
Document number: J16/04-0004 = WG21 N1564
Date: 12 February, 2004

Reply to: William M. Miller
The MathWorks, Inc.
wmm@world.std.com

Core Issue 195 and “Conditionally-Supported Behavior”

0. Introduction

As discussed in core issue 195, neither C nor C++ supports converting between object pointer
types and function pointer types. The reason for this restriction is that, on some architectures,
pointers to objects and pointers to functions have different sizes and thus information could be
lost when converting in one direction or the other. Although this problem does not apply to
many of the most popular systems currently in use, the respective Committees felt that it was
unreasonable to penalize implementations targeting the affected architectures by requiring them
to take heroic measures to support such conversions.

As noted in the issue discussion, however, there is a significant difference between how C and
C++ treat these conversions. In C, they produce undefined behavior (because the behavior of
such conversions is not described). A C implementation is thus permitted to accept these
conversions silently, because “undefined behavior” frees the implementation from all
requirements.

By contrast, the C++ Standard explicitly lists the kinds of conversions that can be performed
using static_cast and dynamic_cast and forbids all others (5.2.9¶3, 5.2.10¶1). Because
conversion between an object pointer and a function pointer is not mentioned, such conversions
render a program ill-formed and thus require a conforming implementation to issue a diagnostic
(1.4¶2).

Concern over the status of these conversions is not simply theoretical: the dlsym library
function on Unix is used to obtain the address of an entity in a dynamically-loaded shared library.
Depending on the name passed to it, it returns a pointer to an object or a pointer to a function,
and its result is declared as a void* pointer. This function is widely used on Unix systems, and
it is unfortunate that a conforming C++ implementation must report an error whenever dlsym is
used to obtain a pointer to a function.

The Core Language Working Group discussed a number of options for addressing the problem
and eventually concluded that the preferred resolution would be to allow implementations to
support these conversions, but to require that an implementation issue a diagnostic if it did not
support them. Tom Plum suggested at the April, 2003 meeting that this approach could apply to
a number of other constructs in the language. Currently these constructs are described as
producing undefined behavior, when in fact we would prefer to constrain the implementation to a
particular choice of behaviors: either support the construct in a way that makes sense in the target
environment or reject the program at compile time. These options correspond to the current
categories of implementation-defined behavior and ill-formed programs, but there is no existing
term that combines the two this way. Clark Nelson pointed out one construct where this choice
is currently spelled out, namely, linkage specifications (7.5¶2): the exact meaning of any given

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

string-literal is implementation-defined, but use of one that is unknown to the implementation
renders the program ill-formed. Tom said that we need a name for this category and suggested
“conditionally-defined behavior.”

1. Methodology and Terminology

Following the April, 2003 meeting, Tom produced an informal document listing various
constructs that are currently described as having undefined or implementation-defined behavior
to which the new concept should be applied. After incorporating comments from Erwin Unruh
and me, the resulting list forms the basis for the remainder of this document. The principal
criterion used for determining whether a particular construct was suitable for inclusion in the list
was that runtime behavior cannot render a program “ill-formed” (because that is a compile-time
concept); thus, undefined behavior at runtime is not a candidate for this new category.
Furthermore, some cases of undefined behavior reflect the Committee's assessment that detecting
the situation in order to issue a diagnostic would be an unreasonable burden for implementations
(e.g., the One Definition Rule); these constructs were also ruled out for the new category.

In preparing to write this document, I became concerned that the original suggested term,
“conditionally-defined behavior,” sounded too much as if it were a choice between defined
behavior and undefined behavior, when in fact the intent is to make the behavior well-defined in
either case (either ill-formed or implementation-defined). After discussing a number of other
possibilities, including “implementation-specific” and “optionally ill-formed,” Tom and I agreed
on the term “conditionally-supported,” and that choice is reflected in the proposed edits below.

Finally, in addition to applying the new category to existing constructs in the language, I have
included proposed language defining the concept of conditionally-supported behavior, applying it
to the conformance model, and using it to describe new reinterpret_cast conversions
between function pointers and object pointers.

2. Additions and Changes

The following citations are all relative to the wording and numbering of the 2003 version of the
Standard.

1.3: Add the following as 1.3.2 and renumber all following definitions accordingly. [Drafting
note: cross-references within the following are to the current section numbers.]

1.3.2 conditionally-supported behavior
behavior evoked by a program construct that some implementations might not
support. [Example: conversion between a pointer to an object type and a pointer to

2 of 7

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

a function type (5.2.10).] If a given implementation does not support a construct,
it shall treat a program containing an occurrence of that construct as ill-formed
(1.3.4); otherwise, an occurrence of such a construct shall evoke implementation-
defined behavior (1.3.5).

1.4¶1: Add the indicated words:

The set of diagnosable rules consists of all syntactic and semantic rules in this
International Standard except for those rules containing an explicit notation that
“no diagnostic is required” or which are described as resulting in “undefined
behavior.” In addition, an occurrence of a program construct described
herein as resulting in “conditionally-supported behavior” when the
implementation does not in fact support that construct shall also be deemed a
violation of a diagnosable rule.

1.9¶2: Add the indicated footnote:

Certain aspects and operations of the abstract machine are described in this
International Standard as implementation-defined (for example, sizeof(int)).
[Footnote: These implementation-defined aspects also include those
conditionally-supported features that are actually supported by the
implementation; see 1.3.2.] These constitute the parameters of the abstract
machine.

2.1, phase 2: Change as indicated:

Each instance of a new-line character and an immediately preceding backslash
character is deleted, splicing physical source lines to form logical source lines. If,
as a result, If this splicing produces a character sequence that matches the syntax
of a universal-character-name is produced, the behavior is undefined result is
conditionally-supported behavior. If a source file that is not empty does not end
in a new-line character, or ends in a new-line character immediately preceded by a
backslash character, the behavior is undefined result is conditionally-supported
behavior.

2.1, phase 4: Change as indicated:

If token concatenation (16.3.3) produces a character sequence that matches the
syntax of a universal-character-name is produced by token concatenation (16.3.3),

3 of 7

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

the behavior is undefined result is conditionally-supported behavior.

2.4¶2: Change as indicated:

If a ’ or a " character matches the last category, the behavior is undefined result
is conditionally-supported behavior.

2.8: Change as indicated:

If either of the characters ’ or \, or either of the character sequences /* or //
appears in a q-char-sequence or a h-char-sequence, or the character " appears in
a h-char-sequence, the behavior is undefined result is conditionally-supported
behavior. [Footnote: Thus, sequences of characters that resemble escape
sequences cause undefined conditionally-supported behavior.]

2.13.1¶2: Change as indicated:

If it is decimal and has no suffix, it has the first of these types in which its value
can be represented: int, long int; if the value cannot be represented as a
long int, the behavior is undefined result is conditionally-supported
behavior.

2.13.2¶3: Change as indicated:

If the A character following a backslash that is not one of those specified, the
behavior is undefined evokes conditionally-supported behavior.

2.13.4¶3: Change as indicated:

In translation phase 6 (2.1), adjacent narrow string literals are concatenated and
adjacent wide string literals are concatenated. If a narrow string literal token is
adjacent to a wide string literal token, the behavior is undefined result is
conditionally-supported behavior.

5.2.2¶7: Change as indicated:

If the argument has a non-POD class type (clause 9), the behavior is undefined
result is conditionally-supported behavior.

4 of 7

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

5.2.10: Add the following as a new paragraph 8, renumbering the following paragraphs:

Converting a pointer to a function to a pointer to an object type or vice versa
evokes conditionally-supported behavior. In any such conversion supported by an
implementation, converting from an rvalue of one type to the other and back shall
yield the original pointer value.

7.4¶1: Change as indicated:

The meaning of an An asm declaration is implementation-defined evokes
conditionally-supported behavior.

7.5¶2: Change as indicated:

The string-literal indicates the required language linkage. The meaning of the
string-literal is implementation-defined. A linkage-specification with a string that
is unknown to the implementation is ill-formed. This International Standard
specifies the semantics of C and C++ language linkage. Other values of the
string-literal evoke conditionally-supported behavior. [Note: Therefore, a
linkage-specification with a string-literal that is unknown to the
implementation requires a diagnostic. If the string-literal is known to the
implementation, the semantics are implementation-defined. When the string-
literal in a linkage-specification names a programming language, the spelling of
the programming language’s name is implementation-defined. [Note: it It is
recommended that the spelling be taken from the document defining that
language, for example Ada (not ADA) and Fortran or FORTRAN (depending
on the vintage). The semantics of a language linkage other than C++ or C are
implementation-defined.]

14¶4: Change as indicated:

A template, a template explicit specialization (14.7.3), or a class template partial
specialization shall not have C linkage. If the linkage of one of these is something
other than C or C++, the behavior is implementation-defined result is
conditionally-supported behavior.

16.1¶4: Change as indicated:

If the token defined is generated as a result of this replacement process or use

5 of 7

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

of the defined unary operator does not match one of the two specified forms
prior to macro replacement, the behavior is undefined result is conditionally-
supported behavior.

16.2¶4: Change as indicated:

If the directive resulting produced after all replacements does not match one of
the two previous forms, the behavior is undefined result is conditionally-
supported behavior.

16.3¶10: Change as indicated:

If (before argument substitution) any argument consists of no preprocessing
tokens, the behavior is undefined result is conditionally-supported behavior. If
there are sequences of preprocessing tokens within the list of arguments that
would otherwise act as preprocessing directives, the behavior is undefined result
is conditionally-supported behavior.

16.3.2¶2: Change as indicated:

If the replacement that results thus produced is not a valid character string literal,
the behavior is undefined result is conditionally-supported behavior.

16.3.3¶3: Change as indicated:

If the A result that is not a valid preprocessing token, the behavior is undefined
evokes conditionally-supported behavior.

16.4¶3: Change as indicated:

If the A digit sequence that specifies zero or a number greater than 32767, the
behavior is undefined evokes conditionally-supported behavior.

16.4¶5: Change as indicated:

If the directive resulting produced after all replacements does not match one of
the two previous forms, the behavior is undefined result is conditionally-
supported behavior; otherwise, the result directive is processed as appropriate.

6 of 7

Core Issue 195 and “Conditionally-Supported Behavior” J16/04-0004 = WG21 N1564

16.8¶3: Change as indicated:

If any of the pre-defined macro names in this subclause, or the identifier
defined, is the subject of a #define or a #undef preprocessing directive,
the behavior is undefined result is conditionally-supported behavior.

7 of 7

