) to l(1) mod m ... l(r) mod m,
respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.
Complexity: O(r)

by
 void seed(unsigned long value = 19780503ul)
Effects: If value == 0, sets value to 19780503. In any case, with a linear congruential
generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0, and lcg(0)
=value, sets x(-r) ... x(-1) to lcg(1) mod m ... lcg(r) mod m, respectively. If x(-1) == 0,
sets carry(-1) = 1, else sets carry(-1) = 0.
Complexity: O(r)

Replace in 5.4.1.4 [tr.rand.eng.sub1]

 void seed(unsigned int value = 19780503)
Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod 1,
respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.
Complexity: O(r)

by
 void seed(unsigned long value = 19780503ul)
Effects: If value == 0, sets value to 19780503. In any case, with a linear congruential
generator lcg(i) having parameters mlcg = 2147483563, alcg = 40014, clcg = 0, and lcg(0)
=value, sets x(-r) ... x(-1) to lcg(1) mod m ... lcg(r) mod m, respectively. If x(-1) == 0,

N1688 32

sets
Complexity: O(r)

4.20 linear_congruential -- Should the Template Arguments Be
Unsigned?

Submitter: Pete Becker (see N1535)
Status: TR

This template takes three numeric arguments, a, c, and m, whose type is IntType. IntTypeis an
integral type, possibly signed. These arguments specify the details of the recurrence relation for
the generator:
 x(i + 1) := (a * x(i) + c) mod m

Every discussion that I've seen of this algorithm uses unsigned values. Further, In C and C++
there is no modulus operator. The result of the % operator is implementation specific when either
of its operands is negative, so implementing mod when the values involved can be negative
requires a test and possible adjustment:
 IntType res = (a * x + c) % m;
 if (res < 0)
 res += m;

If the three template arguments can't be negative the recurrence relation can be implemented
directly:
 x = (a * x + c) % m;

This makes the generator faster.

Resolution:
In clause 5.1.4.1 [tr.rand.eng.lcong] replace every occurrence of IntType with UIntType and
change the first sentence after the definition of the template from:

The template parameter IntType shall denote an integral type large enough to store values up
to(m-1).

to:

The template parameter UIntType shall denote an unsigned integral type large enough to store
values up to (m-1).

4.21 linear_congruential::linear_congruential(In&, In) -- Garbled
Requires Clause

Submitter: Pete Becker (see N1535)
Status: TR

The Requires clause for the member template template <class In> linear_congruential(In& first,
In last) got garbled in the translation to .pdf format.

Resolution:
Change the Requires clause for the member template template <class In>

N1688 33

linear_congruential(In& first, In last) in 5.1.4.1 [tr.rand.eng.lcong] from:
Requires: c > 0 — *first ¿ 0—

to:

Requires: c > 0 || *first > 0

4.22 bernoulli_distribution Isn't Really a Template
Submitter: Pete Becker (see N1535)
Status: TR

The text says that bernoulli_distribution is a template, parametrized on a type that is required to
be a real type. Its operator() returns a bool, with the probability of returning true determined by
the argument passed to the object's constructor. The only place where the type parameter is used
is as the type of the argument to the constructor. What is the benefit from making this type user-
selectable instead of, say, double?

Resolution:
In 5.1.7.2 [tr.rand.dist.bern], change the section heading to "Class bernoulli_distribution",
remove template <class RealType = double> from the declaration of bernoulli_distribtion,
change the declaration of the constructor from:
 explicit bernoulli_distribution(const RealType& p = RealType(0.5));
to:
 explicit bernoulli_distribution(double p = 0.5);

and change the header for the subclause describing the constructor from:
 bernoulli_distribution(const RealType& p = RealType(0.5))
to:
 bernoulli_distribution(double p = 0.5)

4.23 Streaming Underspecified
Submitter: Pete Becker (see N1535)
Status: TR

See N1535 for a full discussion. Summary: the goal is for engines to be well enough specified so
that the state of an engine can be streamed out on one system and read in on a different system,
and so that the engine on the second system would produce the same sequence of values as it
would on the first. Distributions are less clear-cut, but at least we want to be able to save and
restore on the same system for the sake of checkpointing. Given that we don’t care about
portability, streaming of distributions may be adequately specified. However, we may not want
to call it operator<< and operator>>, because implementers will probably want to use
binary formats.

Proposed resolution:
After table 5.2, add a new paragraph following the one starting "Additional Requirements":

 If a textual representation was written by os << x and that representation was read by is >> v,
then x == v, provided that no intervening invocations of x or v have occurred.

 In section 5.1.4.1 [tr.rand.eng.lcong], remove the prototypes for operator<< and operator>>
from the synopsis. Also, remove the description of operator<<. Add after "The size of the state

N1688 34

x(i) is 1.":
 The textual representation is the value of x(i).

In section 5.1.4.2 [tr.rand.eng.mers], remove the prototypes for operator<< and operator>> from
the synopsis. Also, remove the description of operator<<. Add after "The size of the state x(i) is
n.":

 The textual representation is the values of x(i-n), ..., x(i-1), in that order.

In section 5.1.4.3 [tr.rand.eng.sub], remove the prototypes for operator<< and operator>> from
the synopsis. Also, remove the description of operator<<. Add after "The size of the state is r.":

 The textual representation is the values of x(i-r), ..., x(i-1), carry(i-1), in that order.

In section 5.1.4.4 [tr.rand.eng.sub1], remove the prototypes for operator<< and operator>> from
the synopsis. Also, remove the description of operator<<. Add after "The size of the state is r.":

 With n = (w+31)/32 (rounded downward) and integer numbers z[k,j] such that x(i-k)*2w =
z[k,0] + z[k,1] * 232 + z[k,n-1] * 232(n-1), the textual representation is the values of z[r,0], ...
z[r,n-1], ... z[1,0], ... z[1,n-1], carry(i-1)*2w, in that order. [Note: The algorithm ensures that
only integer numbers representable in 32 bits are written.]

In section 5.1.4.5 [tr.rand.eng.disc], remove the prototypes for operator<< and operator>> from
the synopsis. Also, remove the description of operator<<. Add after "The size of the state is the
size of b plus 1.":

 The textual representation is the textual representation of b followed by the value of n.

In section 5.1.4.6 [tr.rand.eng.xor], remove the prototypes for operator<< and operator>> from
the synopsis. Also, remove the description of operator<<. Add after "The size of the state is the
size of the state of b1 plus the size of the state of b2.":

 The textual representation is the textual representation of b1 followed by the textual
representation of b2.

4.24 Garbled characters
Submitter: Jens Maurer
Status: Editorial

There are some places where the TR draft contains garbled characters. This issue points out the
places where editorial changes to rectify this need to be performed.

• 5.1.4.3 [tr.rand.eng.sub], first paragraph
• 5.1.4.4 [tr.rand.eng.sub1], first paragraph
• 5.1.4.5 [tr.rand.eng.disc], after the class definition
• 5.1.4.5 [tr.rand.eng.disc], effects clause of operator()

4.25 class vs. type
Submitter: Jens Maurer
Status: TR

The wording in section 5.1.1 isn’t parallel.

N1688 35

Resolution: Replace in section 5.1.1 [tr.rand.req], last paragraph
In the following subclauses, a template parameter named UniformRandomNumberGenerator
shall denote a class type that satisfies all the requirements of a uniform random number
generator.

4.26 Fix section reference
Submitter: Jens Maurer
Status: TR, Editorial

A section reference needs to be fixed.

Resolution:
Replace in section 5.1.4 [tr.rand.eng], second paragraph

The class templates specified in this section satisfy all the requirements of a pseudo-random
number engine (given in tables in section x.x 5.1.1 [tr.rand.req]), except where specified
otherwise. Descriptions are provided here only for operations on the engines that are not
described in one of these tables or for operations where there is additional semantic
information.

4.27 Avoid confusion for "ell" and "one"
Submitter: Jens Maurer
Status: TR

We need to be careful with subscripts: “l” and “1” look very similar in most fonts, so “l” is a
poor choice for a variable that will be used in subscripts.

Resolution:
Replace in 5.4.1.2 [tr.rand.eng.mers]

Effects: With a linear congruential generator l(i) having parameters ml = 232, al = 69069,
cl = 0, and l(0) = value, sets x(-n) ... x(-1) to l(1) ... l(n), respectively.

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg = 232, alcg =
69069, clcg = 0, and lcg(0) = value, sets x(-n) ... x(-1) to lcg(1) ... lcg(n), respectively.

Replace in 5.4.1.3 [tr.rand.eng.sub]

Effects: With a linear congruential generator l(i) having parameters ml = 2147483563, al
= 40014, cl = 0, and l(0) = value, sets x(-r) ... x(-1) to l(1) mod m ... l(r) mod m,
respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg =
2147483563, alcg= 40014, clcg = 0, and lcg(0) = value, sets x(-r) ... x(-1) to lcg(1) mod m
... lcg(r) mod m, respectively. If x(-1) == 0, sets carry(-1) = 1, else sets carry(-1) = 0.

Replace in 5.4.1.4 [tr.rand.eng.sub1]

Effects: With a linear congruential generator l(i) having parameters m = 2147483563, a =
40014, c = 0, and l(0) = value, sets x(-r) ... x(-1) to (l(1)*2-w) mod 1 ... (l(r)*2-w) mod 1,
respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets carry(-1) = 0.

N1688 36

by
Effects: With a linear congruential generator lcg(i) having parameters mlcg =
2147483563, alcg= 40014, clcg = 0, and lcg(0) = value, sets x(-r) ... x(-1) to (lcg(1)*2-w)
mod 1 ... (lcg(r)*2-w) mod 1, respectively. If x(-1) == 0, sets carry(-1) = 2-w, else sets
carry(-1) = 0.

[Note to editor: see issue 19 for another issue that touches these words.]

4.28 xor_combine: fix typo
Submitter: Jens Maurer
Status: TR

Resolution:
Replace in 5.1.4.6 [tr.rand.eng.xor]

The template parameters UniformRandomNumberGenerator1 and
UniformRandomNumberGenerator12 shall denote classes that satisfy all the requirements of a
uniform random number generator, ...

[Replace "1" by "2" once.]

4.29 Require additional properties for Engine result_type
Submitter: Jens Maurer
Status: TR

Currently, there are no restrictions on UniformRandomNumberGenerator::result_type,
althoughvariate_generator is supposed to possibly convert between integer and floating-point
types.

Proposed resolution:
In 5.1.1 [tr.rand.req], replace the pre/post-condition for result_type:

std::numeric_limits<T>::is_specialized is true
by

T is an arithmetic type [basic.fundamental]

4.30 Garbled precondition for min()
Submitter: Jens Maurer
Status: TR

Proposed resolution:
In 5.1.3 [tr.rand.var], add the highlighted text for min():

Precondition: distribution().min() is well-formed

4.31 xor_combine: Require additional properties for
base*_type::result_type

Submitter: Jens Maurer
Status: TR

There are no restrictions on UniformRandomNumberGenerator1::result_type and

N1688 37

UniformRandomNumberGenerator2::result_type that would ensure that << and ^ are available
on them. That's well defined for unsigned integral types.

Proposed resolution:
Add in 5.1.4.6 [tr.rand.eng.xor] in the paragraph after the class definition

Both UniformRandomNumberGenerator1::result_type
andUniformRandomNumberGenerator2::result_type shall denote (possibly different)
unsigned integral types. The size of the state ...

4.32 Be precise about the size of the state of xor_combine
Submitter: Jens Maurer
Status: TR

It is unclear what the "size of b1" and the "size of b2" mean, we only talk about the "size of the
state".

Proposed resolution:
Add in 5.1.4.6 [tr.rand.eng.xor] in the paragraph after the class definition:

The size of the state is the size of the state of b1 plus the size of the state of b2.

4.33 uniform_real should return open interval
Submitter: Jens Maurer
Status: TR

uniform_real was specified with a closed interval [min, max] range, but it should have a half-
open interval [min, max) range to avoid lots of special cases in more complex distributions. (The
boost implementation and documentation does this since ever.)

Proposed resolution:

In 5.1.7.6 [tr.rand.dist.runif], replace
 min <= x <= max
by

min <= x < max

4.34 No complexity specification for copy construction and copy
assignment

Submitter: Jens Maurer
Status: TR

In 5.1.1 [tr.rand.req], add a new paragraph after table 5.3 (pseudo-random number generator):

Additional requirements: The complexity of both copy construction and assignment is O(size
of state).

4.35 Insufficient preconditions on discard_block
Submitter: Jens Maurer
Status: TR

N1688 38

discard_block does not have sufficient requirements on the r and p template parameters.

Proposed resolution:

Replace in 5.1.4.5 [tr.rand.eng.disc]
 r <= q
by

The following relation shall hold: 0 <= r <= p.

4.36 Insufficient preconditions on xor_combine
Submitter: Jens Maurer
Status: TR

xor_combine does not have any requirements for s1 and s2 template parameters.

Proposed resolution:

Add in 5.1.4.6 [tr.rand.eng.xor], paragraph after the class definition, before "The size of the state
..."

The following relation shall hold: 0 <= s1 and 0 <= s2.

4.37 Streaming operators must handle templatized streams
Submitter: Jens Maurer
Status: TR

Section 5.1.1 [tr.rand.req], table 5.2, specifies that the streaming operators take std::ostream and
std::istream. This does not take wide streams nor the template nature of streams into account.

Resolution:
(The proposed resolution is N1621.)

Replace in section 5.1.1 [tr.rand.req] before table 5.2:
 In table 5.2, [...], os is convertible to an lvalue of type std::ostream, and is is convertible to
an lvalue of type std::istream.

 by

 In table 5.2, [...], os is an lvalue of the type of some class template specialization
basic_ostream<charT, traits>, and is is an lvalue of the type of some class template
specialization basic_istream<charT, traits>, where charT and traits are
constrained according to [lib.strings] and [lib.input.output].

 Replace in section 5.1.1 [tr.rand.req] in table 5.2, in the row for os << x, the return type
 std::ostream&
 by
 reference to the type of os
 Also, replace in the row for is >> v, the return type

N1688 39

 std::istream&
 by
 reference to the type of is
 and the pre/post-condition
 sets the state v(i) of v as determined by reading its textual representation from is. post: The
is.fmtflags are unchanged.
 by
 sets the state v(i) of v as determined by reading its textual representation from is. pre: The
textual representation was previously written using a os whose imbued locale and whose type's
template specialization arguments charT and traits were the same than those of is,
respectively. post: The is.fmtflags are unchanged.

 In section 5.1.1 [tr.rand.req], add at the end of the paragraph preceding table 5.3
 os is convertible to an lvalue of the type of some class template specialization
basic_ostream<charT, traits>, and is is convertible to an lvalue of the type of some
class template specialization basic_istream<charT, traits>, where charT and
traits are constrained according to [lib.strings] and [lib.input.output].

 Replace in section 5.1.1 [tr.rand.req] in table 5.3, in the row for os << x, the return type
 std::ostream&
 by
 reference to the type of os
 Also, replace in the row for is >> v, the return type
 std::istream&
 by
 reference to the type of is
 and the pre/post-condition
 restores the parameters and additional internal data of the distribution u. pre: is provides a textual
representation that was previously written by operator<<. post: The is.fmtflags are unchanged.
 by
 restores the parameters and additional internal data of the distribution u. pre: is provides a textual
representation that was previously written using a os whose imbued locale and whose type's
template specialization arguments charT and traits were the same than those of is,
respectively. post: The is.fmtflags are unchanged.

4.38 Seeding of random number generators
Subumitter: Matt Austern
Status: New

All of the random number engine classes in clause 5.1.4 of the TR have two methods for setting
the seed: an inconvenient but fully general method (passing in a zero-argument function object
that returns unsigned integers) and a less general but more convenient method (passing in a
single unsigned int). However, the engine requirements table (table 9, Pseudo-random number
engine requirements) has only a single seeing interface: the general and inconvenient one.
Should we put the simple interface in the requirements table?

Further comments from Jens Maurer:

We would need to fix both the ctor and the seed() requirements, plus we need some language (currently in the
individual sections for specific engines) that X(g) and X(unsigned int) are never ambiguous and magically resolve
to the right thing.

N1688 40

5 Special function issues
5.1 Clean up special function names and descriptions
Submitter: Bill Plauger, Walter Brown
Status: TR

The names of special functions should be cleaned up so they’re all-lowercase and more spelled
out (to make them more consistent with C naming style), there should be names with f and l
suffixes for float and long double versions, and the behavior should be specified mathematically
instead of by reference.

Resolution:
Accept the changes proposed in N1542, "Mathematical special functions, v3".

5.2 Assoc_legendre incorrectly requires a domain error
Submitter: Bill Plauger
Status: Open

assoc_legendre says "a domain error occurs if m is greater than l." But the value is well defined -
- zero. Hence, a domain error should never occur.

Status: Sydney: 5.2 through 5.6 all go together. The general principle we want: if a function is
defined with a real value we should return it. If it isn't we should give a domain error. The
difficulty is that some formulations of these functions are applicable to a wider domain than
others.

 We will leave all of these issues open for now. Bill, Walter, and Marc will come up with a
proposal by Redmond.

5.3 Assoc_legendre should require domain error when |x| > 1
Submitter: Bill Plauger
Status: Open

assoc_legendre says "a domain error may occur if the magnitude of x is greater than one." But
the value is always imaginary. Hence, a domain error should always occur.

Status: See issue 5.2

5.4 Beta should have domain error if x <= 0 or y <= 0
Submitter: Bill Plauger
Status: Open

beta says "a domain error may occur (a) if either x or y is a negative integer, or (b) if either x or y
is zero." But the beta function is defined only for x,y > 0. Hence, a domain error should always
occur if x <= 0 or y <= 0.

N1688 41

Status: See issue 5.2

5.5 Legendre should always have domain error if |x| > 1
Submitter: Bill Plauger
Status: Open

legendre says "a domain error may occur if the magnitude of x is greater than one." But the value
is always imaginary. Hence, a domain error should always occur.

Status: See issue 5.2

5.6 Bessel should require domain error for x < 0
Submitter: Bill Plauger
Status: Open

Bessel functions all say "a domain error may occur if x is less than zero." The various Bessels
can generally be extended to negative real x, but the functions are arguably undefined along the
negative real axis. Hence, a domain error should always occur.

Status: See issue 5.2

6 Unordered associative container issues
6.1 Incorrect const qualification
Submitter: Rober Klarer
Status: TR

The parameters to the container swap functions are const-qualified, and I don't think they should
be. For example the declaration for the swap function that appears in 6.2.4.3.2 is
 template <class Value, class Hash, class Pred, class Alloc>
 void swap(const unordered_set<Value, Hash, Pred, Alloc>& x,
 const unordered_set<Value, Hash, Pred, Alloc>& y);

I believe that x and y can't be references to const containers because the swap function needs to
be able to modify both containers.

Resolution:
In section 6.4.2 [tr.unord.unord], remove the const qualification in the parameters of the
nonmember swap functions for all four unordered associative containers, both in the header
synopses and in the text.

6.2 Erase takes const iterator
Submitter: Rober Klarer
Status: NAD

The erase member functions with iterator parameters are declared as follows

N1688 42

void erase(const_iterator position);
void erase(const_iterator first, const_iterator last);

This is consistent with the requirements table, but I'm not sure that it's intentional.

Resolution: Not a defect. This was intentional. The other containers should probably be
changed in a similar way in a future standard.

6.3 Bucket members not declared const
Submitter: Rober Klarer
Status: TR

The bucket(...) and bucket_size(...) members of each container template should be const, but they
aren't declared const in the class definitions. The requirements table correctly implies that these
functions are const members.

Resolution:
In section 6.4.2 [tr.unord.unord], in the class declarations of all four unordered associative
containers, declare the bucket and bucket_size member functions as const.

6.4 Incorrect variable in requirements table
Submitter: Rober Klarer
Status: TR

All occurences of "for const a" in the "Return Type" column of the requirements table should
actually read "for const b." Also, under the the "assertion/note/pre/postcondition" column, the
phrase "out of which a was constructed" should be "out of which b was constructed" for
b.hash_function() and b.key_eq(). Similarly, "a.end()" should be "b.end" for b.find(k), and
"std::make_pair(a.end(), a.end())" should be "std::make_pair(b.end(), b.end())" for
b.equal_range(k).

Resolution:
As above. (See N1549.)

6.5 Hashing strings
Submitter: Alan Stokes
Status: TR

N1518 at 6.2.3 requires the library to provide a specialisation of the hash template for
basic_string instantiated with any valid set of charT, traits, and Alloc.

This is tricky, for two reasons:

1. charT can be any POD. It might therefore be a struct with padding for alignment. How does
the implementation hash the value while skipping the unused bytes?

2. hash is required to return equal results for equal arguments. For basic_string equality is
determined by traits::eq, so can be arbitrary. For example it could ignore case, or it could ignore

N1688 43

some components of a POD struct. So the library doesn't know, when given an argument to hash,
what other arguments it might compare equal to.

These problems are not insurmountable - hash<basic_string<...> > could just always return 0, or
could just hash the string length. But neither would be very good hash functions for use in the
unordered containers.

Perhaps only std::char_traits should be allowed; that limits you to hashing strings of char and
wchar_t (but with any allocator).

Or we could require the supplied traits class to support hashing of individual characters, and add
the necessary support to std::char_traits.

Resolution:
(From N1622)

In 6.3.3, change "for any valid set of charT, traits, and Alloc" to "for any valid set of charT, traits,
and Alloc such that charT is an integer type."

Rationale:
Agreed that this is a problem. Hashing of fully general strings is probably unimplementable. We
considered three choices: (1) hash only string and wstring. (2) hash basic_string for every integer
type T. (3) hash basic_string for any T that can be cast to unsigned long. The LWG preferred
choice 2. Straw poll: 2-5-0.

6.6 Unordered assoc containers not containers
Submitter: Beman Dawes
Status: TR

The TR does not explicitly say that unordered associative containers must meet the standard's
requirements for containers. The phrase "(in addition to container)" is part of the title for table
6.1, but that is not explicit enough, and fails to make clear that all of 23.1's requirements have to
be met, not just table 65's.

For consistency, the proposed resolution wording is similar to the way that std::basic_string
(21.3, paragraph 2) references the Sequence requirements.

Proposed Resolution
To section 6.2.1, Unordered associative container requirements, add:

Unordered associative containers conform to the requirements for Containers (C++ Standard,
23.1, Container requirements).

6.7 Exception safety of unordered associative container operations
Submitter: Matt Austern
Status: TR

The only unordered associative container members that provide anything other than the basic
exception guarantee are clear(), erase(), swap(), and the single-element version of insert(). In

N1688 44

particular, rehash() only provides the basic guarantee. This is correct as far as it goes, but we can
do better.

Proposed resolution (N1622):
Add to the list of exception safety guarantees:

"For unordered associative containers, if an exception is thrown from within a rehash() function
other than by the container's hash function or comparison function, the rehash() function has no
effect."

6.8 Equality-comparability of unordered associative containers
Submitter: Robert Klarer
Status: TR

The unordered associative containers were intended to satisfy all of the general container
requirements, but they don't. In particular, the unordered associative containers are not equality-
comparable.

Naively defining equality comparison for these containers doesn't solve this problem. According
to the general Container requirements table, equality comparison for containers should work like
this:

 == is an equivalence relation.
 a.size()==b.size() && equal(a.begin(), a,end(), b.begin())

This definition of container equality is inadequate for unordered containers. Should an
unordered_set A containing the elements {3, 2, 1} be considered equal to an unordered_set B
containing the elements {1, 2, 3}? There is good reason to think so, especially since the order of
the elements in a particular container will seem arbitrary to the user. This order will depend on
the bucket count of the container, peculiarities of the implementation, etc. Unfortunately, if the
unordered associative containers were equality-comparable in the way that is required by
Container, then the containers A and B (from the examples above) will definitely not compare
equal.

Resolution (N1622):
To section 6.2.1, Unordered associative container requirements, add:
Unordered associative containers conform to the requirements for Containers (C++ Standard,
23.1, Container requirements), except that the following expressions are not required to be valid,
where a and b denote values of a type X, and X is an unordered associative container class:

unsupported expressions
 a == b
 a != b
 a < b
 a > b
 a <= b
 a >= b

Rationale:
This was discussed in Oxford. We are revisiting the issue. The fundamental problem: the equality
function described in the container requirements makes no sense for hashtables. We considered

N1688 45

four choices: close as NAD, put in a caveat saying we don't quite satisfy the container requirements,
put in the operator== defined in terms of std::equal, or put in Howard's (more useful) operator==.
By an 0-6-0-3 straw vote we chose the second.

6.9 Unordered_map and unordered_multimap don’t have assignable
value types

Submitter: Rober Klarer
Status: NAD

The container requirements say that a container’s value type must be assignable. The value types
of unordered_map and unordered_multimap violate that requirement. (note that the same
problem is true of map and multimap in the standard.)

Rationale:
LWG issue 276 will remove the requirement that a container’s value type be assignable.

6.10 Unordered_multimap shouldn’t have operator[]
Submitter: Rober Klarer
Status: TR

According to subsection 6.3.4.6 of the TR, unordered_multimap possesses an
overloaded operator []. This should be removed.

Resolution:
Remove it.

6.11 Rationale for rehash precondition
Submitter: Thomas Witt
Status: TR

I am wondering what the rationale for the rehash precondition is. It seems to be unneccessary
strict to me. My naive approach would be to simply do nothing if the requested bucket numer is
less then size()/max_load_factor() possibly returning the resulting bucket count.

Resolution (N1622):
Page 117 in requirements table for a.rehash(n)
===

change
 Pre: n > a.size() /
 a.max_load_factor().
 Changes the number of buckets
 so that it is at least n.

to
 a.bucket_count() > a.size() / a.max_load_factor().
 a.bucket_count() >= n.

N1688 46

6.12 Definition of load factor is overconstrained
Submitter: Bill Wade
Status: NAD Future

I suggest that implementations be allowed (not required) to define load factor in terms of the
number of elements with unique hash() values and/or the number of equivalence classes in an
unordered_multi{set,map}. Particularly in a multi-map or multi-set, growing the bucket count
unnecessarily is an anti-optimization.

Rationale:
Unclear if this is a real problem (implementations already have a fair amount of freedom in how
they use the load factor), and having the load factor be implementation defined made people
uncomfortable.

6.13 When may an implementation change the bucket count?
Submitter: Bill Wade
Status: TR

Is an implementation ever allowed to reduce the bucket count (other than via swap)? Is an
implementation allowed to rehash when an insertion does not cause a violation of
max_load_factor? Is insert() allowed to invalidate existing iterators when no rehash occurs?

Note that one set of answers to these questions means that rehash() provides some guarantees
analogous to vector::reserve().

Resolution (N1622):
In clause 6.3.1, after the first sentence of the last paragraph, add: "The insert members shall not
affect the validity of iterators if (N+n) < z * B, where N' is the container's size, n is the number of
elements inserted, B is the container's bucket count, and z is the container's maximum load factor."

6.14 Complexity of iterator increment
Submitter: Bill Wade
Status: NAD

When the current load factor is very small, O(bucket_count()) can be considerably worse than
O(size()). On many implementations iterator increment (or begin()) will have this problem.
Dinkum (the version with MS 7.1) keeps the iterator operations O(1), but insert or erase adjacent
to a range of empty buckets is expensive (linear). This means that calling rehash(n) with the
current Dinkum implementation, prior to performing a large number of insertions would result in
quadratic behavior.

It is straightforward to make the cost of empty-bucket ranges no more than log-time (and no
more than one-bit per bucket space), but if I were happy with log time I might as well use an
ordered map.

N1688 47

It isn’t obvious to me how you can implement iterator++, insert() and erase() so that they are all
faster than logarithmic in the number of empty buckets, but if I give you a perfect hash function
and you tell me to call rehash(1000000) before I add a million elements, I’m going to be upset if
the call to rehash() changes what was linear behavior to quadratic behavior. Is there any way to
specify the interaction between rehash() and insert(), or will prudent programs avoid calls to
rehash()?

Rationale:
It's amortized constant time, and it'll be bad for degenerate hash functions, and that's just a
characteristic of this data structure.

6.15 Hash functions and const containers
Submitter: Robert Klarer
Status: New
Reflector message: c++std-lib-13458

Please consider:
 #include <functional>

 struct UserDefinedType { /* ... */ };

 struct my_hash<UserDefinedType>
 : public std::unary_function<UserDefinedType, std::size_t>
 {
 std::size_t operator()(UserDefinedType val) /* non-const!
*/;
 };

A hash function object such as this one can't be used as the hasher to an unordered associative
container. Several of the unordered associative member functions, like find(), count(),
equal_range(), and especially bucket(), need to be able to call the hash object's function-call
operator. When the container is const-qualified, these member functions are const, too, so a
hasher with no const function-call semantics won't work.

I have two questions:

• is there any explicit requirement that an unordered associative container's hasher type
have const function-call semantics (eg. must the overloaded operator() be const-
qualified)?

• if not, should there be (i.e. is this an issue)?

There may be similar issues with unordered associative containers’ equality function objects, and
with ordinary associative containers’ comparison function objects.

6.16 Swap() missing from header synopses
Submitter: Matt Austern
Status: New

N1688 48

The header synopses in 5.3.1.3 [tr.unord.syn.set] and 6.4.4.2 [tr.unord.syn.map] are supposed to
contain all namespace scope declarations. The specializations of swap are missing.

Proposed resolution:
Add them.

6.17 Hashing strings, revisited
Submitter: Alan Stokes
Status: New

Some time ago I raised the issue that the library TR originally required library implementers to
support hashing of any valid instantiation of basic_string, which appears to be impossible. This is
issue 6.5 in the list.

The resolution, proposed in N1622 and voted into the TR in Sydney, reduced the requirement to
supporting hashing of instantiations of basic_string "for any valid set of charT, traits, and Alloc
such that charT is an integer type."

I'm not convinced that that is sufficient. The library's hash function is required to ensure that
equal inputs hash to the same value (TR 6.3.3/2). For basic_string equality comes down to what
traits::eq does, and the implementation has no (easy) way to determine that.

Consider the common (if arguably misguided) case where charT is char and a user-defined traits
class provides for case insensitive comparisons. How is the implementation to ensure that "cat"
and "CAT" hash to the same value?

Or consider a basic_string<unsigned long> where each "character" consists of 8 bits of character
data and 24 bits of other information (colour, say), and the user supplies a traits class that does
comparisons looking only at the bottom 8 bits. Again the implementation will find it very
difficult to ensure that strings that compare equal hash to the same value.

Proposed resolution:
Three alternatives:
1. Only hash string and wstring.
2. Only hash basic_string where charT is an integer type and traits is std::char_traits<charT>.
3. Only hash basic_string where charT is an integer type and traits::eq(c, d) returns c == d.

(It would be nice to ensure that attempts to use the implementation's hash function for non-
supported instantiations of basic_string fail to compile, rather than silently do the wrong thing.
This might be harder with 3.)

6.18 not enough support for hash functions on user-defined types
Submitter: Peter Dimov
Status: New

N1688 49

Currently, the unordered associative containers provide specializations for the hash<> class
template for a selected list of built-in types and std::basic_string. However, no support is
provided for writing quality hash functions for even the simplest user-defined types such as the
equivalent of std::pair<int, int>.

Furthermore, the specialization interface through which users may supply a default hash function
for a given type is less convenient than the alternative approach of providing a function overload
reachable via ADL.

Proposed resolution:

Add the following to the synopsis in [tr.unord.fun.sys] before struct hash:

size_t hash_value(int v);
size_t hash_value(unsigned int v);
size_t hash_value(long v);
size_t hash_value(unsigned long v);

size_t hash_value(float v);
size_t hash_value(double v);
size_t hash_value(long double v);

template<class T> size_t hash_value(T * v);

template<class T> void hash_combine(size_t & seed, T const &
v);

template<class It> size_t hash_range(It first, It last);

template<class A, class B>
size_t hash_value(std::pair<A, B> const & v);

template<class E, class T, class A>
size_t hash_value(std::basic_string<E, T, A> const & v);

template<class T, class A>
size_t hash_value(std::vector<T, A> const & v);

template<class T, class A>
size_t hash_value(std::list<T, A> const & v);

template<class T, class A>
size_t hash_value(std::deque<T, A> const & v);

template<class K, class C, class A>
size_t hash_value(std::set<K, C, A> const & v);

template<class K, class C, class A>
size_t hash_value(std::multiset<K, C, A> const & v);

N1688 50

template<class K, class T, class C, class A>
size_t hash_value(std::map<K, T, C, A> const & v);

template<class K, class T, class C, class A>
size_t hash_value(std::multimap<K, T, C, A> const & v);

Add a new section [tr.unord.hashval], Template function hash_value, with the following
contents:

size_t hash_value(int v);
size_t hash_value(unsigned int v);
size_t hash_value(long v);
size_t hash_value(unsigned long v);

Returns: v.
Throws: nothing.

size_t hash_value(float v);
size_t hash_value(double v);
size_t hash_value(long double v);

template<class T> size_t hash_value(T * v);

Returns: an unspecified value, except that equal arguments shall yield the same result.
Throws: nothing.

template<class A, class B>
size_t hash_value(std::pair<A, B> const & v);

Effects:

 size_t seed = 0;
 hash_combine(seed, v.first);
 hash_combine(seed, v.second);
 return seed;

template<class E, class T, class A>
size_t hash_value(std::basic_string<E, T, A> const & v);
template<class T, class A>
size_t hash_value(std::vector<T, A> const & v);
template<class T, class A>
size_t hash_value(std::list<T, A> const & v);
template<class T, class A>
size_t hash_value(std::deque<T, A> const & v);
template<class K, class C, class A>
size_t hash_value(std::set<K, C, A> const & v);
template<class K, class C, class A>
size_t hash_value(std::multiset<K, C, A> const & v);

N1688 51

template<class K, class T, class C, class A>
size_t hash_value(std::map<K, T, C, A> const & v);
template<class K, class T, class C, class A>
size_t hash_value(std::multimap<K, T, C, A> const & v);

Returns: hash_range(v.begin(), v.end()).

Add a new section, Template functions hash_combine and hash_range, with the following
contents:

template<class T>
void hash_combine(size_t & seed, T const & v);

Effects: seed ^= hash_value(v) + (seed << 6) + (seed >> 2);
Notes: hash_value is called without qualification.

template<class It> size_t hash_range(It first, It last);

Effects:

 size_t seed = 0;

 for(; first != last; ++first)
 {
 hash_combine(seed, *first);
 }

 return seed;

[hash_combine is fully specified. This is a tradeoff that guarantees identical results on different
implementations. The alternative would be "implementation defined". This allows
implementations to do better; but it also allows them to do worse, and it means that
performance tests on a certain key set will not be portable.]

Replace [tr.unord.hash]/2 with:

std::size_t operator()(T const & val) const;

Returns: hash_value(val).
Notes: hash_value is called without qualification.

[This mechanism allows whole hierarchies to be handled with a single hash_value overload, as
in the following example:

struct Hashable
{
 virtual void size_t hashValue() const = 0;
};

N1688 52

size_t hash_value(Hashable const & v)
{
 return v.hashValue();
}

Now every type that derives from Hashable is automatically usable as a key in an unordered
associative container.]

Remove the explicit specializations of the hash class template.

Rationale:
The proposed implementation of hash_combine is derived from a string hashing function from:

Methods for Identifying Versioned and Plagiarised Documents
Timothy C. Hoad, Justin Zobel

http://www.cs.rmit.edu.au/~jz/fulltext/jasist-tch.pdf

I have been able to (sometimes dramatically) improve the performance of some hash table
implementations by replacing the built-in hash function with it.

It references:

M.V. Ramakrishna and J. Zobel. Performance in practice of string hashing functions. In Proc.
Int. Conf. on Database Systems for Advanced Applications, pages 215-223, Melbourne,
Australia, April 1997.

http://www.cs.rmit.edu.au/~jz/fulltext/dasfaa97.ps
as a source.

7 Regular expression issues
7.1 basic_regex should Not Keep a Copy of its Initializer
Submitter: Pete Becker (N1499)
Status: TR

The basic_regex template has a member function str which returns a string object that holds the
text used to initialize the basic_regex object. It also provides a container-like interface to this text
through the member functionsbegin and end, which return const_iterator objects that allow
inspection of the initializer text. While it might occasionally be useful to look at the initializer
string, we ought to apply the rule that you don't pay for it if you don't use it. Just as fstream
objects don't carry around the file name that they were opened with, basic_regex objects should
not carry around their initializer text. If someone needs to keep track of that text they can write a
class that holds the text and the basic_regex object.

Resolution:

N1688 53

As described in N1551, Changes to N1540 to Implement N1499 Parts 1 and 2.

7.2 basic_regex Should Not Have an Allocator
Submitter: Pete Becker (N1499)
Status: TR

The basic_regex template takes an argument that defines a type for an allocator object. The
template also has several member typedefs and one member function to provide information
about the allocator type and the allocator object. This is because a basic_regex object "is in effect
both a container of characters, and a container of states, as such an allocator parameter is
appropriate." Calling it a container doesn't make it one. The allocator in basic_regex is not very
useful, and it unduly complicates the implementation.

The cost of using an allocator is high. Every type that the basic_regex object uses internally must
have its own allocator type and its own allocator object. A node based implementation might
have a dozen or more node types, requiring a dozen or more allocator objects. Allocator objects
can be created as local objects when needed, which effectively precludes allocators with internal
state; they can be ordinary members of the basic_regex object, inflating its size; or they can be
implemented as a chain of base classes (to take advantage of the zero-size base optimization),
with a high cost in readability and maintainability. None of these options is attractive.

Further, it's not at all clear how a user can determine that a substitute allocator is appopriate or
what characteristics such an allocator should have. The STL containers have clearly spelled out
requirements for their memory usage;basic_regex objects have no such requirements (nor should
they). The implementor of the basic_regex template knows best what its memory requirements
are.

Resolution:
As described in N1551, Changes to N1540 to Implement N1499 Parts 1 and 2. Some memory
management interface may be a good idea, but allocators aren’t it.

7.3 The Interface to regex_traits Should Use Iterators, Not Strings
Submitter: Pete Becker (N1499)
Status: TR

The member functions of the regex_trait template support customization and internationalization
for regular expressions. Of these, the member functions transform, transform_primary,
lookup_collatename, andlookup_classname take string as input.

This interface is inherently inefficient -- it requires creating a string object from a sequence in
order to pass that string to the function. Further, in the case of transform, the function typically
extracts iterators from the string object. Passing the text as a pair of iterators avoids introducing
unnecessary string objects.

Resolution:
Apply the resolution from N1623=04-0063, Resolutions to regular expression issues.

N1688 54

7.4 Regular expressions and internationalization
Submitter: Pete Becker (N1500)
Status: TR

See N1500 for a detailed description. Summary: We're basing regexps on ECMAScript.
However, ECMAScript is entirely unicode and doesn't deal with multiple locales and such. We're
using it in a non-unicode environment. Some of the lookups it's asking for, e.g. asking whether a
character is a digit in a locale-dependent way, are very expensive.

We allow metacharacters to be remapped, and (via the translate member function) even ordinary
characters may be remapped. Remapping metacharacters means you can't tell what a regexp does
just be looking at it. Remapping ordinary characters means that we use an expensive code path
for all matches, even ordinary case sensitive matches.

Suggestions:

• Don't use translate for case-sensitive matches. (Or at least only use it if we're using the
collate option when compiling the regex string into the regex object.

• Get rid of the syntax_type function that allows you to remap the meaning of
metacharacters.

Resolution:
Apply the resolution from N1623=04-0063, Resolutions to regular expression issues.

7.5 Bad rationale for regex_ prefixes
Submitter: Pete Becker (N1507)
Status: NAD

Pete writes:

I'm not strongly for or against the regex_ prefixes. They may well be helpful in understanding
code. But I'm strongly against the notion that the standard library should use prefixes because
users abuse using declarations.

Resolution: NAD. The rationale isn’t part of the TR. If we decide to change the names, that
will be a separate issue.

7.6 Unintended occurrence of reg_expression
Submitter: John Maddock (N1507)
Status: TR

There is a systematic error in the "proposed text" section: the various algorithms have been
defined to accept a type "reg_expression" which does not in fact exist in the proposal, and which
should of course be called "basic_regex". This is an editing error that crept in when the name of
that class was changed from reg_expression to basic_regex.

The fix is to just replace all occurrences of "reg_expression" with "basic_regex" throughout that
section.

N1688 55

Resolution: As above.

7.7 Iterators have incorrect definitions of the types “reference” and
“pointer”

Submitter: John Maddock (N1507)
Status: TR

In regex_iterator and regex_token_iterator the definitions given for the types "iterator" and
"reference" are wrong: as given these types refer/point to the value_type of the underlying
iterator type, but should of course refer/point to the actual value_type being enumerated (the two
are not the same type).

Resolution:
Change:

typedef typename
iterator_traits<BidirectionalIterator>::pointer
 pointer;
typedef typename
iterator_traits<BidirectionalIterator>::reference
 reference;

To:
typedef const value_type* pointer;
typedef const value_type& reference;

In both the regex_iterator and regex_token_iterator definitions.

7.8 regex_iterator does not handle zero-length matches correctly
Submitter: John Maddock (N1507)
Status: TR

There is a subtle bug in regex_iterator::operator++; when the previous match found matched a
zero-length string, then the iterator needs to take special action to avoid going into an infinite
loop, the current wording does this but gets it wrong because it does not allow two consecutive
zero length matches, for example iterating occurrences of “^” in the text “\n\n” yields just one
match rather than three as it should. The actual behavior should be as follows:

When the previous match was of zero length, then check to see if there is a non-zero-length
match starting at the same position, otherwise move one position to the right of the last match (if
such a position exists), and continue searching as normal for a (possibly zero length) match.

Resolution:
Covered by the proposed resolution to issue 7.9.

7.9 Regex_iterator does not set match_results::postion correctly
Submitter: John Maddock (N1507)
Status: TR

N1688 56

As currently specified, given:
 regex_iterator<something> i;
then i->position() == i->prefix().length() for all matches found.

This is correct for the first match found, but makes little sense for subsequent matches where the
result of i->position() is only useful if it returns the distance from the start of the string being
searched to the start of the match found.

(Recall that i->prefix() contains everything from the end of the last match found, to the start of
the current match, this allows search and replace operations to be constructed by copying i-
>prefix() unchanged to output, and then outputting a modified version of whatever matched.)

For example this problem showed up when converting a boost.regex example program from the
regex_grep algorithm (not part of the proposal) to use regex_iterator: the example takes the
contents of a C++ source file as a string, and creates an index that maps C++ class names to file
positions in the form of a std::map<std::string, int>. In order for the program to take a
regex_iterator and from that add an item to the index, it needs to know how far it is from the start
of the text being searched to the start of the current match: that was what regex_match::position()
was intended for, but as the proposal stands it instead returns the distance from the end of the last
match to the start of the current match.

Resolution:
[Note: Discussed at Kona. General agreement that this is a real issue, also that the proposed
resolution in N1507 was not the right way to resolve it. This is the new proposed resolution.]

Change:

private:
match_results<BidirectionalIterator> what; // exposition only
 BidirectionalIterator end; // exposition only
 const regex_type* pre; // exposition only
 match_flag_type flags; // exposition only
};

To:

private:
// these members are shown for exposition only:
BidirectionalIterator begin, end;
regex_type *pregex;
regex_constants::match_flag_type flags;
match_results<BidirectionalIterator> match;
};

And then add the following immediately afterwards:

A regex_iterator object that is not an end-of-sequence iterator holds a zero-length match if
match[0].matched == true and match[0].first == match[0].second. [Note: this occurs when the

N1688 57

part of the regular expression that matched consists only of an assertion (such as '^', '$', '\b', '\B')].

Then change the following members as shown:
regex_iterator constructors [tr.re.regiter.cnstr]
regex_iterator();

Effects: Constructs the end-of-sequence iterator.
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
 const regex_type& re,
 regex_constants::match_flag_type f = regex_constants::match_default);

Effects: Initializes begin and end to point to the beginning and the end of the target sequence,
sets pregex to &re, sets flags to f, then calls regex_search(begin, end, match, *pregex, flags). If
this call returns false the constructor sets *this to the end-of-sequence iterator.
regex_iterator comparisons [tr.re.regexiter.comp]
bool operator==(const regex_iterator& right);

Returns: true if *this and right are both end-of-sequence iterators or if begin == right.begin,
end == right.end, pregex == right.pregex, flags == right.flags, and match[0] == right.match[0],
otherwise false.
bool operator!=(const regex_iterator& right);

Returns: !(*this == right)
regex_iterator dereference [tr.re.regexiter.deref]
const value_type& operator*();

Returns: match
const value_type* operator->();

Returns: &match
regex_iterator increment [tr.re.regexiter.incr]
regex_iterator& operator++();

Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the
value of match[0].second.

If the iterator holds a zero-length match and start == end the operator sets *this to the end-of-
sequence iterator and returns *this.

Otherwise, if the iterator holds a zero-length match the operator calls regex_search(start, end,
match, *pregex, flags | regex_constants::match_not_null | regex_constants::match_continuous).
If the call returns true the operator returns *this. Otherwise the operator increments start and
continues as if the most recent match was not a zero-length match.

 If the most recent match was not a zero-length match, the operator sets flags to flags |
match_prev_avail and calls regex_search(start, end, match, *pregex, flags). If the call returns
false the iterator sets *this to the end-of-sequence iterator. The iterator then returns *this.

N1688 58

 In all cases in which the call to regex_search returns true match.prefix().first shall be equal to
the previous value of match[0].second, and for each index i in the half-open range
[0,match.size()) for which match[i].matched is true, match[i].position() shall return
distance(begin, match[i].first).

 [Note: this means that match[i].position() gives the offset from the beginning of the target
sequence, which is often not the same as the offset from the beginning of the sequence passed in
the call to regex_search.]

 It is unspecified how the implementation makes these adjustments.

 [Note: this means that a compiler may call an implementation-specific search function, in which
case a user-defined specialization of regex_search will not be called.]
regex_iterator operator++(int);

Effects:
regex_iterator tmp = *this;
++(*this);
return tmp;

7.10 Naming of basic_regex::getflags
Submitter: Pete Becker (N1507)
Status: TR

basic_regex has member functions named getflags and get_allocator. The latter is consistent with
the use of the same name in STL containers. In general, it seems to me, the library tries to use an
underscore to separate a verb from its object for names of this nature. That convention would
mean that we should call the other one get_flags. On the other hand, we do have getline, but
that's arguably different because it's not a state query. Do we have a general policy here? If so,
what is it, and what should the name of getflags be?

Resolution:
Replace all occurrences of “getflags” in the document with “flags”.

7.11 Missing namespace prefix in regex_iterator description
Submitter: Pete Becker (N1507)
Status: TR

The definition of regex_iterator in RE.8.1 mentions
regex_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re,
match_flag_type m = match_default);

And
match_flag_type flags; // for exposition only

match_flag_type and match_default are defined in the nested namespace regex_constants, so
these two names need to be qualified with regex_constants::. Same thing in the first RE.8.1.1.

N1688 59

Resolution:
Go through the text and replace all occurrences of:

match_flag_type with regex_constants::match_flag_type,
match_default with regex_constants::match_default,
match_partial with regex_constants::match_partial,
match_prev_avail with regex_constants::match_prev_avail,
match_not_null with regex_constants::match_not_null,
format_default with regex_constants::format_default,
format_no_copy with regex_constants::format_no_copy,
format_first_only with regex_constants::format_first_only,

except in the section which defines these (RE.3.1).

7.12 Unnecessary sub-section headers in regex_iterator
Submitter: Pete Becker (N1507)
Status: editorial, TR

The first clause labeled RE.8.1.1 has the title "regex_iterator constructors". It contains
descriptions of the constructors, plus several operators. The second clause labeled RE.8.1.1 has
the title "regex_iterator dereference". It contains operator*, operator->, and the two versions of
operator++. Seems like both of these labels should be removed.

Resolution:
Rename the section “RE.8.1.1 regex_iterator constructors” as “regex_iterator members”, remove
the section “RE.8.1.1 regex_iterator dereference”, rename the section “RE.8.2.1 regex_iterator
constructors” as “regex_token_iterator members”, remove the section: “RE.8.2.1
regex_token_iterator dereference”.

7.13 Names of symbolic constants
Submitter: Pete Becker (N1507)
Status: TR

ECMAScript has five control escapes: t, n, v, f, r. The regex proposal has named constants for
four of them: escape_type_control_f, _n, _r, and _t. escape_type_control_v seems to be missing.
(Okay, that's not about names, but the next two are).

This is minor, but in C and C++ those five things are escape sequences, and using names that
include 'control' is a bit confusing. Granted, it fits with the terminology in ECMAScript, but I'd
lean toward more C-like names, on the line ofescape_type_f.

And finally, there's escape_type_ascii_control. (For those not familiar with the details of the
proposal, this refers to things that we might write in ordinary text as <ctrl>-X, for example.)
We've pretty much avoided the term "ascii" in the standard (it's only used twice, in footnotes,
apologetically), and I'm a bit uncomfortable with its use here. I'd
preferescape_type_control_letter, which picks up the name of the production in the ECMAScript
grammar for the letter that follows the escape. I think it's pretty clear what it means, and it avoids
"ascii".

N1688 60

Resolution:
Replace all occurrences of:

escape_type_control_f with escape_type_f
escape_type_control_n with escape_type_n
escape_type_control_r with escape_type_r
escape_type_control_t with escape_type_t
escape_type_ascii_control with escape_type_control

Then immediately after the line:

static const escape_syntax_type escape_type_t;
add the line:

static const escape_syntax_type escape_type_v;

Then immediately after the table entry:

escape_type_t t

Add the new table entry:

escape_type_v v

[Kona: in addition to the proposed resolution in this issue: the LWG felt that a review of names
throughout the regex clause is in order: the names tend to be verbose. See issue 7.41.]

7.14 Traits class versioning incompletely edited in.
Submitter: Pete Becker (N1507)
Status: TR

The paper talks about versioning of regex_traits classes, and RE.1.1 (in table RE2) says that a
traits class shall have a member X::version_tag whose type is regex_traits_version_1_tag or a
class that publicly inherits from that. Neither the <regex> synopsis (RE.2) nor the description of
regex_traits (RE.3.3) mentions either of these types. I can't tell whether this was partially edited
in or partially edited out. <g> So, is regex_traits versioning part of the proposal?

Resolution:
Edit this feature out, by removing the entry of X::version_tag in table 7.1.

7.15 Specification of sub_match::length incorrect
Submitter: John Maddock (N1507)
Status: TR

The specification for sub_match::length has acquired a couple of typos (a misplaced static, and
the logic in the effects clause is back-to-front)

Resolution:
Change it to:

difference_type length();
Effects: returns (matched ? distance(first, second) : 0).

N1688 61

[Note to editor: throughout the regex section, we see “Effects: returns…” This is unnecessarily
convoluted, and should be replaced with plan “Returns: …”]

7.16 Traits class sentry language
Submitter: Pete Becker (N1507)
Status: TR

The proposal says:

“An object of type regex_traits<charT>::sentry shall be constructed from a regex_traits
object, and tested to be not equal to null, before any of the member functions of that object
other than length, getloc, and imbue shall be called. Type sentry performs
implementation defined initialization of the traits class object, and represents an opportunity
for the traits class to cache data obtained from the locale object.”

The first sentence is in passive voice, and begs the question of who shall do it: the user of the
regex instance that holds the regex_traits object, or the regex instance itself. Unless the user is
hacking around with a standalone instance ofregex_traits, it probably ought to be the regex
object that "shall" do this.

Second, sentry "performs implementation defined initialization." I think this ought to be
implementation specific, not implementation defined. I don't want to have to document the
details of the initialization that sentry performs.

Additional comment from Pete Becker:

I think the right answer is to remove sentry. It doesn't really do much.

It's there to provide a way for the various search functions to ensure that the traits object has done any needed
initialization. It's appropriate to defer such initialization, since it can involve allocation and population of tables
and perhaps other expensive operations, which would be wasted if the user subsequently imbued a different locale.

The sentry class, though, is overkill. It's there in part by analogy to iostreams, where each inserter constructs a
sentry object and checks its state before inserting into the stream. But that's part of the semantics of streams: if the
stream's state is bad, attempted insertions simply do nothing, and program execution continues. Regular
expressions, on the other hand, don't have that requirement. (It's not clear what should happen if initialization fails;
the current requirement is only that whoever constructs the sentry object should check whether it succeeded).
Further, in iostreams, one of the purposes of sentry is to be able to provide thread locking, with a lock in the
constructor and an unlock in the destructor. There's no analogous need in regular expressions.

I think it should be up to the traits implementor to get initialization right. That means lazy initialization, and
checking flags to be sure that caches have been set up. When a new locale is imbued, cached data becomes invalid.
I don't think we need a hook to tell the traits object that it's time to initialize.

Resolution:
* Remove the entries for “X::sentry”, “X::sentry s(u);” and “X::sentry(u)” from table 7.1.
* Remove the nested type “struct sentry” from the regex_traits class synopsis (7.7).
* Remove the description of “struct sentry” from the regex_traits description.
* Remove the sentence “No member functions other than length, getloc, and imbue may be
called until an object of type sentry has been copy-constructed from *this.”, from the description
of regex_traits::imbue (7.7).

N1688 62

Rationale:
From John Maddock:
It appears that the motivation for the sentry object (a means to signal to the traits class that it is
about to be used, and should therefore initialize itself now, caching loaded data as appropriate),
is unnecessary. There are other techniques available (such as not constructing a traits class
instance until it is actually needed, or have the traits class load it’s localization data on demand)
that can deal with the issue just as well, I would therefore propose that we remove this type
altogether:

7.17 Imprecise specification of regex_traits::char_class_type
Submitter: Pete Becker (N1507)
Status: TR

Roughly speaking, there are three categories of character class: the ones that are supported by C
and C++ locales (alnum, etc.), the additional ones for the regex proposal (d s w) and user-
supplied character classes (through extensions to regex_traits).

Is the intent of the proposal to require that for the first category, the value returned by, for
example,lookup_classname("alnum") be the value alnum as defined by ctype_base::mask? (I
don't care one way or the other, but we have to be clear about what's required).

Resolution:
Replace:

“The type char_class_type is used to represent a character classification and is capable
of holding an implementation defined superset of the values held by ctype_base::mask
(22.2.1).”

with:
“The type char_class_type is used to represent a character classification and is capable
of holding the implementation specific set of values returned by lookup_classname.”

7.18 Can anything other than basic_regex throw bad_expression
objects?

Submitter: Pete Becker (N1507)
Status: TR

The text describing the class bad_expresions says it is the type of the object thrown to report
errors "during the conversion from a string ... to a finite state machine." This suggests that it is
not thrown by the functions that try to match a string to and a basic_regex object, and this is
borne out by the throws clauses for the constructors and assignment operators for basic_regex,
which say that they throw bad_expression if the string isn't a valid regular expression, and by the
lack of throws clauses for regex_match, etc.

On the other hand, error_type has two values, error_complexity and error_stack, that only occur
during matching. There's no other mention of these values, so the only thing that can be done
with them is for the implementation to pass them to regex_traits::error_string, and the only way
the user can see the resulting string is by catching an exception. This suggests that

N1688 63

bad_expression can also be thrown by the match functions. And the text says, in the last
paragraph of RE.4, that "the functions described in this clause can report errors by throwing
exceptions of type bad_expression."

So: can the various match functions throw bad_expression, and, if so, is bad_expression the
appropriate name?

Resolution:
Apply the resolution from N1623=04-0063, Resolutions to regular expression issues.

7.19 Unneeded basic_regex members
Submitter: John Maddock
Status: TR

The following basic_regex members are redundant and should be removed:

basic_regex(const charT* p1, const charT* p2, flag_type f =
regex_constants::normal,
 const Allocator& a = Allocator());
basic_regex& assign(const charT* first, const charT* last,
 flag_type f =
regex_constants::normal);

Resolution: As above.

7.20 Missing basic_regex members
Submitter: Pete Becker (N1507)
Status: TR

The proposal has member functions named 'assign' that take argument lists that correspond to the
argument lists for constructors, with two exceptions: there's basic_regex(const charT
*, size_type len,flag_type), but no assign(const charT *, size_type,
flag_type); and there's basic_regex(), but noassign(). Are these omissions
intentional?

Resolution:
add the following member to the basic_regex class synopsis:

basic_regex& assign(const charT* ptr, size_type len, flag_type f = regex_constants::normal);

Then add the following description in the RE4.5 section:
basic_regex& assign(const charT* ptr, size_type len, flag_type f = regex_constants::normal);

Effects: Returns assign(string_type(ptr, len), f).

7.21 Types of match_results typedefs members
Submitter: Pete Becker (N1507)
Status: TR

N1688 64

The proposal says that match_results has a nested typedef
typedef const value_type& const_reference

Since match_results has an allocator, this should be
typedef typename allocator::const_reference const_reference

Resolution: As above

7.22 What does match_results::size() return?
Submitter: Pete Becker (N1507)
Status: TR

The member funtion size() returns "the number of sub_match elements stored in *this". Aside
from the suggested implementation above, there are the prefix() and suffix() sub_match
elements. Is the intention that size() should return the number of capture groups in the original
expression, and not include those two extra sub_matches? (I think the answer is probably yes).

Resolution:
Replace:

size_type size()const;

Effects: Returns the number of sub_match elements stored in *this.

With:

size_type size()const;

Effects: Returns one plus the number marked sub-expressions in the regular expression that
was matched.

[Note to editor: put in the missing “of”]

7.23 What does match_results::position return when passed an out
of range index?

Submitter: Pete Becker
Status: TR

match_results::position() doesn't say what happens when someone asks for the position of a non-
matched group. The specification says that it's distance(first1, first2), where first1 is the
beginning of the target text and first2 is the beginning of the nth match. The specification for
sub_match says that for a failed match the iterators have unspecified contents. Do we want this
to be unspecified or undefined, or is there some meaningful value we can return?

Having looked ahead <g>, the match and search algorithms specify that non-matched groups
hold iterators that point to the end of the target text. This conflicts with the specification for
sub_match, which says they're undefined. Is that text in sub_match incorrect?

Resolution:
Changes to:

N1688 65

difference_type position(unsigned int sub = 0) const;
Effects: Returns std::distance(prefix().first, (*this)[sub].first).

Are covered in “Regex_iterator does not set match_results::postion correctly”.

Delete the following paragraphs from the sub_match specification:

When the marked sub-expression denoted by an object of type sub_match<> participated in a
regular expression match then member matched evaluates to true, and members first and
second denote the range of characters [first,second) which formed that match.
Otherwise matched is false, and members first andsecond contained undefined values.

If an object of type sub_match<> represents sub-expression 0 - that is to say the whole
match - then membermatched is always true, unless a partial match was obtained as a result
of the flag match_partial being passed to a regular expression algorithm, in which case
member matched is false, and members first and secondrepresent the character range
that formed the partial match.

The add the following to the match_results specification, immediately after the sentence ending
“except that only operations defined for const-qualified Sequences are supported.”:

The sub_match<> object stored at index zero represents sub-expression 0; that is to say the
whole match. In this case the sub_match<> member matched is always true, unless a
partial match was obtained as a result of the flag regex_constants::match_partial
being passed to a regular expression algorithm, in which case member matched is false, and
members first and second represent the character range that formed the partial match.

The sub_match<> object stored at index n denotes what matched the marked sub-
expression n within the matched expression. If the sub-expression n participated in a regular
expression match then the sub_match<> member matched evaluates to true, and
members first and second denote the range of characters [first,second) which
formed that match. Otherwise matched is false, and members first and second point to
the end of sequence that was searched.

7.24 What happens if match_results::operator[] is out of range?
Submitter: Pete Becker
Status: TR

With respect to match_results::operator[]: We need to say what happens for an index out of
range. Seems to me there are two reasonable possibilities: undefined behavior, or returns a no-
match object.

While I strongly favor undefined behavior over artificially well-defined results, I also favor well-
defined behavior when it is not too artificial. Thus, the behavior of sqrt(-2.0) is undefined;
free(0) does nothing. While undefined behavior provides a convenient hook for debugging
implementations, that's not its purpose, and if we can specify reasonable (which includes

N1688 66

inexpensive) behavior we ought to do it, rather than provide another place where users can go
astray.

In this case, I think I prefer to view operator[] as indexing into an unbounded array of sub_match
objects. The objects at match_results.size() and above would look like failed sub-matches: their
boolean flag would be false, and both their iterators would point to the end of the target string.
Since we've agreed that sub_match objects for failed sub-matches need not have distinct
addresses, this can be implemented by simply adding one sub_match element beyond those
needed for the actual results, and returning it for an index that's otherwise out of bounds.

Resolution:
replace:

const_reference operator[](int n) const;

Effects: Returns a reference to the sub_match object representing the character sequence
that matched marked sub-expression n. If n == 0 then returns a reference to a sub_match
object representing the character sequence that matched the whole regular expression.

With:

const_reference operator[](int n) const;

Effects: Returns a reference to the sub_match object representing the character sequence
that matched marked sub-expression n. If n == 0 then returns a reference to a sub_match
object representing the character sequence that matched the whole regular expression. If n >=
size() then returns a sub_match object representing an unmatched sub-expression.

7.25 Incorrect case insensitive match specification
Submitter: John Maddock (N1507)
Status: closed

The following wording:

"During matching of a regular expression finite state machine against a sequence of
characters, comparison of a collating element range c1-c2 against a character c is
conducted as follows: if getflags() ®ex_constants::collate is true, then the character c
is matched if traits_inst.transform(string_type(1,c1)) <=
traits_inst.transform(string_type(1,c)) && traits_inst.transform(string_type(1,c)) <=
traits_inst.transform(string_type(1,c2)), otherwise c is matched if c1 <= c && c <= c2.
During matching of a regular expression finite state machine against a sequence of
characters, testing whether a collating element is a member of a primary equivalence
class is conducted by first converting the collating element and the equivalence class to a
sort keys using traits::transform_primary, and then comparing the sort keys for equality."

Is defective in that it does not take account of case-insensitive matches, all input characters, and
all collating elements in the finite state machine should be passed through traits.inst.translate
before being converted into a sort key.

N1688 67

Resolution: Closed, this is covered by the issue 7.26.

7.26 Character class extensions to ECMAScript grammar need a
formal grammar

Submitter: Pete Becker (N1507)
Status: TR

The regex proposal adds to ECMAScript the ability to use named character classes through
"expressions of the form":

[[:class-name:]]
[[.collating-name.]]
[[=collating-name=]]

This isn't sufficient. In ECMAScript the expression [[] is valid, and names a character set
containing the character '['. Similarly, [[:] is also valid, and names a character set containing the
characters '[' and ':'. We need to say whether these two expressions (and their analogs for
collating names) are still valid. I suspect the answer is that they're not -- a '[' as the first character
in a character class is a special character, which must be follwed by one of ':', '.', or '=', then a
name that does not contain any of ']', ':', ".', or '=' (technically we could allow ']', but that seems
unnecessarily baroque), then the appropriate close marker.

Resolution: Adopt the proposed resolution in N1507.

7.27 Imprecise Specification of regex_replace
Submitter: Pete Becker (N1507)
Status: TR

Finds all the non-overlapping matches 'm' of type match_results<BidirectionalIterator> that
occur in the sequence [first, last).

Having found them or not, it then writes stuff depending on its arguments. It's not clear, though,
what "non-overlapping matches" are. It took me about five minutes to convince myself that these
are matches of the complete expression, and not matches of internal capture groups (which
would always overlap the full match). I think a footnote is sufficient for this. More important,
though, is what happens when matches overlap. Suppose we're searching for "aba" in the text
"ababa". There are two matches: the first three characters match, and the last three match. These
two matches overlap. Do we discard them both? Keep the first? Keep the second? My guess is
that the intention is to keep the first one, but we need to say so.

Resolution:
Replace the following clause:

Effects: Finds all the non-overlapping matches m of type
match_results<BidirectionalIterator> that occur within the sequence [first,
last). If no such matches are found and !(flags & format_no_copy) then calls
std::copy(first, last, out). Otherwise, for each match found, if !(flags &
format_no_copy)calls std::copy(m.prefix().first, m.prefix().last,
out), and then calls m.format(out, fmt, flags). Finally if !(flags &

N1688 68

format_no_copy) calls
std::copy(last_m.suffix().first,last_m,suffix().last, out)
where last_m is a copy of the last match found. If flags &format_first_only is
non-zero then only the first match found is replaced.

With:

Effects: Constructs an regex_iterator object:
regex_iterator<BidirectionalIterator, charT, traits,
Allocator> i(first, last, e, flags), and uses i to enumerate through all of
the matches m of typematch_results<BidirectionalIterator> that occur within
the sequence [first, last). If no such matches are found and !(flags &
format_no_copy) then calls std::copy(first, last, out). Otherwise, for
each match found, if !(flags & format_no_copy) calls
std::copy(m.prefix().first, m.prefix().last, out), and then calls
m.format(out, fmt, flags). Finally if !(flags & format_no_copy)
callsstd::copy(last_m.suffix().first, last_m,suffix().last, out)
where last_m is a copy of the last match found. If flags & format_first_only is
non-zero then only the first match found is replaced.

7.28 What is an invalid/empty regular expression?
Submitter: Pete Becker (N1507)
Status: Open

See N1507 for a full description. Summary: it’s not clear what kind or regex object the default
constructor returns, and how that interacts with the empty() test.

Resolution:
Discussed at Kona. The LWG agrees that the default constructor should be equivalent to
construction from an empty string. Leaving this open for now partly because we need wording
expressing that, and partly because it’s not clear that there’s any point to having the empty()
member function in the first place.

7.29 Regular expression constructor language
Submitter: Pete Becker (N1507)
Status: TR

For the basic_regex ctor that takes a const charT *p, the proposal says:
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is
constructed from the regular expression contained in the null-terminated string p...

p is not a null-terminated string. It is a pointer. The analogous phrasing for basic_string is:
Effects: Constructs an object of class basic_string and determines its initial string value from the
array of charTof length traits::length(s) whose first element is designated by s ...

We need to maintain a similar level of formalism.

Resolution:

N1688 69

Replace the Effects clause for basic_regex(const charT*, flag_type) in tr.re.regex.construct with:
 Effects: Constructs an object of class basic_regex; the object's
 internal finite state machine is constructed from the regular
 expression contained in the array of charT of length
 char_traits<charT>::length(p) whose first element is designated
 by p, and interpreted according to the flags specified in f. The
 postconditions of this function are indicated in Table ??.

7.30 Incorrect usage of “undefined”
Submitter: Pete Becker (N1507)
Status: TR

In several places in the document the term “undefined” should be replaced by “unspecified”:

“Otherwise matched is false, and members first and second contained undefined values.”

“If the function returns false, then the effect on parameter m is undefined, otherwise the effects
on parameter m are given in table RE18”

“If the function returns false, then the effect on parameter m is undefined, otherwise the effects
on parameter m are given in table RE19”

Resolution: As above

7.31 Incorrect usage of “implementation defined”
Submitter: Pete Becker (N1507)
Status: TR

In several places in the document the term “implementation defined” should be replaced by
either “implementation specific” or “unspecified”:

“Type sentry performs implementation defined initialization of the traits class object, and
represents an opportunity for the traits class to cache data obtained from the locale object.”
“char_class_type lookup_classname(const string_type& name)
const;

Effects: returns an implementation defined value that represents the character classification
name”

“Returns: converts f into a value m of type ctype_base::mask in an implementation defined
manner”

“Effects: constructs an object result of type int. If first == last or if
is_class(*first,lookup_classname("d")) == false then sets result equal
to -1. Otherwise constructs a basic_istream<charT>object which uses an implementation
defined stream buffer type which represents the character sequence [first,last), and sets the
format flags on that object as appropriate for argument radix.”

N1688 70

Resolution: As above

7.32 Are sub_match objects all unique?
Submitter: Pete Becker (N1507)
Status: NAD

Are sub_match objects for non-matched capture groups required to be distinct? I can picture
amatch_type implementation that holds sub_match objects only for the capture groups that
matched, and returns a generic no-match object for others. Is this intended to be legal? (My
inclination is that it ought to be allowed, because I don't see any good reason not to allow it).

Resolution:
No, match objects are not guaranteed to be unique; the lack of a guarantee was intentional.
[Editorial issue: The editor should add a non-normative note pointing that out.]

7.33 How are Unicode escape sequences handled?
Submitter: Pete Becker (N1507)
Status: TR

ECMA-Script supports character escapes of the form "\uxxxx", where each 'x' is a hex digit.
Each such escape sequence represents the character whose code point is the value of 'xxxx'
translated to a number in the usual way. What do such character escapes mean when the
character type for basic_regex is too small to hold that value? Do we intend to require multi-byte
support here (I hope not)? Or is such a value invalid when the target character type is too small?

Resolution:
In tr.re.grammar, after the paragraph
 When the sequence of characters being transformed to a finite state
 machine contains an invalid class name the translator shall throw
 an exception object of type *bad_expression*.
add the following paragraph:
 If the CV of a UnicodeEscapeSequence is greater than the largest
 value that can be held in an object of type charT the translator shall
 throw an exception object of type bad_expression. [Note: this means
 that values of the form "\uxxxx" that do not fit in a character are
 invalid.]

7.34 Meaning of the match_partial flag
Submitter: Pete Becker (N1507)
Status: Open

RE.3.1.2 says that the match_partial flag

Specifies that if no match can be found, then it is acceptable to return a match [from, last)
where from!=last, if there exists some sequence of characters [from,to) of which [from,last)
is a prefix, and which would result in a full match.

N1688 71

Taking this literally, if I have the expression "a(?=b)(?!b)" and try to match it against "a", the
partial match must fail, because the two assertions are contradictory. Is the matcher really
required to do this sort of analysis of the expression, and determine that there is no possible
continuation that could succeed?

From the name, I would think that partial_match would mean, roughly, that if you reach the end
of the search text but are only partway through the regular expression, that's okay. So in the
example above, the partial match would succeed. Is that what's intended here?

Comment from John Maddock, on use cases for this feature:

• Searching "infinite" texts: for example two real world use cases that Boost.regex has been
put to, are searching a multi-gigabyte server log, and filtering the data passing through a
socket. In these cases you can't possibly load all of the text into memory to search it, so
you load chunks into a buffer and search one chunk at a time. Then you need to know
whether a match could have straddled two chunk boundaries: and that's what a partial
match gives you, it tell you how much of the end of one chunk to hang onto before
reading the next section.

• Data input validation: if the data in some field has to match some regex to be acceptable,
some users what to check this character by character as it's entered - the question then
becomes: “given some more input could we eventually match the expression,” again
that's what a partial match gives you.

This still doesn’t give us a specification of the feature, but at least it gives us the motivation.

Resolution:
Replace the entry in the column "Effect if set" for match_partial, which currently reads

 If no match is found, then it is acceptable to return a match
 [from, last) where from != last, if there exists some sequence of
 characters [from, to) of which [from, last) is a prefix, and which
 would result in a full match.

with

 If no match is found, the implementation shall return the longest
 sequence [from, last), where *from != last*, for which it cannot
 determine that there is no possible sequence of characters
 [from, to) of which [from, last) is a prefix, and which would
 result in a full match. If no such sequence exists the match
 fails.

7.35 Name of regex_traits::is_class
Submitter: Pete Becker (N1507)
Status: TR

N1688 72

That name is confusing. I'd prefer inclass, or some variant. The function takes two arguments: a
character and a character class, and tells you whether the character belongs to the class. is_class
sounds too much like querying whether some object represents a character class.

Resolution:
Replace all occurances of "is_class" with "isctype".

7.36 Can traits::error_string be simplified?
Submitter: Pete Becker (N1507)
Status: TR

In the proposal, the template regex_traits has a member function error_string that takes an error
code that indicates what error occurred and returns a string corresponding to that error, which is
then used as the argument to the constructor for an exception object. Seems to me it would be
simpler to have regex_traits simply provide a function that throws the exception, called with the
error code. Is this string needed for anything else?

Resolution:
Covered by the resolution to 7.18.

Rationale:
The sense of the LWG is that we should rethink the error reporting policy. A bad_expression
object should contain a flag that represents the error, not a string constructed from the flag. The
string returned by what() should be left unspecified, and the error_string interface should
probably be thrown away entirely. (Programmers who want to test exception objects to find out
the exact cause of the error find codes easier to work with than strings. Programmers who want
to print diagnostics for users can supply their own code-to-string mechanism.)

7.37 Can traits::translate be improved?
Submitter: Pete Becker (N1507)
Status: TR

The regex_traits member function 'translate' is used when comparing a character in the pattern
string with a character in the target string. It takes two arguments: the character to translate, and
a boolean flag that indicates whether the translation should be case sensitive. So two characters
are equal if

translate(pch, icase) == translate(tch, icase)

So with pattern text of "abcde", checking for a match would look something like this:

for (int i = 0; i < 5; ++i)
 if (translate(pch[i], icase) == translate(tch[i], icase))
 return false;
return true;

The implementation of regex_traits::translate in the library-supplied traits class is:

return (icase ? use_facet<ctype<charT> >(getloc()).tolower(ch)
: ch);

N1688 73

There's potential for a significant speedup, though, if case sensitive and case insensitive
comparisons go through two different functions. The obvious transformation of the preceding
loop would be:

if (icase)
 for (int i = 0; i < 5; ++i)
 if (translate_ic(pch[i]) == translate_ic(tch[i]))
 return false;
else
 for (int i = 0; i < 5; ++i)
 if (translate(pch[i]) == translate(tch[i]))
 return false;
return true;

For the default regex_traits class, the calls to translate in the second branch of the if statement
would be inline calls to a translate function that simply returns its argument, so the loop turns
into a sequence of direct comparisons, with no distractions from the possibility of case
insensitivity. Further, since case sensitivity is determined by a flag that's set at the time the
regular expression is compiled, one of the two branches of the outer if statement will always be
unnecessary.

I made up the names 'translate_ic' and 'translate' for this e-mail. I'm not suggesting that we use
them.

Resolution:
Closely related to issue 7.4, and covered by the resolution to that issue.

7.38 Improving on traits::toi
Submitter: Pete Becker (N1507)
Status: TR

It says, in part:

If first == last or if is_class(*first, lookup_classname("d")) == false then sets result equal to -
1.

And "d" by default is the digits 0-9. Since the radix for the conversion can be 8, 10, or 16, the
condition involving "d" isn't right. For a hex value it precludes the value 'a0'. For an octal value it
allows '90', but the ensuing conversion will fail. We need to find a different way to express this.
The idea is to return -1 on a failed conversion, and the appropriate unsigned value on success.

And further: I'm starting to think that toi is too high level an interface. Regular expression
grammars go character by character. For example, the value of a HexEscapeSequence (\xhh) is
"(16 times the MV of the first hex digit) plus the MV of the second HexDigit". toi
(hypertechnically) doesn't require that. In order to implement the specification literally, the regex
parser needs to translate individual characters, not groups of characters, into values, and
accumulate those values as appropriate. Thus, regex_traits ought to provide int value(charT
ch),which returns -1 if isxdigit(ch) is false, otherwise the numeric value represented by the
character.

N1688 74

And: I've just implemented it. Here are the changes I made:
• I removed escape_type_backref and escape_type_decimal
• I added escape_type_numeric (0-9)
• I added int regex_traits::value(charT ch, int base)

The first two aren't technically necessary for this change, but escape_type_backref is a bit
misleading. ECMAScriptdoesn't restrict the number of capture groups, so \10 can be a valid back
reference. This means thatescape_type_backref alone isn't sufficient. So I figured it's enough to
know that you're starting a numeric constant (i.e.escape_type_numeric), and then you can use
value() == -1 to determine when you've reached the end of a constant.

The second argument to value is needed in order to decide whether the character is a valid digit
for the base. valuereturns -1 for an invalid digit, and the (unsigned) numeric value for a valid
digit.

Resolution:
In tr.re.escsyn, remove escape_type_backref from the list of constants of
type escape_syntax_type and from Table 7.5 (escape_syntax_type values in the C locale).

In tr.re.escsyn, change the "Equivalent characters" entry for escape_type_decimal
from "0" to "0123456789".

In tr.re.req, Table 7.1 (regular expression traits class requirements), remove
the entry for *v.toi(I1, I2, i)*.

In tr.re.req, add to Table 7.1 (regular expression traits class requirements)
the following entry:
 v.value(c, I) int Returns the value represented by the digit *c*
 in base *I* if the character *c* is a
valid digit in
 base *I*; otherwise returns -1. [Note:
the value of
 I will only be 8, 10, or 16.]

In tr.re.traits, remove the declaration of the member function *toi* from
the definition of *regex_traits*.

In tr.re.traits, add the following declaration to the definition of *regex_traits*:

 int value(charT ch, int radix) const;

In tr.re.traits, remove the synopsis
 template<class InputIterator>
 int toi(InputIterator& first, InputIterator last, int radix) const;
and the three following paragraphs (labeled Preconditions, Effects, and Postconditions).

In tr.re.traits, add the synopsis
 int value(charT ch, int radix) const;

N1688 75

followed by the following text:
 Precondition: The value of *radix* shall be 8, 10, or 16.
 Returns: the value represented by the digit *ch* in base *radix* if
 the character *ch* is a valid digit in base *radix*; otherwise returns
 -1.

In tr.re.grammar, change the sentence
 Where the regular expression grammar requires the conversion of a sequence
 of characters to an integral value, this is accomplished by calling
 traits_inst.toi.
to
 Where the regular expression grammar requires the conversion of a sequence
 of characters to an integral value, this is accomplished by calling
 traits_inst.value.

7.39 Improving on traits::lookup_classname
Submitter: Pete Becker (N1507)
Status: Duplicate

I think this needs a change in specification. It returns a value that identifies the named character
class identified by its string argument. The cases I'm concerned about are the ones with names
like [:alnum:]. When the code encounters the opening [: it has to scan ahead for the matching :,
pick up the characters in between, stuff them into a string, and call lookup_classname. This is a
lot of wheel spinning. In particular, creating the string is expensive. If lookup_classname took
two iterators instead of a string it could simply look at the characters without the intervening
string object.

Resolution:
This is a subset of something the LWG already agreed on in principle: using an iterator interface
instead of a string interface. There’s no need to discuss this subpart by itself.

7.40 match_results element access functions have incorrect
parameter types

Submitter: Robert Klarer
Status: TR
Section: 7.9.3 [tr.re.results.acc]

The subscripting operator for match_results is declared as follows:
 const_reference operator[](int n) const;

This declaration is inconsistent with std::vector<...>::operator[], and introduces the possibility
that the function may be called incorrectly (using a negative argument).

A similar problem exists for the length(...), position(...), and str(...) members of match_results.

Proposed resolution:

N1688 76

change the declaraction of the subscripting operator for match_results from
 const_reference operator[](int n) const;
to
 const_reference operator[](size_type n) const;

change the declaration of the match_results member function length(...) from
 difference_type length(int sub = 0) const;
to
 difference_type length(size_type sub = 0) const;

change the declaration of the match_results member function position(...) from
 difference_type position(unsigned int sub = 0) const;
to
 difference_type position(size_type sub = 0) const;

change the declaration of the match_results member function str(...) from
 string_type str(int sub = 0) const;
to
 string_type str(size_type sub = 0) const;

7.41 Regex names should be reviewed
Submitter: Matt Austern
Status: Closed

This is an outgrowth of the Kona discussion of issue 7.13. Names throughout the regex section
are rather verbose; this is partly, but not entirely, a result of the regex_ prefix that appears in so
many places. We may want to consider a systematic renaming.

Resolution:
Possibly a good idea, but nobody has volunteered to do that review.

7.42 iterators have incorrect definition of difference_type
Submitter: Pete Becker
Status: TR

Issue 7.7 isn’t quite complete. The fix that we made is to change the type of pointer from
"iterator_traits<BidirectionalIterator>::pointer" to "const value_type*", and the corresponding
change for reference. Looks like we missed difference_type, which needs a similar change.

Proposed resolution:
Change
 typedef typename iterator_traits<BidirectionalIterator>::difference_type
 difference_type;

to:
 typedef ptrdiff_t difference_type;

N1688 77

in both [tr.re.regiter] and [tr.re.tokiter].

7.43 basic_regex::swap minor error
Submitter: Pete Becker
Status: TR

Postcondition: *this contains the characters that were in e, e contains the regular expression that
was in *this.

Should be:

Postcondition: *this contains the regular expression that was in e, e contains the regular
expression that was in *this.

7.44 Too many syntax options
Submitter: Pete Becker
Status: TR

7.5.1 provides the following syntax options: normal, ECMAScript, JavaScript, JScript, basic,
extended, awk, grep, egrep, sed, perl.

There are three issues here:

1. The first four mean the same thing, and sed is the same as basic. I think we ought to pick one
name for each option, rather than have multiple ways of saying the same thing. I suggest that we
remove normal, JavaScript, and JScript (this means changing the default 'normal' in a bunch of
places to 'ECMAScript', but I think that's an improvement, since it no longer suggests that UNIX
stuff is abnormal), and that we remove 'sed'.

2. basic, extended, awk, grep, egrep, sed, and perl are all optional. The requirement is that if the
functionality is supported, then these are the names that should be used. I think this is too
unpredictable; we should decide to require them, or to say nothing about them. Again, in the
spirit of not demeaning UNIX, I think they ought to be required. (But see below)

3. perl "Specifies that the grammar recognized by the regular expression is an implementation
defined extension of the normal syntax." The name is misleading, since such an extension doesn't
have to be anything like perl. That aside, the option itself isn't useful, since it makes no portable
guarantees. Conforming implementations can provide their own extensions with their own
names, so reserving that name without detailed semantics doesn't benefit users. I think we should
remove it.

Further comments from Pete Becker (paraphrased from c++std-lib-12781):

ECMAScript is fundamentally different from the rest, all the others are fairly similar. Basic and extended have
the same base syntax differ in a number of important ways. For example, basic has backreferences (like
"\(abc\)d\1") and extended does not. Extended has alternation (like "a|b") and basic does not. Extended supports
“*”, “+”, and “?” for repetition, basic only supports “*”.

Grep is a minor extension to basic, egrep and awk are minor extensions to extended. The awk extensions are
conforming, however, and they’re things “that most people probably assume are part of regular expressions.”

N1688 78

Proposed resolution (N1623):
In section 7.5.1, eliminate the following syntax option types: normal, javascript, jscript, sed, perl.

7.45 Names recognized by regex_traits::lookup_classname
Submitter: Pete Becker
Status: TR

The effects clause for lookup_classname in [tr.re.traits] say, in part,

 At least the names "d", "w", "s", "alnum",
 "alpha", "blank", "cntrl", "digit", "graph",
 "lower", "print", "punct", "space",
 "upper" and "xdigit", shall be recognized.

In regex_traits<wchar_t> these names aren't valid strings. They need to be expressed as
sequences of wide characters. There are two ways we can do that.

First, we can describe them as wide character strings directly. For regex_traits<wchar_t> this
would be:

 At least the names L"d", L"w", L"s", L"alnum",
 L"alpha", L"blank", L"cntrl", L"digit", L"graph",
 L"lower", L"print", L"punct", L"space",
 L"upper" and L"xdigit", shall be recognized.

Second, we can describe them as char strings, translated at runtime:

 At least the names "d", "w", "s", "alnum",
 "alpha", "blank", "cntrl", "digit", "graph",
 "lower", "print", "punct", "space",
 "upper" and "xdigit", translated to wide
 character strings by calling
 use_facet<ctype<charT> >(getloc()).widen(name, name+strlen(name), tgt)
 for a suitably sized array tgt, shall be recognized.

These mean two different things. The first is a compile-time translation, with an implementation-
specific mapping. The second is, obviously, mapped according to the specified locale. The
second is probably the one we want -- with the first it's hard for users to name those classes in
their regular expressions.

The same thing applies to "For a character c" in the effects clauses for regex_traits::syntax_type
and regex_traits::escape_syntax_type, to the class names and the '_' in the returns clause for
regex_traits::is_class, and to the class names in the effects and postcondition clauses for
regex_traits::toi.

Resolution (N1623):
In the entry for *lookup_classname* in table 7.1, remove the sentence "At least

N1688 79

the names ... shall be recongnized."

In the Effects clause for *lookup_classname*, replace the sentence
 At least the names "d", "w", "s", "alnum", "alpha", "blank", "cntrl",
 "digit", "graph", "lower", "print", "punct", "space", "upper" and
 "xdigit" shall be recognized.

with:
 For *regex_traits<char>*, at least the names "d", "w", "s", "alnum",
 "alpha", "blank", "cntrl", "digit", "graph", "lower", "print", "punct",
 "space", "upper" and "xdigit" shall be recognized. For *regex_traits<wchar_t>*,
 at least the names L"d", L"w", L"s", L"alnum", L"alpha", L"blank", L"cntrl",
 L"digit", L"graph", L"lower", L"print", L"punct", L"space", L"upper" and
 L"xdigit" shall be recognized.

Resolution:
Basic question: how do we deal with names of character classes in the case of wide characters?
Option one: specify string literals like L"alpha". Option two: specify some kind of runtime
widening with facets. Option one is preferred: use wide literals. There is no evidence of a problem
that can't be solved that way.

7.46 Name of error_subreg
Submitter: Pete Becker
Status: TR

error_subreg means that the regular expression had an invalid back reference. I just don't see
how bad back reference turns into subreg. Should the name be changed to error_backref?

Proposed resolution:
Yes, make the change.

7.47 Interpretation of match_not_bol and match_not_eol
Submitter: Pete Becker
Status: TR

The entry for match_not_bol says "The expression "^" is not matched against the subsequence
[first,first)." The entry for match_not_eol is analogous. This is somewhat unclear. One problem
is that it really should refer to '^' when used in an expression, not to the expression "^" (which is
a really boring regular expression). Another is that "is not matched" doesn't really convey what
should happen.

Proposed resolution:
Replace the entry in the column "Effect if set" for match_not_bol, which currently reads

 The expression "^" is not matched against the subsequence [first,first)

with

N1688 80

 The first character in the sequence [first, last) is treated as though
 it is not at the beginning of a line, so the character '^' in the regular
 expression shall not match [first,first).

Replace the entry in the column "Effect if set" for match_not_eol, which currently reads

 The expression "^" is not matched against the subsequence [first,first)

with

 The last character in the sequence [first, last) is treated as though
 it is not at the end of a line, so the character '$' in the regular
 expression shall not match [last,last).

7.48 Changing the value type of regex_token_iterator
Submitter: Pete Becker
Status: TR

regex_token_iterator splits a text sequence into subsequences, using operator++ to move to the
next subsequence. The subsequences are returned as string objects. Internally the iterator
typically holds the result of the regular expression search in a match_results object, which has all
the information about the match that’s needed to manage iteration and construct results. In order
to support operator-> each iterator object must also hold a string object with the (internally
redundant) value of the current subsequence, so that operator-> can return that string object’s
address.

The overhead of this string object can be removed by changing the iterator’s value type from
string to sub_match, which means that operator-> can return the address of a submatch object
held in the match_results object., or by changing the value type to pair<BidirectionalIterator,
BidirectionalIterator>, which is part of the corresponding submatch object. Users who need a
string object can easily construct one from the pair of iterators.

Seems to me that the overhead of carrying around a redundant string object isn’t justified by the
ability to return a pointer to a string.

Resolution:
Rewrite 7.11.2 introduction as follows:

The class template regex_token_iterator is an iterator adapter; that is to say it represents a new
view of an existing iterator sequence, by enumerating all the occurrences of a regular expression
within that sequence, and presenting one or more sub-expressions for each match found. Each
position enumerated by the iterator is a sub_match class template instance that represents what
matched a particular sub-expression within the regular expression.

When class regex_token_iterator is used to enumerate a single sub-expression with index -1, then
the iterator performs field splitting: that is to say it enumerates one sub-expression for each
section of the character container sequence that does not match the regular expression specified.

N1688 81

 After it is constructed, the iterator creates and stores a value
regex_iterator<BidirectionalIterator, charT, traits> position and sets the internal count N to zero.
It also maintains a sequence subs which contains a list of the sub-expressions which will be
enumerated. Every time operator++ is used the count N is incremented; if N exceeds or equals
this->subs.size(), then the iterator increments member position and sets count N to zero.

If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator
becomes equal to the end-of-sequence iterator value, unless the sub-expression being enumerated
has index -1: In which case the iterator enumerates one last sub-expression that contains the
iterator range from the end of the last regular expression match to the end of the input sequence
being enumerated, provided this would not be an empty string.

The constructor with no arguments, regex_iterator(), always constructs an end of sequence
iterator object, which is the only legitimate iterator to be used for the end condition. The result of
operator* on an end of sequence is not defined. For any other iterator value a const
sub_match<BidirectionalIterator>& is returned. The result of operator-> on an end of sequence
is not defined. For any other iterator value a const sub_match<BidirectionalIterator>* is
returned.

 It is impossible to store things into regex_iterator's. Two end-of-sequence iterators are always
equal. An end-of-sequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-
of-sequence iterators are equal when they are constructed from the same arguments.

Change:

typedef basic_string<charT>
value_type;

To:
typedef sub_match<BidirectionalIterator> value_type;

Change:

private:
match_results<BidirectionalIterator> what; // exposition only
BidirectionalIterator end; // exposition only
const regex_type* pre; // exposition only
match_flag_type flags; // exposition only
basic_string<charT> result; // exposition only
std::size_t N; // exposition only
std::vector<int> subs; // exposition only
};

To:

private: // data members for exposition only:
 typedef regex_iterator<BidirectionalIterator, charT, traits> position_iterator;

N1688 82

 position_iterator position;
 const value_type *result;
 value_type suffix;
 std::size_t N;
 std::vector<int> subs;
};

And add the following immediately afterwards:

A suffix iterator points to a final sequence of characters at the end of the target sequence. In a
suffix iterator the member result holds a pointer to the data member suffix, the value of the
member suffix.match is true, suffix.first points to the beginning of the final sequence, and
suffix.second points tothe end of the final sequence.

[Note – for a suffix iterator, data member suffix.first is the same as the end of the last match
found, and suffix.second is the same as the end of the target sequence – end note]

The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other
value of subs[N].

Then change member function definitions as follows:
regex_token_iterator constructors [tr.re.tokiter.cnstr]
regex_token_iterator();

Effects: Constructs the end-of-sequence iterator.
 regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const
regex_type& re, int submatch = 0, regex_constants::match_flag_type f =
regex_constants::match_default);

regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
 const regex_type& re,
 const vector<int>& submatches,
 regex_constants::match_flag_type f = regex_constants::match_default);
template<std::size_t R>
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
 const regex_type& re,
 const int (&submatches)[R],
 regex_constants::match_flag_type f = regex_constants::match_default);

Effects: The first constructor initializes the member subs to hold the single value submatch. The
second constructor initializes the member subs to hold a copy of the argument submatches. The
third constructor sets the member subs to hold a copy of the sequence of integer values pointed
to by the iterator range [&submatches, &submatches + R).

Each constructor then sets N to 0, and position to position_iterator(a, b, re, f). If position is not
an end-of-sequence iterator the constructor sets result to the address of the current match.
Otherwise if any of the values stored in subs is equal to -1 the constructor sets *this to a suffix
iterator that points to the range [a,b), otherwise the constructor sets *this to an end-of-sequence

N1688 83

iterator.
regex_token_iterator comparisons [tr.re.tokiter.comp]
bool operator==(const regex_token_iterator& right);

Returns: true if *this and right are both end-of-sequence iterators, or if *this and right are both
suffix iterators and suffix == right.suffix; it returns false if *this or right is an end-of-sequence
iterator or a suffix iterator. Otherwise returns true if position == right.position, N == right.N,
and subs == right.subs.
bool operator!=(const regex_token_iterator& right);

Returns: !(*this == right);
regex_token_iterator dereference [tr.re.tokiter.deref]
const value_type& operator*();

Returns: *result
const value_type *operator->();

Returns: result
regex_token_iterator increment [tr.re.tokiter.incr]
regex_token_iterator& operator++();

Effects: Constructs a local variable prev of type position_iterator and initializes it with the value
of position. If *this is a suffix iterator, sets *this to an end-of-sequence iterator.

 Otherwise, if N+1 < subs.size(), increments N and sets result to the address of the current match.

 Otherwise, sets N to 0 and increments position. If position is not an end-of-sequence iterator the
operator sets result to the address of the current match.

 Otherwise if any of the values stored in subs is equal to -1 and prev.suffix().length() is not 0 the
operator sets *this to a suffix iterator that points to the range [prev.suffix().first,
prev.suffix().second).

 Otherwise sets *this to an end-of-sequence iterator.

7.49 Descriptions of comparison operators missing
Submitter: John Maddock
Status: TR

The synopsis for the <regex> header (7.4) includes comparison operators between objects of
type "specialization of sub_match" and objects of type "specialization of basic_string", for
example:

template <class BidirectionalIterator, class traits,
 class Allocator>
bool operator == (
 const
std::basic_string<iterator_traits<BidirectionalIterator>

N1688 84

 ::value_type,
 traits, Allocator>& lhs,
 const sub_match<BidirectionalIterator>& rhs);

However due to an editing error, detailed descriptions for these template comparison operators
were omitted from the sub_match section (7.8.11), which is a pity, since these are the arguably
more important than the comparison operators which are described in detail.

Resolution:

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator == (const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs == rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator != (const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs != rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator < (const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs < rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator > (const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs > rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator >= (const

N1688 85

basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs >= rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator <= (const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits,
Allocator>& lhs,
const sub_match<BidirectionalIterator>& rhs);
Returns: lhs <= rhs.str().

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator == (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() == rhs.

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator != (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() != rhs.

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator < (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() < rhs.

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator > (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() > rhs.

template <class BidirectionalIterator, class traits, class
Allocator>

N1688 86

bool operator >= (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() >= rhs.

template <class BidirectionalIterator, class traits, class
Allocator>
bool operator <= (const sub_match<BidirectionalIterator>& lhs,
const
basic_string<iterator_traits<BidirectionalIterator>::value_type,
traits, Allocator>& rhs);
Returns: lhs.str() <= rhs.

7.50 Convenience typedefs for regex_iterator and
regex_token_iterator

Submitter: John Maddock
Status: TR

The match_results class template has the following typedefs defined for it, on the grounds that
these template instances are used sufficiently frequently to make them useful, indeed these
particular template instances are used almost to the exclusion of all others (a bit like std::string
and std::wstring):

typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;

However the class templates regex_iterator and regex_token_iterator have no such typedefs
defined for them, in spite of the fact that these are also almost always instantiated for the same
types as match_results is. I would like to propose that the following typedefs are added to
section 7.4:

After:

template <class BidirectionalIterator,
class charT =
iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>,
class Allocator = allocator<charT> >
class regex_iterator;

add:

typedef regex_iterator<const char*>
cregex_iterator;typedef

N1688 87

regex_iterator<std::string::const_iterator>
sregex_iterator;typedef
regex_iterator<const wchar_t*>
wcregex_iterator;typedef
regex_iterator<std::wstring::const_iterator> wsregex_iterator;

after:

template <class BidirectionalIterator,
class charT =
iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT>,
class Allocator = allocator<charT> >
class regex_token_iterator;

add:

typedef regex_token_iterator<const char*> cregex_token_iterator;
typedef regex_token_iterator<std::string::const_iterator>
sregex_token_iterator;
typedef regex_token_iterator<const wchar_t*>
wcregex_token_iterator;
typedef regex_token_iterator<<std::wstring::const_iterator>
wsregex_token_iterator;

Finally, while we're at it, the corresponding typedefs for sub_match couldbe added as well:

typedef sub_match<const char*> csub_match;
typedef sub_match<const wchar_t*> wcsub_match;
typedef sub_match<string::const_iterator> ssub_match;
typedef sub_match<wstring::const_iterator> wssub_match;

7.51 Do basic_string comparison operators mandate an inefficient
implementation?

Submitter: John Maddock
Status: Closed

The current text for the basic_string comparison operators has definitions such as:

template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs, const
basic_string<charT,traits,Allocator>& rhs);

 Returns: basic_string<charT,traits,Allocator>(lhs) == rhs.

A particularly literalist interpretation of this, would result in an unnecessarily inefficient
implementation which created a temporary string object, even though a more efficient iterator-
based comparison (with identical comparison semantics) is possible. I believe that a

N1688 88

specialization of basic_string could conceivably detect which implementation technique is used.
Likewise in <regex> we have proposed:

template <class BidirectionalIterator>
bool operator == (typename
iterator_traits<BidirectionalIterator>::value_type const* lhs,
const sub_match<BidirectionalIterator>& rhs);

 Returns: lhs == rhs.str().

Which would result in two basic_string temporaries being created (one by the sub_match
comparison operator and one by the basic_string operator to which it delegates).

In both of these cases, I think the text is clear, concise and to the point, and I don’t see any better
way of expressing the semantics involved, but do we need to clarify how much latitude in
interpreting the “as if” rule implementers have, or am I being unnecessarily pedantic?

Rationale:
This should be filed as an issue against clause 17. It's not really an issue with the TR, and in fact the
very first example in this issue applies to clause 21 of the standard, not something in the TR.

 But it also appears to be a non-issue. A "Returns" clause says what value is returned, not how to
compute it. Possibly clause 17 should be clarified (with a non-normative note) to say, once more,
that a "returns" clause does not require side effects. Possibly the "effects" clause isn't clear enough
on whether it requires side effects, but "returns" seems adequately clear.

7.52 Resolution to DR 7.1 was incomplete
Submitter: John Maddock
Status: TR

The resolution to issue TR.DR.7.1 was incomplete, in particular since the member functions str()
and size() have been removed from basic_regex, then the entries for these members must be
removed from the tables 7.7, 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13.

7.53 Resolution to DR 7.22 was incomplete
Submitter: John Maddock
Status: TR

The changes made to solve issue 7.22 were incomplete, specifically:

 p175 section 7.11.1, table 7.16: the entry for m.size() should read:

 1 + e.mark_count()

This was addressed in issue 7.22, but we missed the fact that this table also has to change to
match the change for match_results::size().

 p177 section 7.11.2, table 7.17: the entry for m.size() should read:

N1688 89

 1 + e.mark_count()

This was addressed in issue 7.22, but we missed the fact that this table also has to change to
match the change for match_results::size().

7.54 Format_no_copy specified incorrectly
Submitter: Pete Becker
Status: New

In [tr.re.matchflag] (7.5.2) the specification for format_no_copy says:

During a search and replace operation, sections of the character container sequence being
searched that do match the regular expression are not copied to the output string.

This should be "... that do not match ... ".

7.55 typo in regex_token_iterator::operator++
Submitter: Pete Becker
Status: New

In [tr.re.tokiter.incr] (7.12.2.4), the first paragraph of the Effects: clause describes a variable of
type position_iterator named 'prev'. In the next to last paragraph of the Effects: clause we refer to
'prev.suffix()' in three places. These should be 'prev->suffix()'.

7.56 match_results stream inserter not specified
Submitter: Pete Becker
Status: New

In [tr.re.syn] (7.2.4) the synopsis includes

template <class charT, class traits,
class BidirectionalIterator, class Allocator>
basic_ostream<charT, traits>&
operator << (basic_ostream<charT, traits>& os,
const match_results<BidirectionalIterator, Allocator>& m);

but there is no specification for this function. That's also the case in N1429. There's no obvious
meaning for this function, so unless John disagrees I recommend we remove it from the
synopsis.

Further comments from John Maddock:
It's worse than that: I appear to have been omitted all of the match_results
non-members:

operator ==
operator!=

N1688 90

operator <<
and non-member swap.

However, having done a quick double check, it appears that containers like
vector<> rely on the container/sequence requirements for the semantics of
operator== and operator!=, and don't explicitly document them anywhere, so
it appears that we can do the same here. The other two should be documented
though, and semantics are straightforward:

template <class charT, class traits,
 class BidirectionalIterator,
 class Allocator>
basic_ostream<charT, traits>&
operator << (basic_ostream<charT, traits>& os,
const match_results<BidirectionalIterator, Allocator>& m);

Returns: os << m.str();

template <class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,
 match_results<BidirectionalIterator, Allocator>& m2);

Effects: m1.swap(m2);

Further comments from Pete Becker:
Pete agrees with the specification of swap. With regards to the match_results inserter, however,
he writes:
Well, maybe. <g> This is the one that I said doesn't have an obvious meaning. A match_results object holds more
information than this provides. In fact this result is equivalent to os << m[0]. (I'm not suggesting that as an
alternative formulation: if we want those semantics, m.str() is the right way to say it. I mention it only to emphasize
what's missing.) In general we don't provide inserters for containers, in part because it's not clear what ought to be
inserted. I think users would be surprised if a vector inserter, for example, inserted only the first element. That's not
a perfect analogy, because the rest of the matching strings in a match_results object are contained in that first
element. Still, I lean toward leaving this one out.

7.57 Imprecise Specification of match_results::size
Submitter: Pete Becker
Status: New

TR1 currently says:

size_type size() const;
Returns: One plus the number of marked sub-expressions in the regular expression that was
matched.

But match_results has a default constructor, with the postcondition that size() == 0. In that
case no regular expression was matched. Also, in the phrase "the regular expression that was
matched", the last word suggests that the search must have succeeded.

Proposed resolution:

In [tr.re.results.size] (7.10.2), change the Returns clause for the size member function from

N1688 91

Returns: One plus the number of marked sub-expressions in the regular expression that was
matched.

to
Returns: 0 if no search was made, otherwise one plus the number of marked sub-expressions in
the regular expression that was searched.

7.58 Does match_results<>::begin() point to element 0?
Submitter: Matt Austern
Status: New

Class template match_results respresents a collection of sub_match objects. Index 0
represents the match for the entire expression, and a nonzero index n represents the match for the
nth marked subexpression.

The description of match_results<>::begin() (7.10.3) says that it returns “A starting
iterator that enumerates over all the marked sub-expression matches stored in *this..” It isn’t
clear whether the object stored at index 0, a match for the entire expression, counts as a “marked
sub-expression match” for the purposes of begin().

Proposed resolution:
Change “enumerates over all the marked sub-expression matches stored in *this” to “enumerates
over all the marked sub-expression matches stored in *this, including sub-expression 0.”

7.59 “Implementation defined” in regex traits requirements
Submitter: Matt Austern
Status: New

The regular expression traits requirements (table 15) says that the type of X::locale_type and
X::char_class_type is “implementation defined.” This probably isn’t what was intended. These
types aren’t defined by the standard library implementer. A traits class is supposed to be able to
define those types; what we need to say in the requirements table is what the requirements on
those types are.

Proposed resolution:
Change the “return type” for X::locale_type to “A copy constructible type,” and change the note
to “A type that represents the local used by the traits class.” Change the “return type” for
X::char_class_type to “a bitmask type” [lib.bitmask.types].” Change the note to be “A bitmask
type representing a particular character classification.”

7.60 Requirements for v.isctype in regular expression traits
Submitter: Matt Austern
Status: New

One of the expression in table 15 is v.isctype(c, v.lookup_classname(F1, F2)). This seems way
too restrictive, especially since we're explicitly told that X::char_class_type is a bitmask type and
that values can be or'ed together. We should just say that the second argument is a value of type
char_class_type and leave it at that.

N1688 92

8 Fixed-size array issues
8.1 Is “array” the right name?
Submitter: Robert Klarer
Status: NAD

The name array may be confusing, since array<T> is not in fact an array; the is_array
type trait, for example, will return false for array<T>. (As it should.) Perhaps another name
would make this less surprising.

Rationale:
Very few people have reason to care about the return value of is_array, and those people
know that they're testing for builtin arrays as used in the core section of the standard. The only
other suggestion that attracted any support was "block", and, by a 6-2 straw poll, the LWG
preferred to keep the name "array" instead of changing it to "block".

8.2 Front() and back() for zero-sized arrays
Submitter: Alisdair Meredith
Status: TR

Zero-sized arrays are explicitly legal, and begin() and end() have well-defined semantics.
However, the front() and back() operations, which return the first and last elements respectively,
are meaningless if there is no element to be returned. What should their behavior be for zero-
element arrays? Informally, the three choices are: mandate a compile-time error (e.g. remove
them from the specialization), mandate an exception, and allow undefined behavior.

Proposed resolution: (see N1624)
Add a clause to section 6.2.2 [tr.array.array]: "The effect of calling front() or back() for a zero-
sized array is implementation defined."

Discussion:
Sydney: We considered four options: (a) compile-time error. (b) exception. (c) implementation
defined (d) undefined behavior. Results: 0-1-5-2.

8.3 Should array<>::elems be exposed as part of the interface?
Submitter: Alisdair Meredith
Status: TR

The member variable containing the array elements must be public, since array<> is required to
be a POD type. However, that doesn’t necessarily mean that it has to be exposed to users. In
principle, an implementation could hide it by giving it a name like _M_elems. Should we keep
it as a public part of the interface with the name elems, or should we requirere implementers to
hide it?

Proposed resolution:

N1688 93

Mark the name of this member variable as “exposition only” and put in a non-normative note
saying that it is not part of array<>’s interface.

8.4 Should array<> be given a tuple interface?
Submitter: Howard Hinnant
Status: TR

Resolution: (see N1624)

6.1.1 Header <tuple> synopsis

Add:

template <class T, size_t N > struct array;

template <class T, size_t N> struct
tuple_size<array<T, N> >;
template <int I, class T, size_t N> struct tuple_element<I,
array<T, N> >;

template <int I, class T, size_t N> T& get(
array<T, N>&);
template <int I, class T, size_t N> const T& get(const
array<T, N>&);

6.1.4

Add a new section 6.1.4

tuple_size<array<T, N> >::value

Type: integral constant expression.
Value: N

tuple_element<I, array<T, N> >::type

Requires: 0 <= I < N. The program is ill-formed if I is
out of bounds.
Value: The type T.

template <int I, class T, size_t N> T& get(array<T, N>& a);

Requires: 0 <= I < N. The program is ill-formed if I is out
of bounds.

N1688 94

Return type: T&.
Returns: A reference to the Ith element of a, where
indexing is zero-based.

template <int I, class T, size_t N> const T& get(const
array<T, N>& a);

Requires: 0 <= I < N. The program is ill-formed if I is out
of bounds.
Return type: const T&.
Returns: A const reference to the Ith element of a, where
indexing is zero-based.

9 Iterator concept and adapter issues
This section has been removed, because iterator concepts and adapters have been removed from
the TR.

10 Function object and reference_wrapper issues
10.1 Return types of reference wrapper functions
Submitter: Alisdair Meredith
Status: TR

c++std-lib-12598:
Hopefully just picking up a couple of typos

2.1.1 function templates ref and cref do not declare return types.
2.1.2 and 2.1.2.4: member functions operator() and get() do not declare return
types.

All the above require clearly defined return values in later clauses, but current drafting suggests a
header that will not compile.

Resolution:
It appears that the return types were mysteriously eaten somewhere between N1436 (the original
proposal, pre-Oxford) and N1453 (post-Oxford). They should be:
 template<typename T> reference_wrapper<T> ref(T&);
 template<typename T> reference_wrapper<const T> cref(const
T&);
 operator T&() const;
 T& get() const;

10.2 Swapping functions
Submitter: Alisdair Meredith
Status: TR

N1688 95

c++std-lib-12603:
TR 3.4.3 declares a function template to swap functions of different type, with different
allocators:

template< typename Function1, typename Allocator1,
 typename Function2, typename Allocator2 >
void swap(function< Function1, Allocator1> &f1,
 function< Function2, Allocator2 > & f2);

The effects clause is that this is equivalent to f1.swap(f2);

Yet IIUC, the member function swap is only defined for functions of the same type.

template<...> class function
{
 ...
 void swap(function &);
 ...
};

Resolution:
The synopsis in 3.4.1 is correct, as is the definition in 3.4.3.5. The synopsis for swap then shows
up (incorrectly, as you point out) in 3.4.3 along with the function class template definition.

10.3 Should function wrapper take allocator template argument?
Submitter: Pete Becker
Status: TR

Some time back we discussed whether function objects should have allocators. In essence, the
issue is that allocators are designed for use with containers, and function objects aren't
containers. On the other hand, function objects typically allocate small blocks (if they allocate
anything at all), and some applications could benefit from optimizing these allocations.

Proposed resolution:
Get rid of the allocators.

10.4 Argument passing for reference_wrapper::operator()
Submitter: Doug Gregor
Status: Open

The function call operator for class template reference_wrapper is declared as follows:

 template <typename T1, typename T2, ..., typename TN>
 typename result_of<T(T1, T2, ..., TN)>::type
 operator()(T1, T2, ..., TN) const;

This means that arguments are copied when they are passed through reference_wrapper, which

N1688 96

was an unintended consequence of an editorial error introduced in N1453 (relative to N1436).
Class template reference_wrapper should follow the same argument-forwarding procedures as
the function object binders (TR 3.3) by accepting parameters via non-const reference.

Resolution:
Replace the above declaration in 2.1.2.3 and the summary in 2.1.2 with the following
declaration:

 template <typename T1, typename T2, ..., typename TN>
 typename result_of<T(T1, T2, ..., TN)>::type
 operator()(T1, T2, ..., TN) const;

Note that if the proposed resolution to issue #10.TBD is accepted, the declaration should be
replaced with:

 template <typename T1, typename T2, ..., typename TN>
 typename result_of<T(T1, T2, ..., TN)>::type
 operator()(T1&, T2&, ..., TN&) const;

Unclear whether changing to the reference version is good enough: don’t we need const
reference too, to bind to rvalues? If so, doesn’t this imply 2N versions? This is an instance of the
forwarding problem.

10.5 Callable definition does not match function<> semantics
Submitter: Doug Gregor
Status: TR

In section 3.4.3, the definition of Callable uses static_cast in an
unsafe manner, introducing unsafe downcasts. Example:

 class A {};
 class D : public A {};

 A* f();
 function<D*(void)> g;
 g = f; // compiles, but with a dangerous cast from A* to D*

Resolution:

Replace the following paragraph in 3.4.3:

"A function object f of type F is Callable given a set of argument
types T1, T2, ..., TN and a return type R, if the appropriate
following function definition is well-formed:

 // If F is not a pointer to member function
 R callable(F& f, T1 t1, T2 t2, ..., TN tN)
 {
 return static_cast<R>(f(t1, t2, ..., tN));
 }

N1688 97

 // If F is a pointer to member function
 R callable(F f, T1 t1, T2 t2, ..., TN tN)
 {
 return static_cast<R>(((*t1).*f)(t2, t3, ..., tN));
 }"

with

"A function object f of type F is Callback given a set of argument
types T1, T2, ..., TN and a return type R, if one of the following
conditions holds given rvalues t1, t2, ..., tN of types T1, T2, ...,
TN, respectively:

 * If F is not a pointer to member function type, the expression
 f(t1, t2, ..., tN) is well-formed and is convertible to R.

 * If F is a pointer to member function type, the expression
 mem_fn(f)(t1, t2, ..., tN) is well-formed and is convertible to R."

10.6 Class template function supports only unary and binary
member function pointers.

Submitter: Doug Gregor
Status: TR

c++std-ext-5560
In section 3.4.3, the definition of Callable supports object pointers
and smart pointers when calling a target member function pointer, via
the call expression "((*t1).*f)(t2, ..., tN)." This definition, and
the use of mem_fun in 3.4.3.1, limit class template function<> to
supporting member functions only when:

 1) the function<> instantiation is unary or binary (mem_fun only
 supports supports unary and binary member function pointers).

 2) the first function parameter of the function<> instantiation is a
 pointer (mem_fun requires its first parameter to be a pointer).

This formulation is overly restrictive. For instance, this formulation
does not support the following usage that has been demonstrated to be
useful in the Boost.Function library on which class template
'function' was modeled:

 struct A {
 void f(int, float, double);
 };

 function<void(A&, int, float, double)> g;
 g = &A::f; // ill-formed due to callable requires,

N1688 98

Resolution:

 * In the definition of Callable in section 3.4.3, replace the
 expression "((*t1).*f)(t2, ..., tN)" with "mem_fn(f)(t1, t2, ...,
 tN)." [Note that this change propagates to the proposed resolution of issue #10.5 as well.]

 * In 3.4.3.1, replace the instance of "mem_fun" with "mem_fn".

10.7 Implementations need not define the function<> conversion
operator type.

Submitter: Doug Gregor
Status: TR

c++std-ext-5558
Section 3.4.3.3 has the following "boolean-like" conversion operator:

 operator implementation-defined() const;

This requires that implementors document the type of this conversion
operator. However, this type should not be documentation because it
should not be relied upon by users. There is precedent for calling
this type "unspecified-bool-type" (see 2.2.3.5
[tr.util.smartptr.shared.assign]).

Resolution:
Replace the implementation-defined operator declaration in 3.4.3.3 and 3.4.3 with:

 operator unspecified-bool-type() const;

The fundamental problem is that we're saying "implementation defined" when we don't really mean
it. (Note to editor: put in a cross reference so we know what it means to say unspecified-bool-type.
We use it elsewhere.)

10.8 Class template function should have null pointer
assignment/comparison operations.

Submitter: Doug Gregor
Status: Open

Class template function should provide assignment/initialization from and comparison against
the null pointer constant to achieve greater source compatibility with function pointers. For
instance, the following (currently ill-formed) syntax should be legal:

 function<void(int)> f(0); // same as default construction: no target
 if (f == 0) {} // evaluates true: f has no target
 f = NULL; // removes f’s target. f now has no target
 if (f != NULL) {} // evaluates false: f has no target

When this new syntax is available, the empty and clear member functions become redundant
and should be removed.

N1688 99

Historically, the assignment/initialization from the NULL pointer constant was not supported
because the author had not found a suitable implementation. The comparison syntax, although
not explicitly supported, has been available in all known implementations due to the formulation
of the function<> conversion operator. Assignment/initialization are now known to be
implementable without any unsafe “loopholes.”

Resolution:
Introduce a new constructor into 3.4.3.1, with the following description:

 function(unspecified-null-pointer-type);

 Postconditions: (bool)(*this);
 Throws: will not throw.

Introduce a new assignment operator into 3.4.3.1, with the following description:

 function& operator=(unspecified-null-pointer-type);

 Effects: If (bool)(*this), deallocates current target.
 Postconditions: !(*this).

Add a new subsection to 3.4.3 titled “null pointer comparison operators” containing the
following:

 template<typename R, typename T1, typename T2, …, typename TN,
 typename Allocator>
 bool operator==(const function<R(T1, T2, …, TN), Allocator>& f,
 unspecified-null-pointer-type);
 template<typename R, typename T1, typename T2, …, typename TN,
 typename Allocator>
 bool operator==(unspecified-null-pointer-type,
 const function<R(T1, T2, …, TN), Allocator>& f);

 Returns: !f
 Throws: will not throw.

 template<typename R, typename T1, typename T2, …, typename TN,
 typename Allocator>
 bool operator!=(const function<R(T1, T2, …, TN), Allocator>& f,
 unspecified-null-pointer-type);
 template<typename R, typename T1, typename T2, …, typename TN,
 typename Allocator>
 bool operator!=(unspecified-null-pointer-type,
 const function<R(T1, T2, …, TN), Allocator>& f);

 Returns: (bool)f
 Throws: will not throw.

Introduce the above new declarations into the summary in section 3.4.3.

Remove the definitions of the empty and clear member functions from section 3.4.3.3 and
3.4.3.2, respectively, and from the summary in section 3.4.3.

Replace the string “this->empty()” with “(bool)(*this)” throughout section 3.4.3.

N1688 100

Replace the Returns clause for the conversion operator in 3.4.3.3 with:

 Returns: if *this has a target, returns a value that will evaluate true in a boolean context;
otherwise, returns a value that will evaluate false in a boolean context. The value type returned
shall not be convertible to int.

Notes from Sydney:
The functionality is useful, but putting in an unspecificed-null-pointer-type isn’t a great idea. We
need better specification. Other than the specification issue, everyone agrees that this is a good
idea. We will try to fix it in Redmond.

10.9 result_of template type parameter unrelated to description
Submitter: Doug Gregor
Status: TR

Section 3.1.2 should relate the template parameter "FunctionCallTypes"
to the types F, T1, T2, ..., TN used in the description.

Resolution:
Introduce a comment in the class definition noting the function type F(T1, T2, …, TN):

 template<typename FunctionCallTypes> // F(T1, T2, ..., TN)
 class result_of {
 public :
 // types
 typedef unspecified type;
 };

10.10 result_of should be based on rvalues, not lvalues
Submitter: Doug Gregor
Status: Open

c++std-lib-12752
In the first paragraph of section 3.1.2, the use of the word "lvalue"
limits result_of's usefulness.

Resolution:
Replace each instance of "lvalue" with "rvalue", and add the phrase "reference types Ti" are
treated as lvalues" to the first paragraph of section 3.1.2. The new paragraph should be:

"Given an rvalue f of type F and values t1, t2, ..., tN of types T1,
T2, ..., TN, respectively, the type member type defines the result
type of the expression f(t1, t2, ...,tN). The values ti are lvalues
when the corresponding type Ti is a reference type, and rvalues
otherwise."

This may require a change in 2.1.2.3, if the resolution to 10.4 is accepted.

N1688 101

In section 3.3.4, replace instances of result_of<R(T)>::type with result_of<R(T&)>::type
and instances of result_of<R(T1, T2, ..., Tn)>::type with result_of<R(T1&, T2&, ..., Tn&)>::type.

Notes from Sydney:
This looks like a good idea but it’s too closely related to 10.4, which we don’t think we
understand well enough.

10.11 result_of can not work for function and member function types
Submitter: Doug Gregor
Status: TR

In section 3.1.2, bullet #1 starts with "If F is a function
type...". F can be a function pointer or function reference, but it
cannot be a function type because it is encoded as the return type of
a function.

In section 3.1.2, bullet #2 starts with "If F is a member function
type". F cannot be a member function type.

Resolution:
Replace the first phrase in section 3.1.2, bullet #1 with "If F is a function pointer or function
reference type".

Replace the first phrase of section 3.1.2, bullet #2 with "If F is a member function pointer type".

10.12 should result_of support cv-qualified class types?
Submitter: Doug Gregor
Status: TR

In section 3.1.2, bullets #4 and #5 start with "If F is a class
type...", which excludes cv-qualified class types. However,
cv-qualified class types are explicitly mentioned in the rationale
(see N1454).

Resolution:
Replace the phrase "If F is a class type" with "If F is a possibly cv-qualified class type" in section
3.1.2, bullets #4 and #5.

10.13 Bad_function_call should inherit from std::exception, not
std::runtime_error

Submitter: Howard Hinnant
Status: TR

The exception class bad_function_call currently derives from runtime_error, but has no
constructor taking a client-defined string. Deriving from runtime_error is much more expensive
than deriving from exception because runtime_error must support a general client-defined string

N1688 102

whereas exception does not. Therefore I recommend that bad_function_call derive from
exception (like bad_alloc, bad_cast, bad_typeid, etc.).

10.14 Function call limits
Submitter: Pete Becker
Status: Open

We've got several templates that deal with functions that take varying numbers of arguments:

• template class 'result_of' takes a function type argument with up to N arguments
• template function 'mem_fn' supports member functions with up to n arguments (value is

implementation defined)
• template function 'bind' supports functions with up to some implementation defined

number of arguments
• template class 'function' supports functions with up to Nmax arguments (value is

implementation defined)
• template class 'reference_wrapper' has a function call operator that supports up to N

arguments

A typical implementation will share code among these templates in various ways, with the result
being that the maximum number of arguments will be the same for most or all of them. It would
be easier for users if we made this a requirement: that all of these templates support the same
number of function arguments, so there's only one value to specify. Is there an advantage to
keeping them separate?

In the same vein, we have several different styles for describing these argument lists; we really
need to describe them in the same way. One way to do this would be to put the descriptive text
into a subclause with a title that's something like "function call types" and refer to that text from
the appropriate places.

Proposed resolution:
Add a new subclause to Clause 1 [tr.intro]:

 Forwarding Functions [tr.intro.forward]

 Several of the templates defined in this Technical Report provide
 a set of function call operators that forward their arguments to
 the function call operator defined by a contained function pointer,
 pointer to member function, or function object. These forwarding
 functions take from 0 (or 1 in the case of an object that forwards
 to a member function) up to an implementation-defined maximum number
 of arguments. This maximum shall be no less than the value specified
 in Annex XX.

In Clause 2.1.2.3 [tr.util.refwrp.invoke], add the following sentence before
the Effects clause:

 The template member functions define a set of forwarding functions
(\ref{tr.intro.forward}).

N1688 103

In Clause 3.1.2 [tr.func.ret.ret], after the sentence "Given an lvalue f of
type F and lvalues t1, t2, ..., tN of types T1, T2, ..., TN, respectively, the
type member type defines the return type of the expression f(t1, t2, ..., tN)"
add the following sentence:

 The value of N shall be the same as the maximum number of arguments that
 the implementation supports in a call to a forwarding function (\ref{tr.intro.forward}).

In Clause 3.2.2 [tr.func.memfn.memfn], change the first bullet item in the
Returns clause from:

 When pm is a pointer to a member function taking n arguments, a function
 object f such that the expression f(t, a1, ..., an) is equivalent to
 (t.*pm)(a1, ..., an) when t is an lvalue of type T or derived from T,
 ((*t).*pm)(a1, ..., an) otherwise.

to:

 When pm is a pointer to a member function taking n arguments, a function
 object f that defines a set of forwarding functions (\ref{tr.intro.forward}) such that the
 expression f(t, a1, ..., an) is equivalent to (t.*pm)(a1, ..., an) when
 t is an lvalue of type T or derived from T, ((*t).*pm)(a1, ..., an) otherwise.

Remove Clause 3.2.3 [tr.func.memfn.lim].

In Clause 3.3.4 [tr.func.bind.bind], add a new opening paragraph:

 The maximum number of arguments to the function template bind, in addition
 to the function object (or pointer to member), is implementation defined,
 and shall not be less than the value specified in Annex XX. Each function
 template bind returns a type that defines a set of forwarding functions
(\ref{tr.intro.forward}).

In the same clause, remove the sentence

 The maximum number of supported arguments (N in the synopsis) is
 implementation defined.

In Clause 3.4.3.4 [tr.func.wrap.func.inv], add the following sentence before
the Effects clause:

 The template member functions define a set of forwarding functions
(\ref{tr.intro.forward}).

In Clause 4.3.2 [tr.meta.unary.cat], add the following sentence to the description
of the template is_member_function_pointer:

N1688 104

 The maximum number of arguments to the member function pointer type T
 is implementation defined, and shall not be less than the value specified
 in Annex XX for the number of arguments to a set of forwarding functions.

In Clause 4.3.2 [tr.meta.unary.cat], add the following sentence to the description
of the template is_function_pointer:

 The maximum number of arguments to the function pointer type T
 is implementation defined, and shall not be less than the value specified
 in Annex XX for the number of arguments to a set of forwarding functions.

Add a normative annex [limits] with the following contents:

 The implementation shall support every one of the following limits:

 -- at least 10 arguments to a set of forwarding functions

 -- at least 11 arguments to a bind function in addition to
 the function object (or pointer to member)

10.15 Missing return types for functions in 2.1.1
Submitter: Dietmar Kuehl
Status: Duplicate

The synopsis for the functions in 2.1.1 [tr.util.refwrp.synopsis]
lacks the return types.

Proposed Resolution:

 Add the missing return types, ie. replace

 template <typename T> ref(T&);
 template <typename T> cref(const T&);

 by

 template <typename T> reference_wrapper<T> ref(T&);
 template <typename T> reference_wrapper<const T> cref(const T&);

10.16 Ref() should be overloaded for const types
Submitter: Dietmar Kuehl
Status: NAD

As the TR already allows binding of reference wrappers to constantobjects and supports this with
the 'cref()' function, there seemsto be no reason why 'ref()' should not provide a uniform

N1688 105

approach to creating a reference wrapper, even if the argument is itself aconstant. That is, it
seems that there should be an additionaloverload for the 'ref()' function.

It is unclear whether this is an accidental omission or if theommision of the overload taking a 'T
const&' is deliberate. If it is deliberate, I would be interested in the reason.

Proposed Resolution:

Add the signature
 template <typename T> reference_wrapper<const T> ref(const T&);

to 2.1.1 [tr.util.refwrp.synopsis]. Also add the corresponding description to 2.1.2.4
[tr.util.refwrp.helpers], ie. add

 template <typename T> reference_wrapper const T> ref(const T&);

 Returns: reference_wrapper<const T>(t)
 Throws: Does not throw

10.17 Unclear description of multi-argument function
Submitter: Dietmar Kuehl
Status: Open

The class definition in 2.1.2 [tr.util.refwrp.refwrp] mentions a member function template with
"N" parameters. As stated, the semantics is unclear to me: is the intention that there is *one*
function with N parameters for a fixed N? This would be pretty useless because the user of this
function would have to specify this unknown number of parameters. I guess, the notation is
intended to mean that the function call operator is overloaded for 1, 2, ..., N parameters. This
should, IMO, be stated explicitly.

Also, the function uses 'result_of<...>::type' rather than the already declared 'result_type'. Even
worse the 'result_of<...>' class template is nowhere mentioned again.

Discussion from Sydney:
Two questions. First: does this notation imply zero or more arguments? Second: do we mean to
include variadic functions? Leave open. We don't have a solution yet.

10.18 Missing return types in 2.1.2
Submitter: Dietmar Kuehl
Status: TR

In the body of the 'reference_wrapper' class template various return types are missing. Also, the
type 'result_type' is not at
 mentioned in the body. The latter may be intentional, however.

N1688 106

The missing return types were discussed on the mailing list. Although this was quite a while ago
I don't see the correction being reflected. This should be a trivial change:

Proposed Resolution:
In the class synopsis for reference_wrapper in 2.1.2 [tr.util.refwrp.refwrp]:

• Add the declaration:
typedef ... result_type; // not always defined (see below)

• Add result types for the member functions in the “access” section, changing that section
to:
// access
operator T&() const;
T& get() const;

10.19 Underspecification of reference wrapper assignment
Submitter: Dietmar Kuehl
Status: Open

The sentence right below the class template in 2.1.2 [tr.util.refwrp.refwrp] states that
‘reference_wrapper<T>’ is an Assignable wrapper around a reference. This seems to imply that
the class template stores a reference to ‘T’. This interpretation is confirmed in later sections
explicitly talking of “the stored reference”. Unfortunately, there are no semantics given for the
assignment operator: the generated assignment operator is not applicable if the class stores a
reference.

My personal guess is that the intended semantics with respect to the assignment operator are
those implemented by ‘boost::reference_wrapper<T>’: this class does not store a reference but a
pointer to the object. Assigning to a ‘reference_wrapper<T>’ replaces the internally stored
pointer such that the wrapper actually references a different object.

The tricky issue is that the address operator (unary &) can be overloaded. The Boost
implementation avoids this problem by using ‘boost::addressof()’ which does some ugly casts to
obtain the address to the actual object. If this seems to be unfit for a standard library, there are a
few possible resolutions I can think of:
• Either require the type ‘T’ to have a “reasonable” address operator, ie. a non-overloaded one

or an overloaded one which still does the “Right Thing”.
• The “Assignable” guarantee has to be dropped. This course of action may actually be a

suitable alternative: at least with my limited fantasy I could not come up with a simple
example of using the reference wrapper while also needing assignment.

• The semantics of the assignment operator can be spelled out explicitly, avoiding reliance on
the generated semantics. Possible implementations include the ‘addressof()’ hack from Boost
or use of explicit destruction and placement new for a nested member really storing a
reference.

From a discussion on the mailing list I gather that the pointer representation seems to be the
intent.

Discussion from Sydney:

N1688 107

We want to store a pointer, not a reference. (Or rather, we want to describe the semantics in ways
that allow a pointer-based implementation; we don't want to prescribe it.) We need wording to
that effect. Leave this issue open for Redmond.

10.20 Missing return types in 2.1.2.2
Submitter: Dietmar Kuehl
Status: TR

The signatures in this paragraph again lack the return type. This should also be a trivial
correction.

Proposed resolution:
 In 2.1.2.2 [tr.util.refwrp.access] replace the [broken] signature

 operator () const;
 by
 operator T& () const;

 and the [broken] signature

 get() const;
 by
 T& get() const;

10.21 Garbled description of reference wrapper invocation
Submitter: Dietmar Kuehl
Status: Open

This whole paragraph is entirely messed up! Here are the things I have noted:
- There is an object "f" used which is mentioned nowhere else.
- There is class tempalte "result_of<...>" used which is nowhere defined.
- Bullet 2. in 2.1.2 [tr.util.refwrp.refwrp] seems to indicate that the reference wrapper should be
applicable to member function pointers.
 The notation given in 2.1.2.3 [tr.util.refwrp.invoke] is not suitable for calling member
functions.
- As given, this stuff seems not to apply to functions without arugments.

I think this whole paragraph needs new wording.

There is another IMO major issue with the stuff which makes the whole approach to function
forwarding somewhat questionable: the member function templates forwarding the function call
to the referenced object take their parameters by value. This may yield surprising results if the
called function actually takes arguments by reference:
- A function taking a reference may suddenly appear to allow calling it using a non-lvalue, for
example:

N1688 108

 #include <utility>
 void f(int&);
 int main() {
 f(10); // illegal
 std::tr1::cref(&f)(10); // legal!
 }
- The function arguments are copied altough the called function might accept reference and const
reference arguments. Of course, this problem can be worked around using the reference
wrapper...

For function pointers or member function pointers the forward problem can be solved relatively
simple by accepting exactly the parameters of the given function. I don't have a solution for this
problem if functors are involved because in this case the function call operator may be
overloaded or may even be a member function template. Of course, if the function call operator
is overloaded, the use of a single result type may also be questionable.

I haven't provided revised wording because it is unclear to me how this should look like: the
wording depends on how, if at all, the forwarding issue is resolved.

Notes from Sydney:
Part of this is a duplicate of 10.4. Part of it is related to 10.5, but it doesn't appear to be a
duplicate. Leave this open for now; we can't do much with this until we get new wording.

10.22 reference_wrapper invocation underspecified?
Submitter: Pete Becker
Status: New

2.1.2.3 [tr.util.refwrp.invoke] /1 says that the effect of operator() is f.get()(a1, a2, ..., aN). The
"f." should be removed (also from /2), because it's not defined and not needed. More important,
when a reference_wrapper holds a pointer to member function this code isn't valid. Looks like
we need to say that for a member function we do mem_fn(get())(a1, a2, ..., aN). (Since we
provide result_type for pointers to member functions, I assume the intention was to also support
calling them. <g>)

Also, while we're at it, mem_fn gives us pointers to data members for free. Well, almost: if we're
supporting them we need to add them to result_type.

Proposed resolution:
In 2.1.2 [tr.util.refwrap.refwrap], change the number of bullet item 3 to 4, and add a new bullet
item 3:

 3. T is a pointer to a data member of class A, then result_type is the declared type of A::T.
[Note -- the type returned by operator()(A) (see tr.util.refwrap.invoke) may be more cv-
qualified than result_type, depending on the cv-qualifers of the actual argument to operator().
-- end note]

In 2.1.2.3 [tr.util.refwrap.invoke], replace paragraphs 1 and 2 with:

1. Returns: mem_fn(get())(a1, a2, ..., aN) if get() returns a pointer to member, otherwise
get()(a1, a2, ..., aN).

N1688 109

10.23 Mem_fn wording not quite right
Submitter: Pete Becker
Status: New

The first sentence of 3.2.2 [tr.func.memfn.memfn] /2 says:

mem_fn(&X::m), where m is a data member of X, returns an object through which a reference
to &X::m can be obtained given a pointer, a smart pointer, an iterator, or a reference to X.

This is parallel to the preceding paragraph, which says that a call to &X::f can be made.
However, the parallel isn't right: what you get from mem_fn(x) is a reference to the contained
data object, not to &X::m.

Proposed resolution:
Replace the sentence in question with:

mem_fn(&X::m), where m is a data member of X, returns an object through which a reference
to x.m can be obtained given a pointer, a smart pointer, an iterator, or a reference to an object
x of type X.

Also add a non-normative note following that paragraph along the lines of section III.E in
N1342, telling users that they can't rely on result_type to get modifiability correct. Here's a first
stab:
 It is not possible, in general, to provide a typedef that correctly
 reflects the modifiability of the member object pointed to by
 &X::m because the modifiability of the object can depend on the
 cv-qualifiers of the object x that the pointer is applied to.

10.24 Mem_fn result_type for pointer to data member
Submitter: Pete Becker
Status: New

When mem_fn is applied to a pointer to data member &X::m, the object it returns “shall have a
nested typedef result_type defined as either M or M const&, where M is the type of m.” It
doesn’t give users any guidance about which of those types to expect. We should either pick
one, even if the choice is arbitrary (neither choice is right in all circumstances), or else remove
this nested typedef entirely.

10.25 Reference_wrapper needs better standardese
Submitter: Pete Becker
Status: New

2.1.2 [tr.util.refwrp.refwrp] /1 says:

reference_wrapper<T> is a CopyConstructible and Assignable wrapper around a reference to
an object of type T.

2.1.2.1 [tr.util.refwrp.const] /1 says:

Effects: Constructs a reference_wrapper object that stores a reference to t.

N1688 110

2.1.2.2 [tr.util.refwrp.access] /1 and /3 both say:

Returns: The stored reference.

First problem (2.1.2): we need to say "reference_wrapper<T> shall be CopyConstructible and
Assignable" because that's a requirement. The rest of the sentence is descriptive, and ought to
be in a separate sentence.

Second problem: we talk about the "reference" even though we know that we don't expect
implementations to actually store a reference. That is, we're using "reference" in an informal
sense but haven't said so. (Yes, the as-if rule says that it doesn't matter, since whether there's
actually a stored reference isn't detectable, but we shouldn't have to invoke the as-if rule to say
that we didn't really mean what we said). I think the way to resolve this is to add an exposition-
only private data member T *ptr and to describe the ctor, operator T&, and get() in terms of their
use of that data member.

(Further discussion on c++std-lib: the current wording allows for types with overloaded
operator&. We should consider this for any alternate solution we come up with.)

10.26 Wrong arguments to unary_function and binary_function
Submitter: Peter Dimov
Status: New

3.4.3 [tr.func.wrap.func] /3 says that tr1::function derives from std::unary_function<R, T1>
when N == 1, and std::binary_function<R, T1, T2> when N == 2.

This is wrong, because the result type is the last argument to unary_function and
binary_function.

10.27 Reference_wrapper should be in <functional>
Submitter: Pete Becker
Status: New

We've got a loopy dependency among headers now:

1. <utility> provides reference_wrapper, which uses result_of
2. <functional> provides result_of, as well as bind and function,
 each of which uses reference_wrapper.

From an implementor's perspective that just means shoving some things down into a common
header used by both <utility> and <functional>, but from a user's perspective, would it be easier
to move reference_wrapper to <functional>?

Further discussion (c++std-lib-14107, and references therein): this issue has come up before, and
it’s generally agreed that putting reference_wrapper in <functional> is a good idea. That’s what
some people have already implemented.

N1688 111

10.28 Incorrect wording for bind
Submitter: Pete Becker
Status: New

For template<class F> unspecified bind(F f), 3.3.4 [tr.func.bind.bind] /7 says:

 Requires: F must be CopyConstructible. lambda(f)() must be a valid
 expression. If f is not a simple function object, the behavior is
 implementation defined.

The effect of lambda(f) is to dereference a reference_wrapper and to simply pass any other type
through. A "simple function object" is a pointer to function or an object of a type with a nested
type "return_type."

Shouldn't the last sentence refer to lambda(f) rather than f?

Proposed resolution:
In 3.3.4 [tr.func.bind.bind], paragraphs 7, 15 and 25, change the last sentence from
 If f is not a simple function object, the behavior is implementation defined.
to:
 If lambda(f) is not a simple function object, the behavior is implementation defined.

10.29 reference_wrapper<reference_wrapper<T> >
Submitter: Pete Becker
Status: New

What should happen if I call ref or cref with an object of type reference_wrapper<T>? According
to the words we have now, I should get a reference_wrapper<reference_wrapper<T> >, which
means I have to call get() twice to get the actual object. That doesn't act very much like a
reference, and I assume it isn't really what we want. Seems to me that could fix this by adding:

template<class T>
reference_wrapper<T> ref(reference_wrapper<T> t)
{
 return ref(t.get());
}

and the obvious analog for cref. We probably should also say that a
reference_wrapper<reference_wrapper<T> > is ill-formed, so that we don't have to deal with
double dereferences anywhere.

10.30 function comparison operators unreliable
Submitter: Peter Dimov
Status: New

tr1::function declares comparison operators of the form

template < typename Function1 , typename Function2 >
 void operator ==(const function < Function1 >&, const function < Function2 >&);

N1688 112

to prevent unwanted comparisons caused from the conversion to unspecified-bool-type from
taking place. However these operators do not fail reliably at compile time (although they do fail
at link time). In addition, an error that is caused by misspelling
 f1 = f2;
as
 f1 == f2;
now compiles cleanly (without a warning) due to the void return type of operator==.

It is better to replace the free functions with private member templates to catch these mistakes at
compile time.

Proposed resolution

Remove the declarations of operator== and operator!= from [tr.func.wrap.func]/3.

Add
private: // undefined operators
 template<class Function2> void operator==(function<Function2> const&)
const;
 template<class Function2> void operator!=(function<Function2> const&)
const;
after
 R operator()(T1, T2, ..., TN) const;

in [tr.func.wrap.func]/3.

Replace the declarations in [tr.func.wrap.func.undef] as above.

10.31 [tr.func.wrap.func]/2 says rvalues, should be lvalues
Submitter: Peter Dimov
Status: New

[tr.func.wrap.func]/2 (3.4.3/2 in N1660) defines t1, ..., tN as rvalues of types T1, ..., TN.

However in
 function::operator()(T1 t1, ..., TN tN) const;
t1, ..., tN are lvalues of types T1, ..., TN. So the Callable requirement does not reflect the actual
semantics of tr1::function.

Proposed resolution
replace "rvalues" with "lvalues" in [tr.func.wrap.func]/2.

10.32 function(reference_wrapper<F> f) targets f.get()
Submitter: Peter Dimov
Status: New

N1688 113

[tr.func.wrap.func.con]/10 (3.4.3.1/10 in N1660) says that *this targets f.get(). This seems to
imply that f.get() is copied and stored inside *this. This is not the intended semantics of
function<> in this case; it should store f itself.

Proposed resolution
Remove [tr.func.wrap.func.con]/9-12. Remove the constructor taking reference_wrapper<F>
from [tr.func.wrap.func]/3. Add "or a reference_wrapper<T> for some T" to the end of the first
sentence of [tr.func.wrap.func.con]/8.

Rationale
We no longer need explicit wording for reference_wrapper<T> because it is a forwarding
function object.

10.33 is reference_wrapper supposed to "call" member pointers?
Submitter: Peter Dimov
Status: New

The specification of reference_wrapper is inconsistent; it defines result_type when its argument
is a pointer to a member function, but its operator() specification does not "call" member
functions the way function, mem_fn and bind do.

Using a reference_wrapper around a pointer to member isn't common, because there are lifetime
issues involved, which mem_fn avoids.

We need to decide one way or the other, and either remove result_type for member functions, or
change operator() appropriately.

Proposed resolution:
Remove the second bullet of [tr.util.refwrp.refwrp]/2.

Replace "a function pointer" with "a function type or a function pointer type" in
[tr.util.refwrp.refwrp]/1.

This is consistent with the proposed resolution of reference_wrapper<void()>.

10.34 is reference_wrapper<void()> supposed to be legal?
Submitter: Peter Dimov
Status: New

Consider this code:

void f();

int main()
{
 ref(f); // 1
 ref(f)(); // 2
}

N1688 114

Are the lines marked (1) and (2) supposed to be legal? ref(f) returns a
reference_wrapper<void()> and the declaration of the zero-argument forwarding
operator() tries to instantiate result_of<void()()>::type, which is not legal. Even
worse, (2) actually tries to call this operator().

Proposed resolution:
Only define operator() when T is a possibly cv-qualified class type. Function types and pointers
to functions will use the conversion operator when reference_wrapper<> is used in a function
call context.

Replace
 // invocation
with
 // invocation; not always defined, see below
in [tr.util.refwrp.refwrp].

Add:
 These members shall only be defined when T is a possibly cv-qualified class type.
before the first paragraph of [tr.util.refwrp.invoke].

10.35 result_of and Standard Library Function Objects
Submitter: Pete Becker
Status: New

[tr.func.ret]/3 says:

 If the implementation cannot determine the type of the expression
 f(t1, t2, ..., tN), or if the expression is ill-formed, the implementation
 shall use the following process to determine the member type type:

 3. If F is a function object defined by the standard library, the method
 of determining type is unspecified;

Since this paragraph gives the implementation license to produce incorrect results, provided the
incorrect results follow the formula set out in this paragraph, it seems to say that an
implementation that always determines that type is void (for function objects defined by the
standard library and the TR) conforms to this requirement. There are no constraints on the result.

I assume that's not what was really intended. What is this paragraph trying to say? How can we
say it better?

11 Tuple issues
11.1 Implementation limits: nonexistent Annex B
Submitter: Alisdair Meredith
Status: Editorial

N1688 115

In the description of tuple (TR 6.1) it refers to Annex B for the recommended minimum no. of
elements.

As yet the TR has no annexes, and other libraries specify recommendations directly in their
descriptions.

Tuple should either make its own recommendation (10?) or we should spawn an annex and put
all such recommendations in one place (as per origanal standard)

Resolution:
We should create an annex for implementation limits

11.2 Confusing extractor language
Submitter: Pete Becker
Status: New

tr.tuple.io/7 says:

Notes: It is not guaranteed that a tuple written to a stream can be extracted back to a tuple of the
same type.

The phrasing makes this sound like a non-normative note, but it's actually written as a normative
text. Either way, I'm not clear on what it means. It sounds like it allows an implementation to
always fail on an attempt to read the value of a tuple from an input stream.

11.3 Tuple formatting interface
Submitter: Matt Austern, Pete Becker, Howard Hinnant
Status: New

The textual representation of a tuple is Lt0dt1d...dtnR, where L is the opening, R is the closing, and
d is the delimiter between two elements di and di+1. Currently L, R, and d are all single
characters. They are set by three manipulators tuple_open, tuple_close, and
tuple_delimiter, defined in [tr.tuple.form].

There are several problems with this.

• Single characters are insufficiently general. For example, one might reasonably want to
use the string “, ” as a delimiter.

• The model of L, d, and R may be insufficiently general even if they are permitted to be
general strings. For example, one might want to represent a tuple as XML:
<tuple><elem>1</elem> <elem>2</elem> <elem>3</elem></tuple>

• The note in [tr.tuple.form] paragraph 4 is confusing and unnecessary. The first sentence
describes an implementation-based reason for the single-character restriction, and the rest
describes an alternative implementation technique. Regardless of which interface we
choose, this sort of discussion doesn’t belong here.

Informally, some options:

N1688 116

• Remove the manipulators, and just say that the textual representation of a tuple is
(t0,t1,…,tn). There’s precedent for that: we don’t have a mechanism for controlling
std::complex formatting.

• Keep the existing interface, but specify the defaults and remove the confusing note.
• Keep the existing interface and generalize it slightly: from single characters to strings.
• Generalize the interface, perhaps using a local facet.

11.4 “ignore” unspecified
Submitter: Pete Becker
Status: New

tr.tuple.helper/7 has:

[Example: tie functions allow one to create tuples that unpack tuples into variables. ignore can
be used for elements that are not needed:
int i; std :: string s;
tie(i , ignore , s) = make_tuple (42 , 3.14 , "C++");
—end example]

The first sentence is more properly a non-normative note. ignore isn't mentioned anywhere else,
so its use in an example (which is not normative) is problematic. Is it intended to be part of TR1?
If so, it should be specified somewhere. If not, we shouldn't use it in the example.

11.5 Tuple inequality tests badly specified
Submitter: Pete Becker
Status: New

c++std-lib—13908, c++std-lib—13922
Both tr.tuple.lt/2 and tr.tuple.le/2 are missing a ')', which makes the expressions unparseable.
Adding a suitable ‘)’, what we get for less-than is equivalent to: t < u iff t0 < u0 ||
!(u0 < t0) && t-tail < u-tail.

Seems to me that the logic is getting lost in the abstraction. I'd prefer to see all six of the
relational operators expressed in terms of two fundamental logical operations: equality and
lexically less-than. Each operator can then specify short circuit evaluation of the individual
terms, without having to repeat the definitions, with variations, of the underlying comparisons.
(We've already got a definition of lexicograpical comparison in the standard
[lib.alg.lex.comparison/3]; that may be a suitable starting point)

The reasons for this are consistency with the rest of the TR and with the standard, and simplicity.
In general we've defined == and != for containers in terms of == on individual elements, and
we've defined <, <=, >, and >= in terms of < on individual elements. One big benefit from doing
it that way is that we don't need to say anything more to guarantee that t < u is equivalent to u >=
t; with the tuple versions of these operators we have to say a great deal more. Further, users who
want to write classes that can be used in tuples in general only have to define two operators
instead of all six.

