
N1614=04-0054 1

N1614=04-0054
Date: 2004-04-12

#scope:
A simple scoping mechanism for the

C/C++ preprocessor

 Bjarne Stroustrup
 bs@research.att.com
Abstract
This is a proposal for a preprocessor mechanism to restrict the set of macros used in a
region of code and similarly to limit the set of macros “escaping” from a region of code.
The aim is to provide both greater freedom for the use of macros (within a macro scope)
and greater freedom from undesirable macros.

The problem
We need to protect code, especially code in header files, from accidental matches of
macros. The basic traditional defense is to define all macros as ALL_CAPS and never
define other identifiers with all capital letters. Unfortunately, in much code not all macros
are ALL_CAPS and some identifiers (notably some enumerators and some consts) are
defined using all capital letters (and thus especially vulnerable to macro substitution). All
useful programs must use headers, but we cannot control how macros are defined in
headers nor can a writer of a header control how an #includeing program use identifiers.
Therefore, “house style rules” cannot in general prevent accidents, and errors are
common.
 These problems are well known and partially effective remedies are widely
adopted. However, there is a huge variety in the kind of remedies adopted and the degree
to which they are systematically applied. In all cases, the result is defensively written
code that to various degrees departs from the ideal expression of the ideas it represents.
The seriousness of this problem increases with the number of macros used, the number of
headers included, and the number of independent sources of headers. Most large
organizations – even quite mature and experienced ones – are regularly “bitten” by macro
problems.

A solution
The proposed solution has two parts

1. a #scope … #endscope mechanism defining a “macro scope” isolating code
inside the macro scope from code outside it

N1614=04-0054 2

2. an #import, #export mechanism allowing selective import and export of macro
names in and out of a macro scope

Macro scopes
A macro scope is started by a #scope directive and ended by a #endscope directive. For
example:

 #define A 9
 #define B 10

 #scope // temporarily disable all macros from “the outside”
 int A = 7; // define an int called A
 #define B 7
 #define C 99
 int x = B; // x becomes 7
 #endscope // re-enable “outside” macros

 int x = A; // a becomes 9
 int y = B; // y becomes 10
 int z = C; // error: C is undefined

That is, #scope temporarily “suspends” all macros so that they are not considered defined
until a matching #endscope is seen. After that #endscope the set of macros is exactly as
it was before the #scope. In particular, macros #defined within the macro scope will not
be defined after their scope is exited at #endscope.
 This basic mechanism provides two things:

1. A region of code delimited by #scope … #endscope is completely isolated from
macros defined outside it and its programmer can write code completely free of
interference from outside macros

2. Within a region of code delimited by #scope … #endscope, a programmer can
define and use macros without fear that those macros may affect subsequent code
after the #endscope.

The net effect is to allow freedom in the use of macros because they don’t (by default)
apply beyond their intended macro scope, and to allow freedom from the use of macros
because they don’t (by default) enter a macro scope.
 Please note that because #scope … #endscope is a pure preprocessor mechanism,
they have no effect on non-macro names. For example:

 #define A 7
 int a = A;

 #scope
 int b = a; // use the a defined above
 int c = 3;
 #define x 7

N1614=04-0054 3

 #endscope

 c = A; // assign 7 to the c defined above
 int x = 3; // not the x #defined above

In other words, after preprocessing the code becomes:

 int a = 7;
 int b = a;
 int c = 3;
 c = 7;
 int x = 3;

Like #ifdef … #endif, #scope … #endscope must appear in pairs.

Macro import/export
The perfect separation of macros #defined within a macro scope and macros #defined
outside it is too inflexible for real use. In many cases, a region of code needs to use a set
of macros. In other cases, it is desirable to allow some macros defined in a macro scope
to remain #defined after the exit from the macro scope. Two preprocessor directives serve
those needs:

1. #import specifies a list of names of macros. If a named macro is #defined outside
the current macro scope it becomes available for expansion inside the scope (from
the point of the #import directive onwards)

2. #export specifies a list of names of macros. If a named macro is #defined inside
the macro scope it will remain #defined even after the next #endscope.

For example:

 #define A 1
 #define B 2
 #scope
 // no A or B here
 #import A // make A available
 int x = A;
 #define C 3
 #define D 4
 #export C
 #endscope
 // A, B, and C available here (but not D)
 int y = B; // y becomes 2
 int z = C; // z becomes 3

A #scope restricts the set of macro names that are directly available for substitution in the
source text and #import adds to that set. A name #imported may use names otherwise
unavailable in the macro scope in which it was #imported. For example:

N1614=04-0054 4

 #define COMB ::
 #define combine(a,b) a COMB b
 #scope
 #import combine
 int COMB = 7; // ok: no macro COMB defined here
 int x = combine(foo,bar); // ok: combine can still use COMB
 #endscope

This facility is important for facilities provided as fairly complex macros. If COMB was
intended solely as a “helper macro” for combine, the example could be written:

 #scope
 #define COMB ::
 #define combine(a,b) a::b
 #export combine
 #endscope
 // combine defined here, no COMB defined here
 #scope
 #import combine
 int COMB = 7; // ok: no macro COMB defined here
 int x = combine(foo,bar); // ok: combine can still use COMB
 #endscope

An #exported name behaves exactly as if it had been #defined outside the macro scope.

Questions
To make the fundamental idea into a well-specified mechanism, several questions must
be answers and a couple of design alternative considered. Here are questions with
proposed answers.

Do #scope … #endscope nest?
Because nesting simplifies program composition, ideally macro scopes nest like (#ifdef
… #endif), so unless there are unexpected implementation problems macro scopes should
nest. For example:

 #scope
 #include “foo.h” // may contain #scope … #endscope
 …
 #endscope

 #scope
 …
 #scope
 …
 #endscope
 …

N1614=04-0054 5

 #endscope

Naturally, an #export only exports from a single macro scope into its enclosing scope.

Can I redefine an #imported macro?
A macro may be redefined within a macro scope. Unless also #exported, such a #define
is considered a new macro unrelated to the macro of the same name outside the macro
scope. Consider:

 #define A 7
 // here A is 7
 #scope
 #define A 8
 // here A is 8
 #endscope
 // here A is 7

Can I redefine a macro using #export?
A macro that is #exported is treated exactly as if it had been define in the outer macro
scope. That is, it is a redefinition of any macro of the same name #defined outside the
macro scope:

 #define A 7
 // here A is 7
 #scope
 #define A 8
 // here A is 8
 #export A
 #endscope
 // attempt to redefine A to 8

(Basically, that’s a no).

Can #import and # export appear anywhere in a macro scope?
I see no fundamental reason to restrict where #import and #export can be placed, so
implementation experience should be a factor in deciding. I expect that most people
would find code would be most readable if #imports were at the top of a macro scope
and #exports were either at the top or very bottom of a macro scope. If there is any
implementation advantages, that could be a preprocessor rule. For example:

 #scope
 text here
 #import A // error: #import not immediately following #scope
 text here
 #export B
 text here // error: #endscope not immediately following #export

N1614=04-0054 6

 #endscope

Do we need #import and #export?
An earlier version of this macro scope idea did not have explicit #import and #export
directives. Instead, a list of names to be imported could be placed on the #scope line and
a list of names to be exported could be placed on the #endscope line. For example:

 #scope A B C // imports A, B, and C
 …
 #endscope C D E // exports C, D, and E

Semantically, this would be exactly equivalent to

 #scope
 #import A B C // imports A, B, and C
 …
 #export C D E // exports C, D, and E
 #endscope

For toy examples at least, this is simpler and more structured than the current proposal
but some people expressed the opinion that for real examples, the list of macro names
could become quite uncomfortably long and that separate #import and #export
directives were preferable to exceptionally long lines and/or the use of \ for line
continuation. Consider these three alternatives:

 // despite appearances this is a single line (wrapped by “the printer”)
 #scope MACRO_NUMBER_1 MACRO_NUMBER_2
MACRO_NUMBER_3 MACRO_NUMBER_4 MACRO_NUMBER_5
MACRO_NUMBER_6 MACRO_NUMBER_7

and

 // using line continuation
 #scope MACRO_NUMBER_1 MACRO_NUMBER_2 \
 MACRO_NUMBER_3 MACRO_NUMBER_4 \
 MACRO_NUMBER_5 MACRO_NUMBER_6 \
 MACRO_NUMBER_7

and

 // using #import
 #scope
 #import MACRO_NUMBER_1 MACRO_NUMBER_2
 #import MACRO_NUMBER_3 MACRO_NUMBER_4
 #import MACRO_NUMBER_5 MACRO_NUMBER_6

N1614=04-0054 7

 #import MACRO_NUMBER_7

If either of the first two alternatives is considered acceptable, I’m in favor of eliminating
#import and #export in favor of import and export lists on #scope and #endscope. The
arguments for eliminating (explicit) #import and #export directives are simplicity of
syntax, providing a more structured facility, and discouraging long import and export
lists. #define sets a precedence for alternatives 1 and 2.
 Eliminating the #export directive may be less reasonable that eliminating the
#import directive. The reason is that some programmers are likely to want to define and
export names adjacently (as is common in other languages). For example:

 #scope
 // …
 #define A 7
 #export A
 // …
 #define B 9
 #export B
 // …
 #endscope

 If this usage is assumed to be the dominant one, we could consider replacing #export
with something that did both define and export. For example:

 #scope
 // …
 #exportdefine A 7
 // …
 #exportdefine B 9
 // …
 #endscope

This #exportdefine would have the advantage of being unlikely to clash with any other
facility/notation.

Are #scope, #endscope, etc. ideal names?
No. A scope usually lets names from enclosing scopes in and don’t let names escape to
the enclosing scope. I don’t know of a conventional term for what is suggested here.
#nomacro and #endnomacro have been suggested as alternatives.
 It has also been pointed out that #import clashes with a proprietary Microsoft
directive. By placing names to be important on the #scope line, this clash could be
eliminated.

N1614=04-0054 8

Should #scope be expanded into a “proper macro namespace
mechanism?”
No. The purpose of this proposal is to provide the simplest possible mechanism for
protecting code from unintended macro substitution.

Acknowledgements
Thanks to the many people who made suggestions leading to this proposal, notably Alex
Stepanov and Dave Abrahams. Thanks to Gabriel Dos Reis for comments on a draft of
this proposal.

