
Alignment Proposal

WG21/N1546 = J16/03-0129 page 2
Evolution WG Proposal

Doc No: SC22/WG21/N1546
J16/03-0129

Date: 2002-05-02 to 2003-11-17

Project: JTC1.22.32

Reply to: Attila (Farkas) Fehér

Address: LM Ericsson Oy Ab
Hirsalantie 1
Jorvas 02420

Phone: +358 40 507 8729 (mobile)

Fax: +

Email: attila.f.feher@ericsson.com
whitewolf@mailbox.hu

Alignment Proposal

1 Executive summary
Document status: first draft, update 3. (Nonofficial comments has been removed)

One-liner: This proposal extends the core language and the standard library with variable alignment
related features.

Problems targeted:

• Allow most efficient fixed capacity-dynamic size containers
• Allow specially aligned variables/buffers for hardware related programming
• Allow heterogeneous containers runtime/optional elements

Related problems not solved:

• Class-type “packing”
• Requesting specially aligned memory from memory allocators (new, malloc)

Proposed changes:

• New: alignment-specifier to declarations (type based and value based)
• New: align_of operator to retrieve alignment-value for a type (like sizeof for size)
• New: standard function for pointers for proper alignment runtime

Major open questions:

• Should weakening of alignment be enabled, if yes how?
• Where do we require diagnostics? Review.
• Is it possible to find syntax native to both C and C++ while still being readable?
• Prefer readability or less keyword? (separate keyword for type and number based alignment)
• Fix poor terminology

WG21/N1546 = J16/03-0129 page 3
Evolution WG Proposal

2 The Problems
Dynamic memory allocation might be expensive. Not only do the general-purpose allocators need
precious CPU cycles to do their work, but also many of them scale badly to multithreaded
environments. Once we have alignment specifications (and the rest of the alignment support I am
going to introduce) it becomes possible to allocate one chunk of memory instead of many (creating a
“flat” type) or even to allocate a container entirely on the stack.

Special alignment requirements cannot be portably specified today. With the proposed features it will
be possible to create close-to-hardware variables and still keep the syntax portable.

2.1 Fixed capacity, dynamic size containers
Creation of fixed capacity, dynamic size templated sequential containers in today’s standard C++
language is not possible with reasonable effort and with only the minimum required overhead. This
also means that such constructs cannot be created in a fully portable and memory-efficient way.

The need for such containers arises in cases when we want to avoid dynamic memory allocation. This
can be due to runtime efficiency reasons or in case we need to use “flat” data layout.

Today’s solution to the problem is offered by template metaprogramming. One problem with template
metaprogramming is that it is intrusive: the contained type T must be built in a way, that its members
can be iterated or otherwise examined. This immediately rules out possible non-standard fundamental
types, since they are not class types and we (the designers of the container) have no idea that they
even exist, so we cannot specialize for them.

The other problem with template metaprogramming is code readability. The code has to be
overcomplicated today, just to add otherwise simple – and inside the compiler existing – support for
alignment specifications.

Without language support for alignment specifications the designer can only aim at partially efficient
solutions. The first element of the container is either aligned for all possible types or for all types
inside the type allocated and both of these waste memory. We can do better than this best guess
strategy – with language support.

2.2 Support for special, aligned types
Programmers dealing with special alignment requirements today have to use non-standard extensions
to achieve their goal. The problem with non-standard extensions is that they force programmers to
revert to macro magic or duplication of code to make them portable (between compilers). This kind of
special alignment requirement shows up mostly in embedded and close-to-the-hardware code (like
drivers).

Question: This case makes the picture more complicated. Containers are always of class type.
Aligned variables on the other hand might be fundamental types. So the preparation has to take it into
account that the rules might make it to C one day. So syntax should be “natural” in both C and C++.
And while C++ begs for template syntax here, but C does not support such features.

2.3 Conclusion
The extensions I propose add support for generic programming, library building and systems
programming, since they enable performance without excess memory usage. They also remove the

WG21/N1546 = J16/03-0129 page 4
Evolution WG Proposal

embarrassment of not being able to make the most optimal code – with the least effort necessary.
These are 4 out of the 7 motivators for change.

A possible future role of the features is the creation of standardized heterogeneous containers. This
might involve a vector like reallocation scheme for a buffer containing the different types.

3 Status
The status of this document is first draft. Hence, at the moment it is rather a study with questions open
than a full-blown change proposal with exact wording for the standard.

The document contains 3 major features that might be added, and variations on those features. It
attempts to list all possible and meaningful alignment-related scenarios and to ask all the open
questions.

4 The Proposal

4.1 Basic Cases

4.1.1 The alignment-specifier
The alignment-specifier can be used in variable declarations just like a storage-class-specifier. It can
be used portably to specify the alignment requirement for the variable being declared.

In general alignment requirement for a type can be strengthened, weakened or unchanged. Open question is
whether it makes any sense to weaken the alignment requirements. The only place where it seems to be
useful is the creation of “packed” class types. Since on many platforms accessing a misaligned variable is
very costly and “packing” is not directly related to alignment I propose not to allow weakening.

The required alignment can be specified by using another type or by an integral number. The former
is called type-based while the latter is called value-based alignment-specifier. See subsections
(4.1.1.1, 4.1.1.2) for examples. This takes the following grammatical form:

alignment-specifier:
 type-based-alignment-specifier
 value-based-alignment-specifier

The alignment-specifier does not become part of the type (just like the storage-class-specifier).
// The alignment-specifier does not change the type: Listing 1)
template <typename T> tfunc(T const &t) { ... }

void func(int const &i):
void func(long const &i):

// ...

int align_as<long> aligned_var;

func(aligned_var); // Calls funct(int const &)
tfunc(aligned_var); // Instantiates tfunc<int>(int const &)

If the alignment-specifier would weaken the alignment requirement of the type, the program is ill-
formed and diagnostics are required. The alignment requirement relations of related types have to be
defined in the standard, just like as requirements for size relations are. The relations of alignment
requirements between unrelated types are implementation defined, but every type has to have

WG21/N1546 = J16/03-0129 page 5
Evolution WG Proposal

stronger or equal alignment requirements than the char type(s). This ensures that char (unsigned
char) buffers can always be aligned.

// The following line will emit diagnostics and the program becomes ill formed Listing 2)
int align_as<char> aligned_var;

// The following line must be OK for any imaginable type T:
char align_as<T> aligned_buffer[sizeof T];

See additional requirements for type-based aligned variables in the subsection.

The alignment-specifier will cause the given variable to be aligned according to the specification. See
the subsections 4.1.1.1 and 4.1.1.2 about type-based and value-based alignment-specifier for the
rules.

// Make a buffer to store 50 variables of a type as an array: Listing 3)
unsigned char align_as<T> buffer[50*sizeof(T)];

// Make a type T in the first element:
T *firstT = new (buffer) T; // Safe, buffer is well-aligned

// Make a T in the 42th element of the array
T *raw = static_cast<T*>(buffer);
T *theAnswer = new (raw+42-1) T;

The alignment-specifier can be applied to any variable declaration including member variables of
class types. It cannot be used on declarations of function arguments or catch arguments.

// The following lines are OK Listing 4)
unsigned char align_as<T> buffer[50*sizeof(T)];

template <class T, std::size_t S> class vectorRudiment {
 char align_as<T> buffer_[S*sizeof(T)];
};

if (bool align_as<double>b(1)) { // Makes no sense, but allowed and will be aligned
 // ...
}

// The following lines are ill-formed
void func(int align_as<double> i); // aligment-specification in parameter-declaration
try {
 doSomething();
} catch (int align_as<double> &i) { // aligment-specification in exception-declaration
 // Handle exception
}

The alignment-specifier is optional in declarations of variables using the extern storage-class-
specifier. This gives the opportunity to hide this special requirement from the users of library code.

// Somewhere in a header file I use Listing 5)
extern char force[];

// Somewhere in a library implementation far far away...
class Force : DarkSide {
 Jedi *good; // etc.
};
char align_as<Force> force[sizeof(Force)];

WG21/N1546 = J16/03-0129 page 6
Evolution WG Proposal

It is not supported to create a type with changed alignment requirements, since the alignment-
specifier does not become part of the type. On the other hand it is possible to create a class type with
aligned member variable(s).

// Wrong attempt: Listing 6)
typedef double align_with<0x10000> hwDoubleVector; // Error!
Void clear(hwDoubleVector &toClear, unsigned size);

// Using C++, why not make a class?
template class <std::size_t S> hwDoubleVector {
 double align_with<0x10000> vec_[S];
 // etc.
};

4.1.1.1 Alignment by type

The type-based-alignment-specifier takes the form of:
type-based-alignment-specifier:
 align_as<type-id>

The type used in a type-based-alignment-specifier has to be complete.

The variable will be well aligned for the given type-id. If the architecture does not require strict
alignment the type-based-alignment-specifier will use the optimal alignment of the given type-id.

A variable declared this way must contain enough space to store at least one instance of the type
used in the alignment-specifier. Otherwise the program is ill-formed and diagnostics are required. It
makes no sense, so it is better caught at compile time. If it is necessary to make such a declaration
value-based alignment-specifier can be used.

// This is not gonna work Listing 7)
char align_as<T> buff[sizeof(T)/2];

// But this will
char align_with<align_of(T)> buff[sizeof(T)/2];

4.1.1.2 Alignment by alignment-value

The value-based-alignment-specifier takes the form of:
value-based-alignment-specifier:
 align_with<alignment-value>

alignment-value:
 constant-expression

The constant-expression shall be integral and representable using the type std::size_t.

The value can be one returned by the align_of<T> expression, zero, one or a value defined to be
valid by the implementation.

WG21/N1546 = J16/03-0129 page 7
Evolution WG Proposal

• The value of zero does not change the alignment.
• The alignment-value 1 represents the alignment requirements of the type char
• A value returned by the align_of<T> expression represents the alignment requirements of type

T.
• The effect of any other value is implementation defined. Implementations are encouraged to

define this value based on number of bytes – if it makes sense on the given platform.
// Aligning the buffer using a number: Listing 8)
template <std::size_t A, std::size_t S> class dyn_array_allocator {
 ...
 char align_with<A> buff_[S];
};

Using any value not defined here or by the implementation renders the program ill-formed.
Diagnostics is required.

// Aligning the buffer using a number not known by the implementation: Listing 9)
char align_with<11> buff_[S]; // Error!

This alignment style is added for completeness and to create the possibility for implementations to
enable special alignment for the purposes of systems programming (hardware programming).

4.1.2 Getting the alignment-value

The align_of operator retrieves – during compile time - the alignment-value associated with a type.
It is an unary-expression and takes the following form:

unary-expression:
 align_of(type-id)

Its value is an integral constant-expression of type std::size_t.

The return value is zero, one or any other – implementation defined – value.

The return value represents the required or – if there is none – the optimal alignment for the given
type.

// Getting alignment value of a type for later use where the type is unknown Listing 10)
const std::ptrdiff_t intAlign = align_of<int>;

// somewhere, in a Galaxy far, far away:
char align_with<intAlign> buff_[SomeConst];

// Or in the dark and secret chambers of some template metaprogramming genius:
template <typename T> struct magic {
 enum { value = align_of<T> };
};

Question: do polymorph types in a hierarchy have the same alignment by the nature of the art? If not
– which would surprise me a lot – we will need runtime-evaluated form as well.

4.1.3 Runtime pointer alignment
Aligning a pointer value means the process of increasing it to the closest value, which is well aligned
for a given type T or for a given alignment-value.

The function introduced here is to be in the memory standard header.

WG21/N1546 = J16/03-0129 page 8
Evolution WG Proposal

The runtime pointer alignment function is based on value-based alignment to avoid template code
bloat. Type based alignment can be achieved by using the sizeof and the align_of operators
together in order to specify the alignment value and the required buffer size for the function.

The std::align function aligns a void pointer within a given buffer. It also checks if the aligned
pointer and the object(s) it is supposed to point to will fit into the buffer. The function takes the from:

void *std::align(std::size_t align_val,
 void *&ptr, std::ptrdiff_t &space,
 std::size_t size) throw();

Aligns ptr using value-based alignment based on align_val, to form an aligned size bytes buffer.

Parameters:

• align_val alignment-value as described in 4.1.1.2 above (*)
• ptr the pointer to be aligned (**)
• space the number of bytes allowed to be used (**)
• size the number of bytes intended to be used after the pointer is aligned

(*) The value of zero and one means no alignment is done.

(**) Also set on successful alignment.

The return value of the function is a null pointer if the aligned pointer itself or the size bytes of buffer
would not fit into the space bytes available to use at the address give in the ptr pointer. Otherwise
the aligned pointer is returned.

The adjustment increases the value of ptr – if needed – to make it address a memory area properly
or optimally aligned for the given type T and returns that pointer value if it is valid.

Upon success (not returning NULL) the function updates the ptr and the space arguments. The
pointer is set to point right after the created buffer. The space is decreased by the number of bytes
used up when moving ptr.

The function deliberately does not return a pointer to T, since there is no T there yet, until constructed
or initialized.

char *ptr; std::ptrdiff_t space; Listing 11)
// Want to make 4 doubles there
void *alignedPtr = std::align(align_of(double),
 ptr, space,
 4*sizeof(double));
/* ptr == static_cast<char *>(alignedPtr)+size;
 std::ptrdiff_t tmp = static_cast<char*>(ptr)-static_cast<char*>(orig_ptr);
 space == orig_space – (tmp + size); */
if (!alignedPtr) {
 // realocate, throw, abort, scream...
}
double *dblPtr = static_cast<double*>(alignedPtr); // Safe to do it
dblPtr[0] = 42.00; dblPtr[1] = 3.14; dblPtr[2] = 2.71; dblPtr[3] = 0.00;

// Then 10 of class type T
alignedPtr = std::align(align_of(T),
 ptr, spaceleft,
 10*sizeof(T));
if (!alignedPtr) {
 // realocate, throw, abort, scream...
}

WG21/N1546 = J16/03-0129 page 9
Evolution WG Proposal

The function does not check the validity of its arguments. Calling the function with invalid arguments
results in undefined behavior.1

4.1.4 Generic, orientating examples
Please see the examples inside the descriptions above and below. If someone can help me to
rearrange the text to be still understandable and have the examples here I will do it.

4.2 Advanced Cases
There are no cases which could be called advanced.

5 Interactions and Implementability

5.1 Interactions
The proposed features have a loose connection to the rest of the language. Hence they do not require
any change in those, and they can be considered independently. However the power of portable
alignment features can best be used together with templates.

5.1.1 Effects on syntax of the language
The extensions affect two major syntactic elements of the language: variable declaration and
definition (decl-specifier) and expressions (unary-expression).

1 The pointer is invalid, if space is not really present, if the alignment value is invalid

WG21/N1546 = J16/03-0129 page 10
Evolution WG Proposal

5.1.1.1 Effects on declaration (decl-specifier)

There is a new declaration specifier to be added, the alignment-specifier. Changes to the grammar
are shown in boldface.

decl-specifier:
storage-class-specifier
alignment-specifier
type-specifier
function-specifier
friend
typedef

alignment-specifier:
 type-based-alignment-specifier
 value-based-alignment-specifier

type-based-alignment-specifier:

 align_as<type-id>

value-based-alignment-specifier:
 align_with<alignment-value>

alignment-value:
 constant-expression

5.1.1.2 Effects on expressions (unary-expression)

There is a new unary expression to add for the align_of operator. Changes to the grammar are
shown in boldface.

unary-expression:
postfix-expression
++castexpression
--castexpression
unary-operator
cast-expression
sizeof unaryexpression
sizeof(typeid)
align_of(typeid)
new-expression
delete-expression

WG21/N1546 = J16/03-0129 page 11
Evolution WG Proposal

5.1.2 Effects on the semantics of the language

5.1.3 Effects on the type system

5.1.3.1 Not a type

Alignment may affect the “placement” of the variable it is applied to, but does not change its size and
does not create a new type.

In declarations of variables – which are not also definitions – the alignment-specifier can be omitted,
as long as it is present in the definition.

See section 4.1.1 above for examples.

5.1.3.2 Effects on class types

If an alignment-specifier is applied to a non-static member variable declaration in a class declaration,
this alignment specification becomes part of the class type. It may change the layout, the size and the
alignment requirements of the class type compared to one without that alignment specifier.

class FirstClassSeat : public AirCraftSeat { Listing 12)
 Seat seat_;
};
class TouristClassSeat : public AirCraftSeat {
 Seat align_as<SardineCan> seat_;
};

// sizeof FirstClassSeat >= sizeof TouristClassSeat

If an alignment-specifier is applied to a static member variable declaration it does not change the
layout, size or the alignment requirements for the objects of such class. The alignment specifier can
be omitted from the declaration of the static member, as long as it is present in its definition.

class A { Listing 13)
 static char buff[sizeof(double)*42]; // In the header no alignment-specification
};

// This is OK, the compiler only needs to know alignment when it creates the variable
char align_as<double> A::buff[sizeof(double)*42]; // Implementation

5.1.4 Strength of alignment
The strength of alignment is to be defined similarly to how sizes of types are defined in C++. The type
char has the weakest alignment requirements of all, followed by short and so on. It is implementation
defined (as for sizes) what is the connection between the alignment of a floating point and an integer
type etc.

A type can have stronger or in other words stricter alignment requirements than another type. Then
this other type has weaker alignment requirements.

5.1.5 Supporting arguments
There is no existing feature in the language to specify alignments for a variable. Only suboptimal
workarounds can be achieved using existing language features. Most of them use either heavy
template machinery or ignore the possibility of implementation specific fundamental types.

WG21/N1546 = J16/03-0129 page 12
Evolution WG Proposal

5.1.5.1 Fixed capacity, dynamic size containers

In today’s language implementation of a fixed capacity, dynamic size container requires use of some
magic tricks, and it will still not be an optimal solution. Please see the Andrei Alexandrescu article in
CUJ1 for one possible solution.

Any external (library like) solution to the alignment problems of such containers will either:

• be intrusive to the contained class (template metaprogramming used to built it and provide means
of finding out the types in it) or

• waste memory (use an alignment which is suitable for all known fundamental types) or
• both
Furthermore all library based solutions fail to address the situation of implementation specific
fundamental types. While it is arguable that a standard should not be concerned with those unknown
types, it is also important not to rule them out.

// The guts of an "array" class Listing 14)
template <class T, std::size_t S> class array {
 char align_as<T> buff_[S*sizeof(T)];
 public:
 // Operators, constructors and member-functions in the style of std::vector
 // Those, who might have thrown std::bad_alloc will throw std::out_of_space
};

// The use of such a container on the stack in some function
array<double, 42> dblArray;
// Imagine a complex operation adding numbers
 dblArray.push_back(somethingICalculated);

// Accessing elements is just like a vector
 double number = dblArray[12] / 42.0;

// While this array introduces a limit on the maximum number of elements
// it does prevent buffer overruns by wrapping a class around that array

// This kind of array type can be even made fully dynamic if VLAs are ever to be
// introduced into C++

Why do we need the alignment here? The construct is aimed at eliminating the need for dynamic
memory allocation (runtime efficiency) while still ensuring minimal code execution (elements of the
array are not constructed until requested) and minimal requirements on the type contained (no
requirement for a default constructor).

If VLAs (Variable Length Arrays) will be introduced into C++, a similar construct can be done but with
the size also dynamic – at creation. With such a type one could write functions to calculate the median
of a collection without the need for dynamic memory allocation.

1 URI: http://www.cuj.com/documents/s=7982/cujcexp2006alexandr/alexandr.htm

WG21/N1546 = J16/03-0129 page 13
Evolution WG Proposal

5.1.5.2 Optional elements

Optional elements of a class nowadays have to be made using dynamic memory allocation to avoid
the requirement for a default constructor. In this case dynamic memory allocation is not necessarily
needed. We know that there will be one and only one of this element – or zero. There is not much
“dynamic” in it. The allocation is only required to get a properly aligned buffer. (In addition to this the
type of this optional member might have a small size, which puts further burden on the allocation
system.)

We need a buffer, well aligned for the type, but we do not want to have it initialized:
// A preliminary attempt for a generic optional element Listing 15)
template <class T> class optional {
 bool exists_;
 char align_as<T> buff_[sizeof(T)];

 T &elem() { return *static_cast<T*>(buff_); }
 T const &elem() const { return *static_cast<T*>(buff_); }
 void set(T const &e) { if (exists_) elem()=e; else construct_(e); }

 void construct_(T const &e) { new (buff_) T(e); exists_ = true; }

 void destruct_() { if (exists_) elem().~T(); exists_ = false; }
 }
 public:
 optional() : exists_(false) {};
 explicit optional(T const &e) { construct_(e);};
 ~optional() { destruct_(); }

 // Assignment operator, copy assignment operator, copy constructor etc.
 T &operator =(T const &e) { set(e); return elem(); }
 optional(optional const &o) {
 if (o.exists_) construct_(o.elem());
 else exists_ = false;
 }
 optional &operator =(optional const &o) {
 if (o.exists_) set(e);
 else destruct_();
 return *this;
 }

 // The rest (access to T, acces to existence info)
 operator void *() const { return exists?buff_:0; } // For bool as streams

 T *operator ->() { if (exists) return &elem(); throw bad_access; }
 T const *operator ->() const { if (exists) return &elem(); throw bad_access; }

};

5.1.5.3 Special alignments for special hardware

Today this kind of variable can only be created using non-portable constructs.
// Here only the alignment number may need to change when porting Listing 16)
double align_with<SOMETHING_FROM_HW_MANUFACTURER> hwVector[1024];

5.1.6 Language integration
Please see previous examples to examine how the proposed feature works together with existing
features.

WG21/N1546 = J16/03-0129 page 14
Evolution WG Proposal

5.1.7 Effects on legacy code
There are now known effects to legacy code. The proposed additions do not change the meaning of
existing code.

5.2 Implementability
As much as I know about compiler implementations I feel that most of the core issues needed to
implement of this proposal are present in some form in all compilers.

If compiler intermediate code contains still types and not only objects of no type (addresses and sizes)
the implementers need to add support for expressing different alignment requirements.

Most of the change must come into parsing and code generation. For non-member variables the code
generator needs to generate code to align the variable properly according to the specifier. For
member variables the class types layout needs to be generated according to the specified alignment
requirements.

For the alignment operator compiler implementers need to uncover and document their internal
alignment values as well as change them to byte based, if this is possible.

WG21/N1546 = J16/03-0129 page 15
Evolution WG Proposal

6 Open questions, tasks

6.1 Type for the alignment value
Should we introduce a new type for this value and the align_of(T) expression? It seems that
std::ptrdiff_t is just about right for the task, but it leaves me with the feeling of the probability of
coupling two absolutely unrelated things.

6.2 Implement alignment loss calculation
When aligning there will be some bytes lost. In case we have a data structure with many optional
elements and the possible valid combinations of those are known we could just calculate the
maximum required memory and “allocate” it at compile time. However we cannot just use sizes, since
the alignment will cause some more memory usage. Neither in the current language nor in this
proposal an operator exists to get this (maximum) alignment loss at compile time.

I have left such an operator out of the first draft proposal since it would require a new keyword (see
my concerns later) and we can possibly achieve it without an operator.

The question is can we define alignment values as number of bytes for all possible platforms we know
and can foresee? If yes, the imaginary align_loss(T) can be written as align_of(T)-1, since
this is the maximum number of bytes that can be lost due to alignment.

If the alignment value cannot be defined in terms of bytes (like sizeof is), we will need to add an
operator returning the maximum alignment loss in bytes to be able to create small buffer for flat types
described above.

6.3 Value range of the alignment value
Should we enable negative values for alignment for the implementation defined value range? It seems
it would not make sense at all, on the other hand to rule something out I feel I would need to find an
absolute argument against it, not the lack of arguments to support it.

6.4 Fix terminology
Being new to standardization I am sure I have made some rather nasty mistakes in the language of
this proposal.

6.5 Weakening of alignment requirements
Should we rather enable it in the standard? If yes, should we define it or leave it to the
implementation?

6.6 Syntax, semantics, diagnostics
Review/fix what is ill-formed, where should we require diagnostics.

WG21/N1546 = J16/03-0129 page 16
Evolution WG Proposal

6.7 Find common syntax
Is it possible (or necessary) to find a common syntax for C and C++ implementation of the alignment
features?

C++ begs for template syntax but the C grammar has no idea of that.

The runtime pointer alignment, the value based variable alignment (with align_of) and alignment of
members of structures seems to be possible candidates for a C extension. I have tried to keep those
C compatible, with the exception of the template-like syntax of the alignment specifier.

Keeping C and C++ close is a hot topic today, so I believe it is important to look at every proposal
from this perspective. The compromise to be made in this proposal is to completely drop template like
syntax in favor of the sizeof function like syntax. The drawback of this is that the syntax will not
“harmonize with” the rest of the C++ language using types (except the sizeof operator)

6.8 Reduce the number of keywords while keeping reasonable readability
This proposal in its first draft state contains three new keywords: align_of, align_as,
align_with.

I proposed three keywords provide readability and to avoid overloading of a keyword. For example
looking at an alignment specification with its two separate keywords one does not need to track down
the magic (template argument) identifier S to find out if it is a type or a number.

6.9 Finalize proposed names
Should the alignment of operator be align_of (and avoid collision with existing implementations) or
should it be alignof? What shall be the final name of the runtime pointer adjusting function? See
also “6.8 Reduce the number of keywords while keeping reasonable readability”.

6.10 Fully implement the examples
The static-capacity dynamic-size vector, the optional element class, and a runtime built structure.

6.11 Make it shorter
I have a birth defect of writing too long, talking too much. IMO this proposal should be much shorter, I
just don’t yet see how.

