
Doc. no. N1613=04-0053
Date: March 29th, 2004
Reply-To: Thorsten Ottosen, nesotto@cs.auc.dk or tottosen@dezide.com

Proposal to add Design by Contract to C++

Fact 31: Error removal is the most time-consuming phase of the
[software] life cycle.
Fact 36: Programmer-created built-in debug code, preferably op-
tionally included in the object code based on compiler parame-
ters, is an important supplement to testing tools.

Excerpted from Robert L. Glass’ fascinating book Facts and Fallacies of Soft-
ware Engineering [Gla03].

Contents

1 Motivation 2

2 What is Design by Contract? 3

3 What problems can Design by Contract address? 5

4 How is Design by Contract done in other languages? 9

5 How should Design by Contract be in C++? 11

6 Could Design by Contract be provided as a library? 15

7 Discussion and open issues 18

8 Can Design by Contract be integrated with other C++ extensions? 21

9 Implementability 23

10 Summary 23

11 Acknowledgements 24

1

1 Motivation

This proposal is about making it easier to produce correct software. It is
about making code self-documenting and about minimizing separation of
code and documentation. And it is about providing stronger support for
debugging. I do not claim that Design by Contract (DbC) is a panacea, but
rather that it is a generally useful concept. (Remark: some do see it as a
panacea [JM04], but that is an exaggeration [Gar98] [Gla03, 137f].)

During his discussion of Fact 36, Robert Glass writes [Gla03, 90]:

But what is really important about this phase is that it takes
longer to do error removal, for most software products, than it
does to gather the requirements or do the design or code the
solution—just about twice as long, as a matter of fact.

Since error removal is so time-consuming, we should ask ourselves what
the programming language can do to improve the situation. The answer is
that it can provide programmers with consistent tools and methodologies
that enables and encourages them to write code with fewer errors.

As the second quote suggests, we are not interested in replacing testing—
we are interested in supplementing it. As Kevlin Henney has said, DbC is
used to specify functional contracts and not operational contracts [Hen03].
Sometimes it can be practically impossible to write a unit test, and other
times it can be impractical or impossible to write a contract. Therefore the
D programming language comes with builtin support for both DbC and
unit testing [Bri04a].

The Design and Evolution of C++ mentions previous suggestions to in-
clude similar facilities. The conclusion is [Str94, 398]:

The ease with which assertions and invariants can be defined
and used within the existing C++ language has minimized the
clamor for extensions that specifically support program verifi-
cation features.

My personal experience is (1) that many C++ programmers like the idea
of DbC, (2) that it is possible to get some of the benefits (but far from all)
without language support, and (3) that most C++ programmers abandon
DbC again because it is too inelegant, relies too much on macros, and is too
weak without language support.

DbC is built into the Eiffel and the D programming language (see eg.
[Bez99], [Mey97] and [Bri04a]) and the Digital Mars C++ compiler has it
as an extension [Bri04b]. There are tools for different languages that try to
emulate DbC (see eg. [Ens01], [Par04], [T99] and [Eve04]).

2

2 What is Design by Contract?

DbC is characterized by at least four simple assertion mechanisms. While
I introduce each mechanism, I will give an example written in the syntax
that I propose for C++. Later I will explain in depth why that design is
suggested (see section 5 on page 11).

1. It is possible to describe function preconditions, that is, logical con-
ditions that the implementer of the function expects to be true when
the function is called. (The typical use is to check constraints on func-
tion parameters.) Example:

double sqrt(double r)
in // start a block with preconditions
{

r > 0.0: throw bad_input();
}
do // normal function body
{ ... }

The precondition is read as "if r > 0.0, continue; otherwise throw an
exception".

2. It is possible to describe function postconditions, that is, logical con-
ditions that the implementer of the function expects to be true when
the function has ended normally. (The typical use is to validate the
return value and any side-effects that the function has.) Example:

int foo(int& i)
out // start block with postconditions
{

i == in i + 1;
return % 2 == 0;

}
do // normal function body
{

i++;
return 4;

}

The idea is that in i means the value of the expression i before the
function body is evaluated. return is a special variable that equals
the result of the function if it exits normally. (Remark: in Eiffel i ==
in i + 1 would be written i = old i + 1 .)

3. It is possible to describe class invariants, that is, logical conditions
that the implementer of the class expects to be true after the construc-
tor has executed successfully and before and after any execution of a
public member function. (The typical use is to define a valid state for
all objects of a class.) Example:

3

class container
{

// ...
invariant
{

size() >= 0;
size() <= max_size();
is_empty() implies size() == 0;
is_full() implies size() == max_size();
distance(begin(), end()) == size();

}
};

The last assertion is an example of a constraint that is infeasible even
in debug code if random-access iterators are not supported (linear
complexity or worse is unsuitable in contracts [Hen03]). Invariants
are inherited and can never be weaker in a derived class.

4. It is possible to formalize the notion of overriding a virtual function;
the idea can be justified by substitution principles and is referred to as
subcontracting. Subcontracting consists of two simple rules that the
overriding function must obey [Mey97]. (1) the precondition cannot
be stronger, and (2) the postcondition cannot be weaker. Example:

void Base::foo(int i) in { i > 5; } do { ... }
void Derived::foo(int i) do { ... }
Base& b = *new Derived;
b.foo(5); // will trigger assertion

Thus the compiler will automatically OR preconditions from the base
class function with the preconditions of the overriding function and it
will automatically AND postconditions from the base class function
with the postconditions of the overriding function.

Once a programmer has specified contracts, the language provides a mech-
anism for checking whether the conditions hold at run-time and a mech-
anism to turn off this run-time check for the sake of efficiency. (Remark:
Eiffel also has the notion of loop invariants and monitoring of expression
that must change within each iterations of a loop [Eng01a].)

Notice that I distinguish between pre- and postconditions and invari-
ants. This is important when talking about member functions since eg. the
effective preconditions consist of both the assertions in the in -block and the
invariant. So when I mention pre- and postconditions, I never include the
invariant.

4

3 What problems can Design by Contract address?

3.1 It can provide a consistent documentation framework

Let’s face it: writing good documentation is hard work. So much work that
in fact many programmers consider the problems bigger than the benefits
and hence decide not to write it [Gla03, 120ff]. The problems that a pro-
grammer faces with documentation are:

1. it is hard to give a precise description of what a function requires and
delivers,

2. it is hard to give a precise description of the class invariant (including
dependencies between public member functions), and

3. it is hard to keep the documentation synchronized with the code and
therefore it is likely that inconsistency will emerge.

The fact that writing documentation involves a considerable amount of
redundancy means it becomes a boring and repetitive task. At least one
methodology therefore suggest not to write documentation (XP). Writing
no documentation can actually be a reasonable choice; as Bertrand Meyer
said: "if there is any situation worse than having no documentation, it must
be having wrong documentation" [Mey97]. Indeed, the documentation is
often discarded and one starts from scratch by reading the code itself [Gla03,
120ff].

But how can DbC improve this situation? (Remark: I intentionally do
not say "how can DbC solve...". Many programming issues are inherently
complex and no single scheme can solve them entirely.)

The first problem is addressed by writing pre- and postconditions. In
particular the postconditions are hard to express in C++. DbC provides
constructs that enable the programmer to compare values of an expression
before and after a function is called, and it provides a way to compare the
function return value with the expected return value. These constructs are
powerful enough to enable the programmer to express many constraints in
the code—constraints he would otherwise have to document informally.

The second problem is addressed by embedding run-time checked in-
variants in the code. The invariant mechanism makes it largely possible to
describe what to expect from a class.

Because these facilities allow us to embed constraints directly in the code
and execute and verify them at runtime, they are always up to date and can
be trusted. Tools can then extract functions and classes with their contracts
to serve as documentation.

5

3.2 It can provide a consistent basis for debugging and testing

DbC can provide a powerful debugging facility because of its ability to
instrument code:

1. In a language with multiple return statements, it is convenient to have
a way to make an assertion about the return value. In particular, this
is convenient if a unit test is impractical.

2. Virtual functions automatically inherit contracts so the programmer
does not need to specify them once again when overriding a function.

3. Class invariants will be automatically called last in the constructor,
before and after each call to a public function and first in the destruc-
tor (see section 5.3 on page 14 for details).

This is a way of calling assertions that is not possible today. Moreover, there
is also the importance of consistency. Quite a few different assertions mech-
anisms exist, see eg. the Gnu Nana library [Mak04], the Smart Assert mech-
anism [Ale03] [AT03], Enforcements [AM03], a new assertion class [Gue01],
and EventHelix’ DbC library [Eve04].

DbC complements testing because a contract will specify what the test
should check. For example, the preconditions of a function will state which
input that should cause the function to throw exceptions (or simply fail)
and which input that will cause the function to exit normally. (Remark: in
the future it might even be possible to use the contracts to automate test
generation [Mad02].)

3.3 It can provide a consistent specification language

Some software projects (especially safety-critical projects) tend to have a
strict labour division between design and coding. The problem is that it is
not the same person that does both tasks and therefore misunderstandings
can occur [Gla03, 84ff]. To reduce the gap between designer and program-
mer, it might help to have a precise and unambiguous specification lan-
guage. Moreover, contracts could also make it easier to do code-reviews.

3.4 It can enable the compiler to generate better code

Compiler writers should be allowed to assume that the precondition of a
function holds even when the run-time check is left out. The precondition
can therefore be used as a basis for generating more efficient code. As an
example, consider a switch statement:

6

void foo(int i)
in
{

i == 1 || i == 2;
}
do
{

switch(i)
{ ... }

}

Another interesting possibility is to describe the absence of aliasing. C99 in-
troduces a new keyword restrict which can be used to declare pointers
and dynamic arrays that do not overlap [C9903, 77ff]. This can be crucial to
performance. Even though C++ has an advantage compared to C when it
comes to aliasing analysis [Mit00], it might still be worth adding restrict
to the language. However, it would be even better to avoid a new keyword
and use assertions to specify aliasing properties.

To state that two objects cannot overlap can be done as simply as

void bar(Foo* l, Foo* r)
in
{

l != r;
}

And to state that two arrays do not overlap might be done as

template< typename T >
inline bool not_overlapping(const T* l, size_t l_length,

const T* r, size_t r_length)
{

return l + l_length < r || r + r_length < l;
}
// ...
void bar(Foo* l, size_t l_length, Foo* r, size_t r_length)
in
{

not_overlapping(l, l_length, r, r_length);
}
do
{

for(size_t i = 0; i < l_length; ++i)
// access arrays somehow

}

Of course, it requires extra work from the optimizer to recognize constructs
such as not_overlapping() and verify that the function body obeys
that requirement. (Remark: paragraph 5.9 of the standard could prohibit
portable use of this feature unless the constraint can be expressed differ-
ently [ISO98].)

7

3.5 It can make inheritance easier to use

DbC and inheritance it not just about formalizing the overriding mecha-
nism; it is also about making it easier to use correctly and to keep the base
class programmer in control.

C++ already supports an idiom that gives us some of the benefits of
subcontracting: the Non-Virtual Interface Idiom as described by Herb Sut-
ter [Sut04]. James Kanze has been advocating the idiom on newsgroups for
some time (see eg. [NG01]):

class X
{

virtual int doFoo(int i) = 0;

public:

int foo(int i)
{

assert(i > 0);
int result = doFoo(i);
assert(result > 0);
return result;

}
};

The purpose of the public function foo() is to enforce a contract upon the
use of doFoo() . Since all calls to doFoo() must pass through foo() , it
can also be used to manually instrument the code during debug sessions.
What is particular good about it is that the base class stays in control; the
derived classes cannot escape the contract enforced by foo() . What is not
so good is that it is a kind of a hack to have two functions each time one
virtual function is needed.

DbC would allow programmers to only have the virtual function and
to make it public while still leaving the base class in control. Moreover, to
support updating of contracts using the Non-Virtual Interface idiom, one
would have to override foo() and let the client use a pointer to this de-
rived class. Whether this is a good idea is doubtful [Mey98, Item 37].

Has subcontracting actually any use in practice? According to one pro-
fessional Eiffel programmer I spoke with, Berend de Boer, he has not used
the possibility to loosen preconditions, but he has used the ability to pro-
vide stronger postconditions regularly. As an example, the Gobo Eiffel Pro-
ject consists of approximately 140k lines of code (including comments) and
contains 219 stronger postconditions and 109 weaker preconditions [Bez03].

3.6 It can make it harder for errors to escape

As an example consider the validation of the return value in the postcon-
ditions. Validating the return value might seem redundant, but in this case

8

we actually want that redundancy. When a programmer writes a function,
there is a certain probability that he makes an error in a function. When
he specifies the result of the function in the postconditions, there is also a
certain probability that he makes the error again. However, the probabil-
ity that he makes the same error twice is lower than the probability that he
makes it once.

A more rigid explanation follows. Let us consider two events:

• A = the programmer makes error X in the body of function foo() .

• B = the programmer makes error X in the postconditions of function
foo() .

And let us further assume 0 < P (A) = P (B) = p < 1. The question is
now which probability is smaller: P (A) or P (A and B)? We can use the
following formulas to reach a conclusion [SSS00, 7f]:

1. P (A and B) = P (A)P (B) if A and B are independent,

2. P (A and B) = P (B|A)P (A) if A and B are dependent.

If we assume A and B are independent, then P (A and B) = p2 < p since
p < 1. If we assume A and B are totally dependent (A always implies B),
then P (B|A) = 1 and we conclude P (A and B) = P (A). However, it would
be unrealistic to assume that the two events are totally independent, and it
would also be unrealistic to assume that they are totally dependent. There-
fore P (A and B) < P (A) in general and more errors will be caught.

4 How is Design by Contract done in other languages?

To study how other languages has implemented DbC can be informative
and might reveal weak as well as strong design decisions. A comparison
between Eiffel, D and C++ can be found in table 1 on page 16.

4.1 Design by Contract in Eiffel

Eiffel was one of the first general purpose languages to incorporate DbC
more than a decade ago [Mey97]. The keywords involved are ensure ,
require , do , invariant , result , old , require else , and ensure
then . When a contract is broken, an exception is thrown. (Remark: an ex-
ception in Eiffel behaves largely as a C++ exception.) If some of the con-
tracts are left in the final release version of the program, exceptions will
still be thrown.

Pre- and postconditions look like this [Eng01b] (note = means compari-
son):

9

put(x: ELEMENT; key: STRING) is
require

count <= capacity
not key.empty

do
... Some insertion algorithm ...

ensure
has(x)
item(key) = x
count = old count + 1

end

If the function has a return value, then it may be checked in postconditions
using the result keyword. Invariants are expressed as [Eng01b]:

class ACCOUNT
invariant

consistent_balance: balance = all_deposits.total
... rest of class ...

end

This also illustrates how an assertion might be given a label: consistent-
_balance is the comment of that particular assertion.

Subcontracting is supported by require else and ensure then and
it is an error if an overriding function has contracts without using these two
statements.

4.2 Design by Contract in D

Walter Bright has incorporated DbC in his C++ style language D (and DbC
in his C++ compiler adheres to the same approach [Mar03]). He has taken
a bit different approach than Eiffel. When a contract is broken in D, an ex-
ception is thrown to report the bug. (Remark: in D exceptions behave like
in C++.)

The feature makes use of the keywords in , out , body , assert , and
invariant . Consider a function with contracts:

int add_one(int i)
in // start precondition block
{

assert(i > 0);
}
out(result) // start postcondition block
{

assert(result == i + 1);
}
body // start function body
{

return i + 1;
}

10

The semantics are intuitive and simple: in and out group all precondi-
tions and postconditions, respectively. In postconditions the syntax indi-
cates that result should be an immutable, scoped variable initialized with
the return value; note that any identifier name can be used instead of result .

A class invariant looks like this:

class Date
{

int day;
int hour;

invariant // start class invariant
{

assert(1 <= day && day <= 31);
assert(0 <= hour && hour < 24);

}
}

The use of assert is neccesary because D allows any statement to appear
in the contracts. D also allows static assertions to be specified:

static assert(<a compile-time expression>);

As an interesting property, the invariant can be checked when a class
object is the argument to an assert() expression:

Date mydate;
...
assert(mydate); // check that class Date invariant holds

It is worth noticing that the contract blocks can contain any statement and/or
expression; hence the compiler can therefore not prohibit obvious side-
effects.

5 How should Design by Contract be in C++?

In this section I will describe in detail how the syntax and semantics of
DbC should be. (Remark: many alternatives are discussed in section 7 on
page 18.)

There is one feature which makes DbC more powerful, but which really
should be part of the core language anyway and that is an implication op-
erator. Implication is a natural boolean operator and it could be spelled as
=> or ==> (to avoid confusion with >=), and like we may say and instead
of &&, we should allow implies instead of ==>. The operator should have
low precedence and be left-associative. (see also section 6 on page 15 and
section 8 on page 21).

11

There is one global rule about assertions and it is that assertions must
be disabled in assertions. This removes the possibility of infinite recursion
and allows a reasonable performance even with assertions enabled. With-
out disabling assertions, infinite recursion will happen when a public func-
tion appears in the invariant.

5.1 Preconditions

Preconditions on a function are optional, but when they are used the func-
tion body starts with a do-block. In D there has been added a new keyword,
body , which serves the same purpose as do . However, do seems like a rea-
sonable choice compared to introducing a new keyword. The preconditions
can be specified like this:

void foo(int i)
in
{

i > 0; // call ’terminate()’ on failure
i > 0: exit(1); // call ’exit()’ on failure
i > 0: throw range_error(); // throw an exception on failure

}
do { ... }

The first precondition could be called a default precondition. It should
be possible to remove such preconditions from object code. However, the
second and the third precondition must always be part of the object code. I
consider it essential that the programmer can choose which preconditions
that are always part of the program flow.

There are some things that are not allowed in the precondition block:

int not_ok(int&);
int ok(int);
struct Foo { int foo(); int bar() const; };
Foo f;
Foo* f_ptr;
...
void foo(int i)
in
{

not_ok(i); // error: ’not_ok()’ takes a reference argument
ok(i); // ok: ’ok()’ takes a value argument
f.foo(); // error: cannot call a non-const member
f_ptr->foo(); // error: not even through a pointer
f_ptr->bar(); // ok: bar is a const member function
f_ptr; // ok: conversion to bool
"a comment"; // ok: conversion to bool
if(...); // error: statements not allowed
i = 2; // error: assignment not possible
i > 0; return FAILURE_CODE; // error: ’return’ not allowed

}

12

While const member functions can certainly contain side-effects or change
mutable data, calling a non-const member function would certainly be wrong;
the fact that a C++ implementation can actually make this check is certainly
an advantage.

There are several choices for specifying a precondition; in is the choice
made in D and it is preferable to precondition or require because of
its terseness. It also turns out that in may be reused in different contexts
(see the next section and section 8 on page 21 for details).

5.2 Postconditions

Postconditions are much like preconditions: (1) they are optional, (2) can
include throw clauses (which are never compiled away), and (3) has the
same rules regarding const-correctness. Note that postconditions are only
checked when the function exits normally.

What is also new in postconditions is that side-effects can be described:

int foo(int& i)
out
{

i == in i + 1; // keep track of changes to ’i’
return == 5: terminate(); // call ’terminate()’ on failure

}
do
{

++i;
if(i % 2 == 0)

return 5;
else

return 4;
}

Whenever in <expression> occurs in a postcondition it means the value
that expression had before the function body was executed. This requires
that the result of the expression can be copied. (Remark: an alternative syn-
tax could be to say new i == i + 1 and thereby reverse the way expres-
sions are evaluated in postconditions. However, this would require that ev-
ery expression not preceded by new to be copied before entering the func-
tion.) The return acts like an immutable variable with the same type as
the return-type of the function. To use return instead of a new keyword
result is also done in iContract [Ens01].

There are also things that cannot be done in postconditions:

struct X : noncopyable { int foo(); };
void foo(int& i, X& x)
out
{

i = 5; // error: cannot assign to const object

13

return = 5; // error: ditto
in x == x // error: X is not copy-constructible

}

For projects that do not use C++ exceptions, but rather relies on error
codes, the postconditions can also be used to document that:

int insert_element(const Element* e)
out
{

e == 0 || in full() implies return == EXIT_FAILURE;
in !full() && e != 0 implies return == EXIT_SUCCESS;

}
do { ... }

Arguably this could be rewritten into one postcondition, but such a big
postcondition would be harder to comprehend.

5.3 Invariants

The invariant of a class can only be called from within the class itself. It
should preferable document how public functions interact and therefore
not refer to data members of the class, although that should not be en-
forced by the compiler. If the programmer wants to check the private state
of the class, he can either add assertions about the variables directly or call
a private function from the invariant:

class X
{

bool debug_invariant();

invariant
{

// normal public invariant
debug_invariant();

}
};

Since C++ has the notion of const-member functions, it might be tempt-
ing to let the compiler exclude calls to the invariant in these functions.
However, the use of logical constness and mutable data suggest that it
would be best to call the invariant anyway. Therefore we should call the
invariant as the last statement in a constructor and together with precondi-
tions and postconditions of public functions. (Remark: an alternative would
be to let the invariant be explicitly callable by the programmer.) So if the
invariant throws exceptions, it means that the constructor and any public
member function can throw the same exceptions.

14

Should the invariant be called in the destructor? Preferably "yes" since
it can help track down bugs earlier. It does open up the possibility for a
destructor to throw exceptions—in those cases the call of the invariant in
the destructor should be implemented like this:

struct X
{

~X()
{

try
{

invariant();
}
catch(...)
{

std::broken_destructor_invariant();
}
// normal code

}
};

The function broken_destructor_invariant() should be a customiz-
able callback that defaults to calling terminate() .

When calls to public member functions are nested, the invariant is not
checked before and after the inner call. This is because the invariant is al-
lowed to be temporarily broken within a call to a public function. The other
contracts of the functions must still be checked though (see also section 7 on
page 18).

6 Could Design by Contract be provided as a library?

Andrei Alexandrescu mentioned the interesting idea that DbC should not
be part of the core language [NG03]—we should rather seek to enhance the
language such that a strong library implementation was possible. I there-
fore discuss each feature in turn and explains what would be necessary to
emulate it.

1. We cannot detect side-effects in assertions. This could probably be
done by introducing some kind of const-block:

{ // some block
const { /* no side-effects here */ }

2. We cannot make assertions about the return value without manually
copying the result to a variable. I see no alternative to this mechanism.

15

Feature ISE Eiffel 5.4 D C++ proposal
keywords require , ensure , do in , out , body , in , out , do ,

require else , ensure then invariant , and assert invariant , and return
old , invariant , and
result

on failure throws exception throws exception defaults to terminate()
might throw

return value yes, result keyword yes, result keyword yes, return keyword
evaluation

expression copying yes, old keyword no yes, in keyword
in postconditions

subcontracting yes yes yes

assertion naming yes no no

arbitrary code in yes yes no
contracts

contracts on yes no yes (*)
abstract func.

code ordering pre -> body -> post pre -> post -> body pre -> post -> body

compile-time no yes yes
assertions

loop invariants yes no no

const-correct no no yes

removable from not preconditions yes only default assertions
object code

invariant calls end of "constructor", end of constructor, end of constructor,
around public functions around public functions, around public functions

start of destructor start of destructor
disabling of
assertions during yes no yes
assertions

when public func. disable all assertions disable nothing disable invariant only
call public func.

Table 1: Comparison of features in Design by Contract in different lan-
guages. (*) Pure virtual functions are already allowed to have a function
body.

16

3. We cannot make assertions about the side-effects of a function with-
out copying the expression(s) manually first. I see no alternative to
this mechanism.

4. We cannot inherit assertions in public virtual functions. Here we might
add another way to inherit code in virtual functions, for example

virtual void foo(int i)
{

// call this code implicitly in overridden functions
implicit assert(i > 0);

5. We cannot make an effective implies implementation. The first way
we could simulate implies is via a macro:

#define implies != true ? true :
assert(foo() implies bar()); // ok
assert(!foo() && !bar() implies something()); // bad

The scheme fails because != has higher precedence rules than eg. &&.
We were probably better off if we tried to overload operator,() ,
but we could still not do short-circuit evaluation and hence avoid
costly calls to the right hand side if the left argument is false.

6. We cannot call functions implicitly before and/or after each call to a
public function. This would be necessary to define an invariant. In-
terestingly, such a feature has been part of the language before stan-
dardization [Str94, 57]:

Curiously enough, the initial implementation of C with Class-
es contained a feature that is not provided by C++, but is of-
ten requested. One could define a function that would im-
plicitly be called before every call of every member function
(except the constructor) and another that would be implic-
itly called before every return from functions (except the
destructor). They were called call() and return() func-
tions.

I do not consider my treatment of this complete, however, I hope it can be
seen that it is a non-trivial task to come up with a set of features which can
support DbC while preserving general usefulness.

17

7 Discussion and open issues

7.1 Where to put the contracts?

Since C++ distinguishes between the declaration and the definition of a
function, it opens up the question of where to put the contract code. Should
contracts cling to the declaration, the definition or perhaps both?

Some argue that the contract is part of the interface and therefore must
always be part of the declaration. If we ignore implementation issues, there
are three alternative solutions:

1. only allow contracts in function declarations,

2. only allow contracts in function definitions, and

3. allow both, but each function chooses individually between 1 and 2.

The last is flexible, but messy. The first would make a header almost self-
documenting and remove the need for do-blocks, but would remove some
of the overview a short declarative style offers and it might trigger more
recompilation than is desirable. The second alternative seems to remove
some documentation value (but not all), but it preserves the overview and
minimizes recompilation. It might also be practical to have the contracts
right at the cursor when trying to write the function body. Documentation
tools can easily be extended to pick up assertions and it is worth to notice
that even Eiffel relies on a tool to compose the final documentation.

7.2 Can we call the invariant less often?

It could also be argued that the invariant should only be checked as a func-
tion exits. The invariant in the precondition would automatically hold be-
cause of an earlier postcondition. The programmer could be malicious and
by-pass the mechanism by using public data, friends, function pointers and
templated member functions, but why protect against that? Thus we could
reduce the calls to the invariant to a half which improves debug perfor-
mance. (Remark: checking the invariant more often would detect memory
corruption errors earlier, but it is debatable whether this is any better since
the error would probably not be due to an error in the class where the in-
variant failed.)

7.3 Should arbitrary expressions and statements be allowed in
contracts?

The feature has probably been allowed in D to make more complex asser-
tions possible:

18

in
{

if(something())
assert(false);

for(i = 0; ...)
assert(x[i] > 0);

}

However, the need is not really there: (1) the first can be done using implies ,
and (2) the second can be refactored into a small function that verifies the
same and then returns false on error. The difference is that we cannot
detect the precise spot where the error occurred (at least not without a de-
bugger). The good thing is that the assertion is much more informative to
read because its level of abstraction is higher. (Remark: two reviewers dis-
agree with this restriction.) Functions can therefore be used to emulated
mathematical quantifiers like for all and exists.

7.4 When should assertions be turned off?

When a public function calls another public function in the same class (di-
rectly or indirectly), an interesting issue arises: the invariant might not hold
at that point, but the function might still produce a meaningful result. For
example:

struct X
{

void foo(int i) in { i > 0; } do { ... }
void bar() { ...; foo(0); ...; } // #1
void call_back() { Y* p = ...; p->call_back(this); } // #2
// ...

};

struct Y
{

void call_back(X* x) { x->foo(0); }
};
...
X x;
x.bar(); // #1
x.call_back(); // #2

If all assertions are disabled inside bar() , the error made when calling
foo() will not be caught. If only the invariant was disabled, it would be
caught. If foo() relies on a correct invariant, it will still produce wrong
results, but detecting that property could be left as a burden on the pro-
grammer. In the second situation we get the same behavior.

It seems reasonable to always enforce pre- and postconditions on public
functions because

19

1. if the precondition is broken, it means that the function will never
produce correct results (by definition),

2. if the invariant is not broken, the function is guaranteed to produce
correct results, and

3. if the invariant is broken, the function might still produce correct re-
sults.

(Remark: the new ISE 5.4 implementation of Eiffel only disables invariants.
This is a change in policy from version 5.3 where both invariants and pre-
condition were disabled. Unfortunately I do not know what the undergoing
ECMA standard for Eiffel will decide.)

7.5 Exception-safety

Certain resource holding objects could be troublesome to use with con-
tracts. Imagine a container that stores dynamically allocated objects:

void replace(T* p, size_t where)
in
{

p != 0: throw bad_ptr(); // ok, no leak since pointer is 0
where < size: throw bad_index(); // oops, ’p’ might leak

}
do
{

auto_ptr<T> ptr(p);
}

The simplest solution would be to use the comma operator:

void replace(T* p, size_t where)
in
{

p != 0: throw bad_ptr();
where < size: delete p, throw bad_index(); // no leak anymore.

}

What is particularly good about this is that it documents clearly that the
function is exception-safe. A reviewer suggested allowing bracketed code:

where < size: { delete p; throw bad_index(); } // no leak anymore.

Some reviewers were against throwing exceptions in contracts while others
liked it.

20

7.6 Is the reuse of return confusing?

One reviewer mentioned that he would rather see the result of the function
described differently:

int foo()
out(r)
{

r == 1;
} do { ... }

This is how D does it.

7.7 Is both an in and out block necessary?

Having a designated block for postconditions is strictly not necessary. That
an assertion is a postcondition could be deduces from the presence of in
and return . For example,

int foo(int i)
contract
{

i > 0; // precondition
in i > 0; // postcondition
return > 0; // postcondition

} do { ... }

I find this confusing.

7.8 Should the order of the function body and postconditions be
fixed?

Some programmers might prefer to write a function like this:

int foo()
in { ... }
do { ... }
out { ... } // this one after function body

This block layout could be allowed as well.

8 Can Design by Contract be integrated with other
C++ extensions?

8.1 Concepts

It has recently been discussed how concepts might be added to the lan-
guage. One suggestion is the usage-pattern approach [Str03]:

21

concept Add
{ // We can copy and add Adds

constraints(Add x)
{ Add y = x; x = y; x = x+y; Add xx = x+y; }

};

It might be possible to exchange constraints with implies :

concept Add
{

implies(Add x)
{ Add y = x; x = y; x = x+y; Add xx = x+y; }

};

Moreover, another concept paper suggest this syntax for describing invari-
ants for an equivalence relation Op [SR03]:

{ Op(x, x) } == { true}
{ Op(x, y) == true } -> { Op(y, x) == true }
{ Op(x, y) == true && Op(y, z) == true } -> { Op(x, z) == true

Maybe this could be described as

concept EquivalenceRelation
{

invariant(EquivalenceRelation Op)
{

Op(x, x);
Op(x, y) implies Op(y, x);
Op(x, y) && Op(y, z) implies Op(x, z);

}
};

To use similar keywords for concepts and assertions could make the lan-
guage more consistent.

8.2 Static assertions facility

It has recently been proposed to add a static assertion facility to the core lan-
guage [KMDH04]. The proposal involves adding a new keyword static_-
assert to the language and it is mainly introduced to produce readable
compiler error messages from within template code.

However, if the assertions in DbC were required to evaluate expressions
at compile-time whenever it is possible, we could achieve the same within
the DbC framework. For example:

template< typename T >
void foo(T& t)
{

static_assert(sizeof(T) > sizeof(long), "error msg");

22

could become

template< typename T >
void foo(T& t)
in
{

sizeof(T) > sizeof(long) && "error msg";

or even

template< typename T >
void foo(T& t)
in
{

static sizeof(T) > sizeof(long) && "error msg";

That could be seen as a unification of compile-time and run-time assertions.

9 Implementability

This is really not a question I can answer. Instead I have asked Walter
Bright, who has implemented partial support for DbC in his C++ compiler
[Bri04b] and full support in his D compiler [Bri04a]. He assesses that it will
take about one man-month to complete the feature.

10 Summary

Section 1 explained that error removal was a big problem for programmers
and suggested that Design by Contract (DbC) could be a help. Section 2
explained what the defining properties of DbC are and gave a short look at
the syntax of this proposal.

In section 3 I gave five reasons that could justify DbC: (1) enhanced doc-
umentation, (2) better debugging support, (3) design specifications, (4) op-
timizations, and (5) easier inheritance maintenance.

Section 4 gave an overview of how DbC is implemented in Eiffel and D.
The differences between this proposal and the other languages are summa-
rized in table 1 on page 16. Finally I was able to review the details of how
DbC should look according to this proposal (see section 5). Contrary to
DbC other languages, DbC in C++ has the potential to be (1) const-correct
and (2) more flexible with respect to the error-handling.

The next section (see section 6) described what it would take to provide
a strong library version of DbC. The conclusion is that it would be difficult.
The section also explains why it would be a good idea to introduce the
boolean implies operator.

23

In particular, section 7 described design tradeoffs in DbC. The issues are
mainly (1) where to put the contract, (2) whether to allow arbitrary state-
ments in contracts, (3) whether to turn contract-checking completely off
when a public function calls other public function in the same class (di-
rectly or indirectly), and (4) alternatives to the syntax.

Finally, section 8 discussed how keywords may be reused in the next
C++ standard. We may also merge the static assertion facility into the DbC
scheme to unify run-time and compile-time assertions.

11 Acknowledgements

Thanks goes to Daniel Watkins, Darren Cook, Berend de Boer, Reece Dunn,
Kevlin Henney, Walter Bright and Matthew Wilson. Special thanks goes to
Walter Bright for implementing Design by Contract in his C++ compiler.

24

References

[Ale03] Andrei Alexandrescu. Assertions. http://www.moderncpp-
design.com/publications/cuj-04-2003.html, 2003. 6

[AM03] Andrei Alexandrescu and Petru Marginean. Enforcements.
http://www.moderncppdesign.com/publications/cuj-06-
2003.html, 2003. 6

[AT03] Andrei Alexandrescu and John Torjo. Enhancing Asser-
tions. http://www.moderncppdesign.com/publications/cuj-
08-2003.html, 2003. 6

[Bez99] Eric Bezault. Eiffel: The Syntax. http://www.gobosoft.com/-
eiffel/syntax/, 1999. 2

[Bez03] Eric Bezault. Gobo eiffel project. http://www.gobosoft.com/-
eiffel/gobo/, 2003. 8

[Bri04a] Walter Bright. D Programming Language. http://www.digi-
talmars.com/d/, 2004. 2, 23

[Bri04b] Walter Bright. Digital Mars C++ Compiler. http://www.-
digitalmars.com, 2004. 2, 23

[C9903] Rationale for International Standard—Programming Langua-
ges—C. http://anubis.dkuug.dk/jtc1/sc22/wg14/www/-
C99RationaleV5.10.pdf, 2003. 7

[Eng01a] Interactive Software Engineering. Chapter 10, OTHER ME-
CHANISMS. http://docs.eiffel.com/general/guided_tour/-
language/tutorial-11.html#38021, 2001. 4

[Eng01b] Interactive Software Engineering. Chapter 8, DESIGN BY
CONTRACT, ASSERTIONS, EXCEPTIONS. http://docs.-
eiffel.com/general/guided_tour/language/tutorial-09.html,
2001. 9, 10

[Ens01] Oliver Enseling. iContract: Design by Contract in Java.
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-
cooltools.html, 2001. 2, 13

[Eve04] EventHelix.com. Design by Contract Programming in C++.
http://www.eventhelix.com/RealtimeMantra/Object_Orien-
ted/design_by_contract.htm, 2004. 2, 6

[Gar98] Ken Garlington. Critique of "put it in the contract: The lessons
of Ariane". http://home.flash.net/ kennieg/ariane.html, 1998.
2

25

[Gla03] Robert L. Glass. Facts and Fallacies of Software Engineering.
Addison-Wesley, 2003. 1, 2, 5, 6

[Gue01] Pedro Guerreiro. Simple Support for Design by Contract in
C++. Proceedings TOOLS 39, 2001. 6

[Hen03] Kevlin Henney. Sorted. http://www.two-sdg.demon.co.uk/-
curbralan/papers/Sorted.pdf, 2003. 2, 4

[ISO98] ISO/IEC. International Standard, Programming languages —
C++, 1st edition, 1998. 7

[JM04] Jean-Marc Jézéquel and Bertrand Meyer. Design by Con-
tract: The Lessons of Ariane. http://archive.eiffel.com/doc/-
manuals/technology/contract/ariane/page.html, 2004. 2

[JS04] J. Järvi and B. Stroustrup. Decltype and auto (revision 3), 2004.

[KMDH04] R. Klarer, J. Maddock, B. Dawes, and H. Hinnant. Proposal to
Add Static Assertions to the Core Language (Revision 1), 2004.
22

[Mad02] Per Madsen. Testing By Contract—Combining Unit Testing
and Design by Contract. http://www.cs.auc.dk/m̃adsen/-
Homepage/Research/Publications/madsen_nwper2002.pdf,
2002. 6

[Mak04] Phil Maker. GNU Nana: improved support for assertion check-
ing and logging in GNU C/C++. http://www.gnu.org/-
software/nana/nana.html, 2004. 6

[Mar03] Digital Mars. Design by Contract. www.digitalmars.com/-
ctg/designbycontract.html, 2003. 10

[Mey97] Bertrand Meyer. Object Orienteret Software Construction, 2nd edi-
tion. Prentice Hall, 1997. 2, 4, 5, 9

[Mey98] Scott Douglas Meyers. Effective C++ CD, 1998. 8

[Mit00] Mark Mitchell. Optimization that makes C++ faster than C. Dr.
Dobb’s Journal, October 2000. 7

[NG01] Virtual methods should only be private or protected?
comp.lang.c++.moderated, 2001. 8

[NG03] Design by Contract in D and C++. comp.lang.c++.moderated,
2003. 15

[Par04] Parasoft. Jcontract, Commercial Design by Contract Software.
http://www.parasoft.com/, 2004. 2

26

[SR03] Bjarne Stroustrup and Gabriel Dos Reis. Concepts—Design
choices for template argument checking, 2003. 22

[SSS00] Murray R. Spiegel, John Schiller, and R. Alu Srinivasan. Prob-
ability and Statistics, 2000. 9

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-
Wesley, 1994. 2, 17

[Str03] Bjarne Stroustrup. Concept checking—a more abstract com-
plement to type checking, 2003. 21

[Sut03] Herb Sutter. Private mailings, 2003.

[Sut04] Herb Sutter. Virtuality. http://www.gotw.ca/publications/-
mill18.htm, 2004. 8

[T99] AT & T. R++. http://www.research.att.com/sw/tools/r++/,
1999. 2

27

	Motivation
	What is Design by Contract?
	What problems can Design by Contract address?
	How is Design by Contract done in other languages?
	How should Design by Contract be in C++?
	Could Design by Contract be provided as a library?
	Discussion and open issues
	Can Design by Contract be integrated with other C++ extensions?
	Implementability
	Summary
	Acknowledgements

